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SCOP:
a Sequential Constraint-free Optimal control Problem algorithm

Grégory Rousseau, Quang Huy Tran and Delphine Sinoquet

Abstract— In this paper, we propose a new computational
algorithm for optimal control problems with a scalar state
subject to simple-bound constraints. Unlike multiple shooting
algorithms, the number of active constraints does not need
to be known in advance. This method is also much faster
than dynamic programming. Convergence is proved for two
particular cases. SCOP is applied for an optimization problem
of fuel consumption for a hybrid vehicle.

I. INTRODUCTION

Optimal control problems involving dynamic systems and
state boundary constraints can be solved following various
approaches. These approaches can be mainly divided into
two families: (i) direct methods, which assume that the
optimal control problem has been discretized in time and
space, and which lead to classical but often large-sized
nonlinear optimization problems; (ii) indirect methods ([6]),
which take advantage of Pontryagin’s maximum principle at
the continuous level, using shooting algorithms.

While direct methods are well suited for non-analytic
models, their main drawback is the computational time. A
good example is the Dynamic Programming algorithm (DP)
([6], [8]). Nevertheless DP can be easily extended to take
state constraints into account.

Besides, Pontryagin’s principle gives optimality conditions
which are often solved by a shooting method. However, the
presence of state constraints is a tremendous obstacle, and
requires the use of a multiple shooting algorithm. Further-
more, the active state constraints should be known ([3]).

This contribution presents optimal control problems with
a bounded scalar state. We devise a numerical method that
does not require any a priori knowledge on active constraints.
Proof of convergence is given for two applications: a hybrid
vehicle and an elastic rope. Finally, we carry out a numerical
test in order to show that the method still works fine on a
realistic case: this application is the optimization of torque
split between the engine and the electric motor of a hybrid
vehicle with respect to fuel consumption with constraints on
the state of charge of the battery ([1], [2], [9]).

Département Mathématiques Appliquées, Institut Français du Pétrole, 1
et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, FRANCE

Corresponding author: Gregory.Rousseau@ifp.fr

II. DESCRIPTION OF THE METHOD

A. Statement of the problem

Let us consider the abstract optimal control problem

(P) min
u(·)∈U

∫ S

0

L(z(s), u(s), s) ds (1)

subject to

dz

ds
(s) = f(z(s), u(s), s) (2a)

z(0) = ζ0 (2b)

z(S) = ζS (2c)

z(s) ≥ zmin (2d)

z(s) ≤ zmax, (2e)

where z(·) ∈ R, u(·) ∈ U, and s > 0 stand for the state, the
control and the evolution variable. We assume that

zmin < min{ζ0, ζS} ≤ max{ζ0, ζS} < zmax. (3)

B. The SCOP method

Our idea consists in solving problem (P) by a sequence
of unconstrained subproblems (Qk), defined as

(Qk)[sk, Zk] min
u(·)∈U

∫ sk

0

L(zk(s), u(s), s) ds (4)

subject to

dzk

ds
(s) = f(zk(s), u(s), s) (5a)

zk(0) = ζ0 (5b)

zk(sk) = Zk, (5c)

where (sk, Zk) are two parameters meant to evolve until sk

reaches some “correct” value. The overall algorithm reads

Algorithm 1. SCOP

data: k = 0, s0 = S, and Z0 = ζS ;
begin

Solve (Q0)[s0, Z0]
while ∃s ∈ ]0, sk[ | zk(s) ≤ zmin or zk(s) ≥ zmax do

Define ∆k(s) = max{zmin − zk(s), zk(s) − zmax}
Determine sk+1 = argmaxs∈[0,sk]∆k(s)
Compute Zk+1 = Π[zmin,zmax](zk(sk+1))
Solve (Qk+1)[sk+1, Zk+1]

end
end



The symbol Π[zmin,zmax](Z) denotes the truncation opera-
tor

Π[zmin,zmax](Z) =

{
zmin if Z < zmin

zmax if Z > zmax.
(6)

Our claim is that if

∀s ∈ [0, sk], zmin ≤ zk(s) ≤ zmax (7)

occurs at some intermediate iteration k or at the limit
k → ∞, then zk(s) coincides with the optimal trajectory
z(s) of problem (P) over the interval [0, sk].

