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Abstract
Reflection tomography allows the determination of a propagation velocity
model that fits the traveltime data associated with reflections of seismic waves
in the subsurface. A least-squares formulation is used to compare the observed
traveltimes and the traveltimes computed by the forward operator based on a
ray tracing. The solution of this inverse problem is only one among many
possible models. A linearized a posteriori analysis is then crucial to quantify
the range of admissible models we can obtain from these data and the a priori
information. The contribution of this paper is to propose a formalism which
allows us to compute uncertainties on relevant geological quantities for a
reduced computational time. Nevertheless, this approach is only valid in the
vicinity of the solution model (linearized framework), complex cases may thus
require a nonlinear approach. Application on a 2D real data set illustrates
the linearized approach to quantify uncertainties on the solution of seismic
tomography. Finally, the limitations of this approach are discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Geophysical methods for imaging complex geological subsurfaces in petroleum exploration
requires the determination of an accurate propagation velocity model. Seismic reflection
tomography (see [2]) turns out to be an efficient method for that: this method allows us to
determine a seismic velocity distribution from traveltime data associated with the seismic
waves reflecting on geological surfaces. This inverse problem is formulated as a least-
squares minimization problem which consists of the minimization of the mismatch between
the observed traveltimes and the traveltimes computed by the forward problem (solved by
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a ray tracing method). The first section of this paper presents an overview of the reflection
tomography method we have developed (see [14–16, 20] for more details).

In principle, the estimation of the uncertainties begins with an analysis of the errors on the
solution model by applying Monte Carlo techniques among others (for examples see [18, 17]).
These methods have a prohibitively expensive computational cost. Our goal here is to develop
methods for the a posteriori analysis of the solution which will be easier to apply and
nevertheless provide useful results. Classically, the analysis of the solution consists only
of checking the misfits between observed traveltimes and calculated traveltimes by computing
characteristic values of the misfit distribution and by studying the spatial distribution of the
misfits. This analysis is not sufficient: even if these quality control criteria are matched, the
determined model is only one of many possible models that match the data. An uncertainty
analysis should be performed to quantify the range of admissible models we can obtain from
these data and the a priori information (see [10]).

The different methods we are interested in here allow us to access the uncertainties on
the solution model thanks to the analysis of the a posteriori covariance matrix obtained in the
linearized framework (see [11, 21] among others). The computation of this matrix is generally
expensive for 3D problems; among others, [1] proposed a method to compute approximations
of the covariance and resolution matrices from the different iterates when the Gauss–Newton
linear system is solved by an iterative method such as the gradient conjugate algorithm. But
the physical interpretation of the terms of this huge matrix may be cumbersome when we want
to go further than the classical but restrictive analysis of the diagonal terms. In this paper, we
propose another approach which simulates admissible models from an a posteriori probability
density function that directly provides physical models. This method requires a Cholesky
decomposition of the Gauss–Newton matrix which may be unfeasible for 3D realistic models.
To overcome this difficulty, we propose a formalism based on linear combinations of model
parameters (macro-parameters) that allows us to compute uncertainties on relevant geological
quantities (the average thickness of a layer for example) for a reduced computational time (the
a posteriori covariance matrix is reduced to the macro-parameter space). The application of
these methods on two real data sets shows their effectiveness and their limitations are discussed,
particularly the limitations due to the linearization: a nonlinear approach is proposed in order
to delimit the space of admissible solutions.

In this paper, after the description of the chosen formulation of reflection tomography in
section 2, we present the two proposed methods in section 4 to perform a linearized uncertainty
analysis on the solution model of a 2D real data set described in section 3. In section 5, we
explain the motivations to carry out a nonlinear approach on this 2D complex case and present
some results. Finally, section 6 is devoted to concluding the paper.