The benefit of this method lies in the fact that each
unconstrained problem (Qk) can be solved either
analytically or by a single shooting algorithm via a
constraint-free Pontryagin’s principle.

III. PONTRYAGIN’S PRINCIPLE FOR A PROBLEM

WITHOUT STATE CONSTRAINT

For later use, let us recall Pontryagin’s principle for
problem (P) in which the constraints (2d)–(2e) have been
left out. Let

H(z, u, s, p) = L(z, u, s) + p(s)f(z, u, s) (8)

be the Hamiltonian, considered as a function of four vari-
ables. Then, the optimal process satisfies

dz

ds
(s) = Hp(z(s), u(s), s, p(s)) (9a)

dp

ds
(s) = −Hz(z(s), u(s), s, p(s)) (9b)

u(s) = argminv∈UH(z(s), v, s, p(s)). (9c)

When there is no constraint on the control u, e.g. for U = R,
condition (9c) can be expressed, at least formally, as

0 = Hu(z(s), u(s), s, p(s)). (10)

IV. ANALYSIS FOR A HYBRID VEHICLE MODEL

In this section, we set s ≡ t, z(s) ≡ x(t), S = T and
Zk ≡ Xk. Consider the optimal control problem

(H ) min
u(·)∈R

∫ T

0

α2(t)u2(t) dt (11)

subject to

ẋ(t) = −α(t)(1 − u(t)) (12a)

x(0) = χ0 (12b)

x(T ) = χ0 (12c)

x(t) ≤ xmax. (12d)

This problem corresponds to a simplified model of torque
split for a hybrid vehicle powered by an engine and an
electric motor (see section VI for a detailed description of a
realistic hybrid vehicle). The integrand α2u2 represents the
fuel consumption to be minimized, −α(1−u) is the battery
law, and x(t) is the state of charge of the battery at time t.

Note that x(0) = x(T ) = χ0 < xmax. We assume that α(t)
is positive, differentiable and strictly increasing with respect
to t ∈ [0, T ]. For convenience, we introduce

β(t) =
1
t

∫ t

0

α(τ) dτ, for t > 0, (13a)

β(0) = α(0). (13b)

It is straightforward to check that β is an increasing function
of t ∈ [0, T ].

Lemma 4.1: There exists a unique t̄ ∈ ]0, T [ such that

α(t̄) = β(T ) (14)

Proof: This follows from the intermediate value theo-
rem and from the strictly increasing property of α.

First, we write down the exact solution of (H ).

Proposition 4.1: Let

x̄ = χ0 + t̄[β(T ) − β(t̄)] (15)

where t̄ is defined in Lemma 4.1.
1) If xmax > x̄, then the optimal trajectory is given by

x(t) = χ0 + t[β(T ) − β(t)]. (16)

In this case, the constraint x(t) ≤ xmax is never active.
2) If xmax ≤ x̄, then there exists a unique t∗ ∈ ]0, T ]

such that, for t ∈ [0, t∗], the trajectory is given by

x(t) = χ0 − p∗0
2
t−

∫ t

0

α(τ)dτ, (17)

where (t∗, p∗0) is the unique solution to the system

xmax − χ0 = −p
∗
0

2
t∗ −

∫ t∗

0

α(τ) dτ, (18a)

α(t∗) = −p
∗
0

2
. (18b)

Proof: Case 1. Applying (9)–(10) to the Hamiltonian

H(x, u, t, p) = α2u2 − pα(1 − u), (19)

we end up with

ṗ = 0, 2α2u+ pα = 0, (20)

from which we infer that

p(t) = p0, u(t) = − 1
2

p0
α(t) . (21)

Integration with respect to time of the dynamic law

ẋ(t) = −(α+ 1
2p0) (22)

yields

x(t) = χ0 − p0

2
t−

∫ t

0

α(τ) dτ. (23)

Invoking the final condition x(T ) = χ0, we obtain (16).
Since

ẋ(t) = β(T ) − α(t), ẍ(t) = −α̇(t) < 0, (24)



we see that the only critical point t̄ ∈ [0, T ] achieves a
maximum for x(·), i.e.,

max
t∈[0,T ]

x(t) = x(t̄) = x̄, (25)

where x̄ is defined in (15). Therefore, if xmax > x̄, the
optimal trajectory is (16).