2. The reflection tomography problem

Let us first present the reflection tomography method which was developed in the KIM
consortium [16]. The chosen model representation is a blocky velocity model where the
velocity distribution is described by slowly varying layer velocities (also called velocity
blocks) delimited by interfaces (see figure 1 for an example). The model is thus composed
of two kinds of parameters: parameters describing the velocity variations within the layers
and parameters describing the geometry of the interfaces delimiting the velocity blocks3.
Moreover, anisotropy of the velocity may be modelled by two parameters η and δ (see [20]

3 In our approach (see Jurado et al [14]), the subsurface model m is composed of 2D or 3D B-spline functions
describing velocity variations in a layer (v(x, y) + k.z or v(x, y, z)) and 2D B-spline functions describing the
interfaces (Z(x, y), Y (z, x) or X(y, z)) (see [6, 13]).
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Figure 1. Solution velocity model obtained by tomography. Left: P velocity. Right: S velocity.
The RMS value of the traveltime misfits is 6.2 ms. The anisotropy parameters values are η = 6.29%
and δ = −4.43%.

for more details). This blocky representation allows the representation of complex models
(e.g., presenting rapid lateral velocity variations and complex geological structures) with a
reasonable number of unknowns. Strong a priori information is introduced, the number of
layers being fixed: this reduces the underdetermination of the inverse problem.

The forward problem of reflection tomography consists of computing traveltimes of
reflected seismic waves, given a model, an acquisition survey (locations of the sources and
the receivers) and signatures (generally reflectors where the waves reflect). It is solved by a
ray tracing method which is a high frequency approximation of the wave equation (see [5, 15]
among others). We denote by T (m) the forward modelling operator, that gives, for a specified
reflector, the traveltimes associated with all source–receiver pairs.

Reflection traveltime tomography is the corresponding inverse problem: its purpose is to
adjust m such that T (m) best matches a vector of traveltimes T obs picked on seismic data. A
natural formulation of this problem is the least-squares formulation

‖T (m) − T obs‖2
C−1

D

+ ‖m − mprior‖2
C−1

M

, (1)

where

• ‖−‖A denotes the norm defined by A matrix: ‖x‖A = xT Ax.
• CD is the a priori covariance operator in the data space that allows us to describe errors

on the data,
• mprior is an a priori model (coming, for instance, from geological knowledge and/or

additional information resulting from well measurements),
• CM is the a priori covariance matrix in the model space that describes errors on the a priori

model.

In practice, building an a priori model is difficult and the a priori term, which is necessary
to well pose the inverse problem, is often replaced by regularization terms made up of second
derivatives of the model (see for instance [9]) which leads to C−1

M = Qreg and mprior = 0

‖T (m) − T obs‖2
C−1

D

+ ε2‖D2m‖2
Id (2)

where a continuation technique (see [4]) is applied for tuning the regularization weight ε:
the weight is decreased until the model matches the data with the expected accuracy. The
obtained model is then the smoothest model which fits the data. This methodology allows us
to stabilize the inversion.
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This large size (up to ∼100 000–500 000 traveltime data and ∼5000–10 000 unknowns)
nonlinear least-squares problem (the objective function is not quadratic since the forward
modelling operator T (m) is nonlinear) is solved classically by a Gauss–Newton method based
on successive linearizations of the forward operator which needs the computation of the
Jacobian matrix of T

(
J (m) = ∂T

∂m
(m)

)
.4 The resulting approximation of the Hessian matrix

of the cost function is noted H(m) = J (m)tC−1
D J (m).

Then, the quadratic approximation of the objective function (2)

C̃n(δm) = ∥∥Jnδm − δT obs
n

∥∥2
C−1

d

+ ε2‖D2(mn + δm)‖2 (3)

is minimized at each Gauss–Newton iteration n by a preconditioned conjugate gradient (mn

is the current model, δm is the unknown model perturbation, Jn = ∂T
∂m

(mn) is the Jacobian
matrix evaluated at mn and δT obs

n = T obs − T cal(mn)) (see [7]).

3. Presentation of the application

Let us consider a 2D real data set already studied by [3] with PP and PS5 data to illustrate all
the following. 45 338 traveltime data were interpreted and an uncertainty of 5 ms (respectively
8 ms) is associated with PP data (respectively PS data). A layer-stripping approach (separate
inversion of each velocity layer from the shallowest layer to the deepest one) provided the
velocity model of figure 1.