Case 2. If xmax < x̄, let t∗ be the contact point where
the trajectory hits the boundary. From the continuity of
the Lagrange multipliers established in [3] by Bonnans and
Hermant, we derive the matching conditions

x(t∗) = xmax (26a)

ẋ(t∗) = 0. (26b)

For t < t∗, the optimal trajectory x(·) is of the form (23), in
which we write the co-state as p∗0 instead of p0 for clarity.
Plugging (23) into (26), we obtain (18).

Let us eliminate p∗0 from (18a)–(18b), so as to have

t∗α(t∗) −
∫ t∗

0

α(τ) dτ = xmax − x0. (27)

From (27), existence and uniqueness of t∗ can be obtained
by arguing that the function

ψ(t) = tα(t) −
∫ t

0

α(τ) dτ (28)

is strictly increasing and that

ψ(0) < xmax − x0 < ψ(T ). (29)

This completes the proof.

We now proceed to investigate the behavior of SCOP. It is
obvious that if xmax > x̄, then once (Q0)[t0 = T,X0 = χ0]
has been solved, the trajectory x0(·) is the optimal one (16)
and the algorithm stops.

Theorem 4.1: For xmax ≤ x̄, the sequence {tk}k≥0

produced by SCOP is well-defined, strictly decreasing and
converges to t∗ as k → ∞.

This sequence is governed by the implicit recursion

α(tk+1) =
xmax − x0

tk
+ β(tk) (30)

and can be interpreted as a fixed point approximation to the
continuous relation

α(t∗) =
xmax − x0

t∗
+ β(t∗), (31)

which is a consequence of (27).

Proof: Implicit recursion. Except for X0 = χ0, we
have Xk = xmax for k ≥ 1, as long as the algorithm goes
on. According to (23),

xk(t) = χ0 − pk

2
t−

∫ t

0

α(τ) dτ, (32)

at the k-th step. By construction of Algorithm 1, we have

xk(tk) = xmax (33a)

ẋk(tk+1) = 0. (33b)

Plugging (32) into (33) leads to

xmax − x0 = −pk

2
tk −

∫ tk

0

α(τ) dτ (34a)

α(tk+1) = −pk

2
, (34b)

from which we deduce (30) by eliminating pk.
Existence and uniqueness. We are going to show that if

tk > t∗, then tk+1 exists and tk+1 > t∗, so that by induction
the whole sequence can be generated.

Equation (30) is guaranteed to have a unique solution as
soon as

α(0) <
xmax − x0

tk
+ β(tk) < α(tk)

The left inequality is obvious, since α(0) = β(0) � β(tk)
(and β is an increasing function). As for the right inequality,
it is equivalent to

xmax − x0 < ψ(tk), (35)

where ψ was introduced in (28). However, we have seen in
(27) that

xmax − x0 = ψ(t∗). (36)

Because ψ is strictly increasing,

ψ(t∗) < ψ(tk) ⇔ t∗ < tk, (37)

and this equivalence ensures existence and uniqueness of
tk+1 ∈ ]0, tk[ for tk > t∗.

To prove that tk+1 > t∗, we resort to the auxiliary function

Φk(θ) = tkα(θ) −
∫ tk

0

α(τ)dτ. (38)

Since α is strictly increasing, Φk is strictly increasing too.
Thus, we simply have to prove that

Φk(t∗) < Φk(tk+1). (39)

This amounts to

tkα(t∗) −
∫ tk

0

α(τ) dτ < xmax − x0 (40a)

= t∗α(t∗) −
∫ t∗

0

α(τ) dτ, (40b)

where the last equality is due to (27). Now, (40b) can be
re-written under the form

(tk − t∗)α(t∗) <
∫ tk

t∗
α(τ) dτ, (41)

which holds true because α is strictly increasing.
Convergence. Since {tk} is decreasing and bounded from

below by t∗, it has a limit t̃. Passing to the limit in the
recursion (30), we get the desired result, namely t̃ = t∗.