The model is described by four interfaces, corresponding to the interpreted events
(H1,H3,H4 and H5) which define three layers with only lateral velocity variations for the
first two uppermost layers (v(x), there is no vertical variations) and the deepest layer stretching
from H3 to H5 with a 2D velocity VP5(x, z) and VS5(x, z) (figure 1). VP5 and VS5 define
respectively the vertical velocity propagation of the P-waves and the velocity propagation of
the S-waves. This model is composed of 4588 parameters, 592 for the interfaces and 3936
for the velocities. In the deepest layer, we assume a vertical transverse isotropic velocity
field characterized by VP5 and VS5 and the two parameters η and δ measuring respectively
the measure of the velocity an-ellipticity and the near vertical velocity propagation of the
P-waves6. The values of η and δ in the model correspond to a strongly anisotropic medium.
For the first two layers, the inversion results are very satisfactory, with a traveltime misfit
RMS (root mean square) of 3.5 ms for the PP-data and of 7 ms for the PS-data. For the last
layer, the traveltime misfit RMS is of 3.7 ms and of 5.6 ms for, respectively, H4 and H5
PP-data and of 8.5 ms for H5 PS-data, results which are consistent with the data uncertainties
(figure 2).

As already shown by [20], it turns out that the anisotropy parameter δ is strongly
undetermined from seismic data. The value of δ parameter was obtained in [3] by a trial
and error approach in order to match approximately the depth of H5 horizon given at well
location.
4 The computation of the derivatives of T with respect to the model parameters is cheap, thanks to the Fermat principle
(see [2]). Thus, the derivatives of traveltimes with respect to velocity parameters are calculated by integrating a
perturbation of the velocity along the rays calculated in the background model. The derivatives with respect to
interface parameters are the integration of the background velocity along the shortened (negative contribution) or
extended (positive contribution) part of the ray resulting from the interface displacement (we consider only the vertical
displacement of impact point). See [16] for details.
5 PS-wave results from the conversion at the reflector of a down-going P-wave (compressional wave) into an up-going
S-wave (shear wave). In opposition to the PS-wave, the pure P mode is often called the PP-wave.
6 The expressions of η and δ are δ = (C13+C44)2−(C33−C44)2

2C33(C33−C44)
and η = ε−δ

1+2δ
where ε = C11−C33

2C33
, Cij being the elements

of the elastic stiffness tensor C, which defines the linear relationships between the stress tensor and the strain tensor
(following [22] and [20]).
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Figure 2. Interfaces of the solution velocity model obtained by tomography and their associated
traveltime misfits: impact points of rays reflected on H4 and H5 (Left: PP rays. Right: PS
rays), scales represent traveltime misfits. Note that the illuminated zone extends from 14 km to
20.5 km.

We propose to carry on an a posteriori uncertainty analysis in order to quantify the
uncertainties on this solution model: we focus on the anisotropic layer delimited by H3 and
H5 (velocities VP5 and VS5).

4. Quantifying uncertainties on the solution model: a linearized approach

A classical approach to quantify uncertainties consists of the analysis of the Hessian matrix
(or its inverse: the a posteriori covariance matrix) associated with the linearized problem (3)
around the solution m∞. This approach is only valid in the vicinity of the solution model, the
size of the vicinity depending on the nonlinearity of the forward map.

The bi-linear form associated with the Hessian matrix measures the influence of a model
perturbation δm on the quadratic cost function defined around the solution m∞:

C̃(δm) − C̃(0) = 1
2 (J∞δm)T C−1

D (J∞δm) + 1
2δmT C−1

M δm

− δmT
(
J T

∞C−1
D δT obs(m∞) − C−1

M m∞
)

= 1
2δmT

(
J T

∞C−1
D J∞ + C−1

M

)
δm

= 1
2δmT H(m∞)δm. (4)

with

• J∞ = J (m∞),
• C̃(0) = C(m∞), and
• J T

∞C−1
D δT obs(m∞) − C−1

M m∞ = g(m∞) = 0, gradient of C(m) that vanishes at the
solution m∞.