V. ANALYSIS FOR AN ELASTIC ROPE

In this section, the notations are switched to s ≡ x, z(s) ≡
y(x), S ≡ 1 and Zk ≡ Yk. Consider the control problem

(E ) min
u(·)∈R

∫ 1

0

[12u
2(x) + gy(x)] dx (42)

subject to

y′(x) = u(x) (43a)

y(0) = 0 (43b)

y(1) = 0 (43c)

y(x) ≥ −h. (43d)

This problem corresponds to an elastic rope fixed at its

endpoints and bending under a uniform gravity force g. The
integrand 1

2u
2 + gy represents the potential energy to be

minimized in order to find the equilibrium vertical position
y(x) as a function of abscissa x, under the constraint due
to the level −h < 0 of the floor on which the rope can lie.

Proposition 5.1: The exact solution of (E ) is given by the
following rule.

1) If h > 1
8g, then the equilibrium position is

y(x) = −1
2
g x(1 − x). (44)

In this case, the constraint y(x) ≥ −h is never active.
2) If h ≤ 1

8g, let

x∗ =

√
2h
g
. (45)

Then, for x ∈ [0, x∗], the equilibrium position is

y(x) = −
√

2hg x+
1
2
gx2. (46)

Proof: The proof follows the same steps as in the
previous section, first by considering the unconstrained case,
then by expressing the matching condition at the contact
point. We refer readers to [4] for further details.

We now address the question of convergence for SCOP. It
is obvious that if h > 1

8g, then once (Q0)[x0 = 1, Y0 = 0]
has been solved, the trajectory y0(·) is the optimal one (44)
and the algorithm stops.

Theorem 5.1: For h ≤ 1
8g, the sequence {xk}k≥0 pro-

duced by SCOP is well-defined, strictly decreasing and
converges to x∗ as k → ∞.

This sequence is governed by the explicit recursion

xk+1 =
1
2

[
xk +

2h
gxk

]
(47)

and can be interpreted as a fixed point approximation to the
continuous relation

x∗ =
1
2

[
x∗ +

2h
gx∗

]
(48)

that is a consequence of (45).

Proof: Except for Y0 = 0, we have Yk = −h for
k ≥ 1, as long as the algorithm goes on. As a consequence
of Pontryagin’s principle (9)–(10), the optimal trajectory is
of the form

yk(x) = −pkx+
1
2
gx2 (49)

at the k-th step. By construction of Algorithm 1, we have

yk(xk) = −h (50a)

y′k(xk+1) = 0. (50b)

Plugging (49) into (50) leads to

−h = −pkxk + 1
2gx

2
k (51a)

0 = −pk + gxk+1, (51b)

from which we deduce (47) by eliminating pk. It is now an
easy algebra exercise to check that the sequence {xk}k≥0 is
decreasing and converges to x∗.

It is remarkable that the sequence (47) is the classical
Babylonian algorithm that computes the square-root of the
positive real number 2h/g. Fig. 1 and 2 display the SCOP
results compared to those obtained with a multiple shooting
algorithm which needs to know the active constraints.
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Fig. 1. Elastic line trajectory constrained by the floor level

The two trajectories superimpose perfectly. Fig. 2 illus-
trates that SCOP retrieves the exact position of x∗.

VI. NUMERICAL RESULTS FOR A REALISTIC HYBRID

VEHICLE

In this section, SCOP algorithm is applied to a realistic
model of a hybrid vehicle. The engine is characterized by its
static fuel consumption map, depending on engine speed ω
and delivered torque Teng. For this application, a quadratic
polynomial is used

L(ω, Teng) =
2∑

i,j=0

Kijω
iT j

eng.
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Fig. 2. Elastic line trajectory constrained by the floor level (zoom)

The electric motor is characterized by its torque Tmot, and
is fed by a battery. The state variable x, the state of charge
of the battery, is defined by

ẋ(t) = −ω(t)Tmot(t)K ′

Ubatt(t)ncapa
= −Kω(t)Tmot(t), (52)

with Ubatt the battery voltage, assumed to be constant, ω(t)
the electric motor speed, K ′ a scaling constant, and ncapa

the nominal capacity of the battery. Then the state x depends
on the electric power.

In this problem, a prescribed vehicle cycle is imposed (the
Artemis Urban cycle for instance, see [7] for more details),
and supplies the speed ω(t) and torque Trq(t) of the vehicle.
We assume that both the engine and the electric motor have
the same rotation speed ω, and that the requested torque Trq

must be provided according to Trq = Teng + Tmot.
Let us introduce the torque split control u(t), defined as

u(t)Trq(t) = Teng(t) (53a)

(1 − u(t))Trq(t) = Tmot(t). (53b)

Because of maximum and minimum electric motor torque
(during battery regeneration), and of maximum engine
torque, the control u(t) is constrained by values umin and
umax depending on the speed ω(t).

The resulting optimal control problem is thus similar to
problem (1–2) with

L(u(t), t) =
2∑

i,j=0

Kijω
i(t)T j

rq(t)u
j(t) (54)

and

f(u(t), t) = −Kω(t)Trq(t)(1 − u(t)). (55)

We apply SCOP algorithm with the following expression
of u∗k, solution of (Qk), deduced from (9):

u∗k(t) = −

2∑
i=0

Ki1ω
i(t) + pkKω(t)

2
2∑

i=0

Ki2ω
i(t)Trq(t)

. (56)

Fig. 3 shows for prescribed driving cycle (Artemis Ur-
ban cycle) (a) the requested speed of the vehicle, (b) the
corresponding engine speed (depending on the vehicle char-
acteristics), (c) the requested torque, that can be provided by
the engine, or by the electric motor, or both.
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Fig. 3. Vehicle speed requested by Artemis Urban cycle (top) / requested
engine speed (middle) / requested torque (bottom)

Fig. 4 shows a comparison between the state trajectory
obtained with SCOP, and those obtained with a classical
dynamic programming algorithm.

The trajectories are very close to one another. However,
the computational times are not the same: the dynamic
programming algorithm needs 135s for dx = 0.5, while
SCOP needs only about 1s to obtain the optimal trajectory.
One can also notice that the dynamic programming
trajectory converges to SCOP trajectory, as the state step
size decreases and tends to 0.

An interesting result is that the analytic expression of
the optimal trajectory (56) can be used to build a real-
time control strategy parameterized by p (see [1], [2], [9]).
For instance, an efficient control is ECMS (Equivalent fuel
Consumption Minimization Strategy), where a parameter
needs to be defined to determine the equivalence between
fuel consumption and battery energy. This parameter is
proportional to p.
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Fig. 4. Optimal state trajectories obtained with DP and SCOP (empty
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VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed an original method to
solve optimal control problems with state constraints. A
proof of convergence, in some particular cases, has been
established. Although the proof of convergence needs some
strong assumptions, SCOP has been successfully applied to
more general cases.

The first application is the energy minimization of a rope
fixed at its endpoints. This problem can also be solved by
using a multiple shooting algorithm, however for this algo-
rithm the shape of the trajectory (with number of junction
points) needs to be known.

The second presented application is the optimization of
fuel consumption of a hybrid vehicle. In this problem, it is
often impossible to know the number of active constraints
and when a state constraint becomes active. Classically
a dynamic programming (DP) algorithm is used to solve
this kind of problem. SCOP allows to retrieve the optimal
trajectory of state-constrained optimal problems in a very
small computational time, about 100 times faster than DP.
Thus the presented applications of SCOP illustrate its poten-
tiality compared to classical methods. However, the range of
applicability of the method remains to be clarified.
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