The a posteriori covariance matrix is defined by the inverse of H(m∞) (see [21])

C ′
M = (

J T
∞C−1

D J∞ + C−1
M

)−1
. (5)

The space of admissible models can be characterized by the contour lines

(m − m∞)T C ′−1
M (m − m∞) = constant, (6)

which are ellipsoids of centre m∞ and correspond also to contour lines of the a posteriori
Gaussian probability density function

exp
(− 1

2δmT C ′−1
M δm

)
. (7)
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The diagonal terms of C ′
M are the uncertainties on the parameters describing the model

and the off-diagonal terms are the correlations between these uncertainties. For instance,
the probability that the true model parameter pi verifies −2(C ′

M)i,i � pi − p∞ � 2(C ′
M)i,i ,

independently of the values of the other model parameters, is about 95%. To take into account
the correlations between the parameters, we should study the 95% confidence ellipsoid. The
axes of the ellipsoids (6) are defined by the eigenvectors of C ′

M , the square root of the
eigenvalues giving the uncertainties on the associated eigenvector.

Remark 1. In practice, the diagonal terms of C ′
M provide the uncertainties on the B-spline

parameters, unknowns of the discretized inverse problem: they are not physical quantities.
We would rather compute uncertainties on physical quantities, for instance, the evaluation of
the B-spline functions in the physical domain.

Remark 2. Following [8], the eigenvector decomposition of the a posteriori covariance
matrix gives access to the worst/best determined model directions and the associated
uncertainties. The best (respectively worst) determined model direction corresponds to the
smallest (respectively highest) eigenvalue of the a posteriori covariance matrix, i.e. highest
(respectively smallest) perturbation of the quadratic cost function. The uncertainties associated
with these eigenvectors, namely the square root of the eigenvalues, are meaningless, the
eigenvectors being composed of mixed velocity and interface parameters, combinations which
are usually difficult to link to physical quantities.

From those remarks, we propose in the next sections two methods to quantify geological
uncertainties on the solution model which avoid the expensive computation and the
cumbersome analysis of the generally huge a posteriori covariance matrix C ′

M .

4.1. Simulations of admissible models

The first proposed method to quantify uncertainties is the simulation of admissible models
from the a posteriori probability density function (pdf) (7). The simulations provide directly
interpretable results, i.e. physical models. The method (see for instance [19]) consists in
random simulations of model perturbations following the pdf (7).

First, we apply the variable transformation:

δm′ = Uδm, (8)

where U is the lower triangular matrix obtained by a Cholesky decomposition of the inverse
of the a posteriori covariance matrix C ′−1

M = H = UT U (symmetric positive definite matrix).
The method consists then in simulations of the uncorrelated Gaussian pdf with unit

variance

exp
(− 1

2δm′T δm′). (9)

Simulations δm′ are transformed into correlated Gaussian simulations of vector δm by the
inverse transformation of (8).

Figures 3–7 show 100 simulated models obtained by this method from the solution model
of figure 1: interfaces H4 and H5, variations of velocities VP5 and VS5 along x and z

directions and histograms of the anisotropy parameters η and δ. From these simulations,
we observe that the highest uncertainties on the lateral velocity variations are located at the
boundaries of the model, areas that are not well illuminated by the rays. Indeed, for a slice
at constant z = 2.7 km, we observe uncertainties of ≈690 m s−1 for VP5 and of ≈260 m s−1

for VS5 at the boundaries of the model and uncertainties of ≈450 m s−1 for VP5 and of
≈140 m s−1 for VS5 in the illuminated parts of the model. Concerning the interface depths,
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16 km (right) extracted from the 100 simulated velocity models.

we observe uncertainties of ≈180 m for reflector H4 and of ≈220 m for reflector H5 at the
boundaries and of ≈90 m for reflector H4 and of ≈100 m for reflector H5 elsewhere. For the
anisotropy parameters η and δ, we notice uncertainties around 0.3% on η and 2% on δ.

This method is quite attractive for the straightforward interpretation of the results despite
its cost (cost of the Cholesky decomposition): it provides physical models leading to small
perturbations of the quadratic cost functions (3).
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(respectively δ) given by the macro-parameter method (see section 1).

4.2. Uncertainties on geological macro-parameters

We propose here a method that allows us to deal with large size models at a reasonable cost
and provides uncertainties on chosen physical quantities. The proposed approach consists in
building macro-parameters (MP) with a geophysical interest. These macro-parameters are
linear combinations of the inverted parameters such as the mean of the velocity variations in
a zone, the slope of an interface, the average thickness of a layer, etc. [12] has introduced
the notion of macro-parameter (his main motivation being to avoid numerical problems in the
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Table 1. Standard deviations in bold (square roots of the diagonal terms of the a posteriori
covariance matrix) associated with the MP ‘mean in the illuminated part of the model’ and the
normalized correlations between the uncertainties on the different defined MP. This uncertainty
analysis is performed for the solution model of figure 1. The normalized values σ

|valuesol| × 100 of

the standard deviations (σ ) are also indicated in italic.

VP5 VS5 η δ H4 H5

VP5 475.1 m s−1 (22%) 0.002 −0.03 −0.02 0.005 0.01
VS5 0.002 168.9 m s−1 (22%) −0.04 −0.03 0.005 0.01
η −0.03 −0.04 0.22% (4%) 0.93 −0.16 −0.33
δ −0.02 −0.03 0.93 1.6% (37%) −0.17 −0.36
H4 0.005 0.005 −0.16 −0.17 77.1 m (5%) 0.06
H5 0.01 0.01 −0.33 −0.36 0.06 80.3 m (3%)

inversion of the complete Hessian). We propose here a generalization of his work (general
definition of macro-parameters) which allows the computation of uncertainties for huge 3D
problems.

We define a macro-parameter as

P = Bp, (10)

where p is the np model parameters vector (B-spline parameters in our case), P is the nMP

macro-parameters vector and B is the condensation matrix. We compute the a posteriori
covariance matrix C̃ ′

M in the macro-parameter space:

C̃ ′
M = BC ′

MBT . (11)

Note that C̃ ′
M (an nMP × nMP matrix) is small compared to C ′

M (an np × np matrix) since
nMP � np. To obtain this matrix, we do not need to compute the whole inverse of the Hessian,
C ′

M = H−1, in the parameter space.
Indeed, to obtain C̃ ′

M = H̃−1 = BH−1BT in the MP space, we just need H−1BT
j , where

BT
j are the different columns of BT . We thus solve nMP linear systems, H̃−1

j = BH−1BT
j ,

that are similar to the linearized problem we solve at each Gauss–Newton iteration. Thus, the
computational cost for one MP is comparable to one iteration of the inversion process.

We applied this method on the model of figure 1. We choose simple MP: the mean of
the velocity variations and the mean of the interface depth in the illuminated part of the layer
(region covered by rays)7. The results are listed in table 1. The uncertainty on anisotropy
parameter δ is high: ±74% (if we consider twice the relative standard deviation) and we
observe high correlations between η and δ (0.93) and also correlations between anisotropy
parameters and H5 depth (−0.33 and −0.36). We notice also the bad determination of the
velocities: ±22% (relative value). All these results are consistent with the simulation results
(section 4.1).

This method with its general formalism allows us to compute uncertainties on relevant
geological quantities with a reasonable computation cost and to highlight easily strong coupling
between the chosen MP.

4.3. Discussions on the two methods

As already mentioned, the two methods described in sections 4.1 and 4.2 rely on the quadratic
approximation (3) of the nonlinear cost function. In table 2 we have listed the RMS of
traveltime misfits for 20 simulated models (computed by the ray tracing forward operator).

7 From figure 2, we define the illuminated region by x ∈ [14, 20.5 km].
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Table 2. RMS values of the traveltime misfits, mean value of the velocities VP5 and VS5, of
the interfaces H4 and H5 in the illuminated region (MP defined in section 4.2 and anisotropy
parameters η and δ for 20 simulated models (chosen among the 100 simulations presented in
section 4.1).

Models RMS (ms) VP5 (km s−1) VS5 (km s−1) H4 (km) H5 (km) η (%) δ (%)

1 6.7 3.736 1.154 1.783 3.131 6.5 −2.6
2 6.6 3.121 1.222 1.925 3.222 6.2 −4.9
3 6.4 2.746 1.102 1.790 3.060 6.0 −5.9
4 6.9 2.701 1.315 1.857 3.259 6.2 −3.7
5 6.2 3.300 1.416 1.817 3.142 5.7 −8.3
6 6.5 2.542 1.245 1.926 3.181 6.1 −4.6
7 6.6 2.536 1.137 1.925 3.143 6.1 −5.5
8 6.2 1.919 1.087 1.844 3.102 6.3 −4.8
9 6.2 3.182 1.078 1.875 3.267 6.5 −3.5

10 6.4 2.960 1.388 1.736 3.198 6.0 −6.2
11 6.2 3.247 1.452 1.815 3.173 6.0 −6.4
12 6.2 2.592 1.073 1.664 3.147 6.6 −1.4
13 6.5 2.510 1.239 1.817 3.239 6.2 −4.9
14 6.6 3.595 1.130 1.717 3.208 6.5 −1.9
15 11.6 2.344 1.172 1.770 3.144 6.0 −6.1
16 6.5 2.154 1.323 1.853 3.2322 6.3 −4.5
17 6.3 2.855 1.307 1.797 3.296 6.3 −3.4
18 6.2 2.125 1.049 1.921 3.118 5.9 −6.8
19 6.6 1.431 1.048 1.772 3.144 6.4 −3.7
20 6.3 2.371 1.225 1.864 3.166 6.0 −6.6

Note that the RMS traveltime misfit for the solution model is 6.2 ms. Thus, there is only one
model which is not acceptable (11.6 ms for the model 15). The others are admissible models
with a RMS traveltime misfit bounded by 7 ms. The simulation method has then provided
model perturbations that correspond to small perturbations of the quadratic cost function but
also to small perturbations of the nonlinear cost function (RMS of traveltime misfits remains
small). It shows for this example, the good agreement between the quadratic cost function
and the nonlinear one around the solution model.

Figure 8 illustrates isovalues of the probability density function (7) in the MP space,
i.e. the ellipsoids defined by δmT

MPC̃
′−1
M δmMP. We visualize the 2D-marginal probability
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Figure 9. Solution model 2 obtained by tomography with additional constraints on the interface
depth at well locations. The RMS value of the traveltime misfits is 6.0 ms. The anisotropy
parameters values are η = 8.27% and δ = 15.94%. The crosses represent the wells.

density functions for several relevant MP couples, the 68% confidence ellipsoid and the 95%
confidence ellipsoid for η and δ, VP5 and VS5, δ and H5. This representation allows us to
underline the correlations between the anisotropy parameters η and δ which are quite strong
in this example. The 68% and the 95% confidence ellipsoids are elongated (the left part of
figure 8). On the opposite, the P and S velocities are uncorrelated: we obtain almost a
circle (the middle part of figure 8). We can also observe correlations between the anisotropy
parameter δ and the mean of the last reflector depth H5 (the right part of figure 8). In this
figure, we have also superimposed the anisotropy parameters η and δ and the MP VP5 and
VS5, δ and MP H5 built from the 100 simulated models. This figure allows us to point out the
equivalence of the simulation method and the macro-parameter approach.

Remark that the macro-parameter approach provides interesting information on the
correlations of macro-parameter uncertainties and has a lower computation cost than
simulations of the model parameters using the complete a posteriori covariance matrix.
We could also perform Gaussian simulations of the macro-parameters using the reduced a
posteriori covariance matrix.

5. Nonlinear a posteriori analysis

We have shown in the previous sections that a linearized uncertainty analysis allows us to
delimit the range of possible solution models that fit, with the expected accuracy, the data and
the a priori information. Nevertheless, we should keep in mind that this approach is only valid
in the vicinity of the solution model (linearized framework) and complex cases may require a
nonlinear approach.

Model 15 of table 2 indicates that some of the simulated models may produce
unacceptable traveltimes misfits (RMS ≈ 11 ms and MAX = 25 ms for PP data and =41 ms
for PS data). It shows the limitation of the quadratic approximation of the nonlinear cost
function and thus the limitation of the linearized methods of uncertainty quantification.
Moreover, [7] has shown that a tomographic inversion with constraints on the location of
the interfaces at well locations provided a very different model (model 2 shown in figure 9)
from the solution model of figure 1. The two models verify the traveltime data with the
expected accuracy. This second model does not belong to the range of possible models
detected by the two methods we proposed: indeed, δ is equal to 15.94% whereas the expected
range of values was between −8% and −1% (see for instance figure 7). It shows again the
limitations of the linearized approach.
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Figure 10. Solution model 3 obtained by tomography with a constrain on δ parameter to remain
positive. The RMS value of the traveltime misfits is 6.371 ms. The anisotropy parameters values
are η = 6.2% and δ = 2%.

Table 3. Computational times (platform: Silicon Graphics Fuel V10 Graphics 500 MHz
R14000A) for unconstrained inversion, constrained inversion, Cholesky factorization and one
macro-parameter (MP).

Unconstrained Constrained Cholesky Macro-parameter
inversion inversion factorization (MP)

CPU 1797 s/iteration 1930 s/iteration 9251 s 1684 s/MP
time with 1779 s/iteration with 1779 s/iteration for 100 simulated without

for ray tracing for ray tracing models without ray tracing
raytracing

Table 4. Three different solution models. Model 1, model 2 and model 3 are, respectively, the
models of figures 1, 9 and 10.

Model 1 Model 2 Model 3

Mean of the P-velocity 2.849 km s−1 3.623 km s−1 2.895 km s−1

Mean of the S-velocity 1.229 km s−1 1.621 km s−1 1.213 km s−1

η 6.29% 8.27% 6.2%
δ −4.4% 15.94% 2%
Mean of the depth of the reflector H4 1.838 km 1.755 km 1.659 km
Mean of the depth of the reflector H5 3.167 km 3.021 km 2.882 km

To perform a nonlinear analysis we have chosen an experimental approach which consists
of performing several constrained inversions allowing us to test different geological scenarii
to try to delimit the space of admissible solutions. A sequential quadratic programming (SQP)
approach based on an augmented Lagrangian method (for details see [7]) is used to solve this
nonlinear constrained optimization problem (computational times listed in table 3).

For instance, we could test different hypotheses on the values of the anisotropy parameters
for which a strong uncertainty has been detected by the linearized approach. If we introduce
a constraint on the anisotropy parameter δ, such as δ > 0, we find model 3 displayed in
figure 10: this result expands the range of admissible models (variability of δ detected by the
MP approach was −4.43 ± 3.2%).
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In the same way, we can test the variability of the anisotropy parameter η. We note (see
table 4) that the value of the anisotropy parameter η of model 2 (figure 9) is 8.27%, but all the
simulated values of this parameter are around 6% and the variability of η provided by the MP
is ±0.44%. Nevertheless, tomographic inversion under the constraint η � 4% or η � 8.5%
does not provide a model that satisfies both these constraints and the data with the expected
accuracy.

We have shown that, by constrained tomography, we can test different geological
hypotheses and delimit the space of admissible models and go further than the linearized
approach which explores only the vicinity of the solution model which may be one local
minimum around others.

6. Conclusions—discussions

Reflection tomography provides the velocity model that best fits the traveltime data. However,
this solution is only one among many admissible models. An a posteriori uncertainty analysis
is crucial to delimit the range of possible solution models that would fit the data and the
a priori information with the expected accuracy. In this paper, we describe two methods, the
simulations and the macro-parameter approach, to perform a linearized a posteriori analysis,
approach valid only in the vicinity of the solution model. The simulation method based on
the analysis of the a posteriori covariance matrix is quite attractive for the straightforward
interpretation of the results despite its cost. We propose a general formalism to reduce the
a posteriori analysis to geological quantities of the model and thus reduce the cost of the
uncertainty estimation. These methods give interesting results on a 2D real data set. These
methods being valid only in the vicinity of the solution we propose to complete the linearized
study by a nonlinear approach based on constrained optimization.
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