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Abstract We present two new approaches to address the optimization problem as-
sociated with engine calibration. In this area, the tuning parameters are traditionally
determined in a local way, i.e., at each engine operating point, via a single-objective
minimization problem. To overcome these restrictions, the first method we propose
is able to cope with several objective functions simultaneously in the local formula-
tion. The second method we put forward relies on a global formulation, which allows
the whole driving cycle to be taken into account while remaining single-objective. At
the practical level, the two methods are implemented by combining various existing
techniques such as the LoLiMoT (Local Linear Model Tree) parameterization and the
MO-CMA-ES (Multi-Objective Covariance Matrix Adaptation Evolution Strategy)
algorithm. A better compromise appears to be achieved on real case applications.

Keywords Engine calibration - Response surface - LoLiMoT - Multi-objective

optimization - Evolutionary algorithm

Nomenclature

Abbreviations (by alphabetical order)

CMA-ES Covariance Matrix Adaptation Evolution Strategy

LoLiMoT Local Linear Model Tree
MO-CMA-ES Multi-objective CMA-ES

NEDC New European Driving Cycle

OP Operating Points

RBF Radial Basis Function

SQP Sequential Quadratic Programming
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Mathematical symbols (in order of appearance)
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vector of parameters

size of p

number of objective functions

i-th objective function

number of objective functions subject to an upperbound constraint
Jj-th objective function subject to an upperbound constraint
upperbound constraint for f;(p)

matrix representing linear constraints on p

vector of lowerbounds for Ap

vector of upperbounds for Ap

current generation

random variable generation according to some distribution law
random (vector) variable

k-th individual of the population x

number of individuals in the population

expected value for x

covariance matrix for x

largest eigenvalue of the covariance matrix

multivariate Gaussian distribution

number of best individuals selected to compute e

k-th best individual of x with respect to the objective function
weights in the computation of e

memory coefficient for updating C

Pareto dominance relationship

population

non-dominance level

non-dominated solutions of level L in X

intermediate subset of level L

duration of cycle

time

speed of the engine

load of the engine

engine maps

number of summands (indiced by 1) in LoLiMoT representation
degrees of freedom in the LoLiMoT representation of m (r, c)
normalized Gaussian function

elementary shape function

1 Introduction

Engine calibration consists in fulfilling the engine tuning maps that are used in en-
gine controls of the vehicle, i.e., in defining the optimal tuning of parameters used
by engine control strategies. Due to the highly increased number of these parameters
(especially for diesel engines but spark ignition engines are following the same trend)
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and the reduction of the development schedule available for the calibration process,
manual tuning of engine parameters is now replaced by mathematically assisted cali-
bration process. Such a process is based on the design of experiments with associated
modeling methods, which allows us to reduce the number of tests used to build engine
response models depending on engine control parameters, and optimization tech-
niques to determine the optimal settings within the model definition domain (Ropke
et al. 2005; Hafner and Isermann 2001; Seabrook et al. 2007; Castagné et al. 2008;
Sampson and Sheridan 2007). In order to perform the tests in a more productive way,
these mathematical techniques are generally associated with test automation, requir-
ing well controlled measurement methods and reliable test equipments.

The classical approach is based on a local statistical modeling of the engine re-
sponses at a limited set of operating points (given engine speed and engine torque
or load) from experimental measurements at engine test bench. Then, for each op-
erating point, a local optimization of these models is performed. This optimization
problem is often a bi-objective problem which is transformed into a mono-objective
problem with a weighted sum of the objectives. The choice of the weights being
far from obvious, several trials are often necessary to find an acceptable solution
(Das and Dennis 1998; Leyffer 2009). In this paper, we propose to adapt the Multi-
Objective Covariance-Adaptation Evolution Strategy method (MO-CMA-ES) pro-
posed by Hansen and Ostermeier (1996) to the problems arising in this application:
linear and nonlinear constraints are introduced via a suitable penalty procedure.

As pointed out by many previous works (Castagné et al. 2008; Buzy et al. 2005;
Schmied 2003), the local approach leads to several difficulties: the definition of
the objectives of the local optimization at each operating point is cumbersome,
the synthesis of the resulting local optima in engine maps (maps that are imple-
mented in the engine control unit) leads to a difficult smoothing phase that usu-
ally ends up with a deterioration of the optimized operating points. Moreover, this
method is time-consuming due to the modeling and the optimization phases for
each operating point (Castagné et al. 2008). In this respect, Schmied (2003) pro-
posed a global optimization approach which directly optimizes the engine maps on
the whole driving cycle instead of the individual optimization of each engine op-
erating point. In one single step, his method optimizes all the chosen operating
points and directly delivers the engine maps that are implemented in the unit con-
trol of the vehicle. Nevertheless, the implementation of this approach is difficult
due to the large number of unknowns of the optimization problem and the num-
ber of smoothing constraints to ensure feasibility and drivability (NeBler et al. 2006;
SchloBer et al. 2007). To circumvent these difficulties, we advocate the use of an
adapted parameterization of the maps based on LoLiMoT models (Nelles 2001;
Hafner and Isermann 2001), which allows a priori information on the engine maps to
be incorporated naturally and the number of parameters to be reduced significantly.

Section 2 recalls the classical steps of the calibration process, then discusses the
difficulties that have motivated our study. In Sect. 3, we outline the Multi-Objective
Covariance-Adaptation Evolution Strategy method. Finally, in Sect. 4, the map opti-
mization of the whole driving cycle is described. The potential of the two methods is
illustrated by an application on a real calibration case for a turbo-charged common-
rail diesel engine.
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2 Engine calibration
2.1 Sketch of the engine calibration process

The emission calibration workflow is classically divided into three steps (Ropke et
al. 2005):

(1) apreliminary phase consists in choosing a sample of operating points (referred to
as OP in the following) to be studied and emissions targets associated with each
OP, these targets being called allocations hereafter.

(2) the optimization of engine responses on each OP according to these targets,

(3) the fulfilling of the maps with a smoothing step between these optimal settings.

The preliminary step deduces from a simple model of the vehicle the trajectory of
the driving cycle in the engine speed-load operating domain (see Fig. 1): the transient
effects on the accelerations of the cycle are neglected and the cycle is thus consid-
ered as a sum of stabilized points. A limited number of specific Operating Points are
chosen to represent the cycle in the engine working range. Figure 1 gives an example
of NEDC (New European Driving Cycle) simulation and a selection of 17 OPs. The
cumulated levels of pollutant emissions along the cycle are computed as weighted
sums of the pollutant emissions for each chosen OP.

Phase 2 consists of five steps:

(1) defining the domain of variations of the engine control parameters: this is an
essential step of the process as it defines the validity domain of the models.
The complexity of the models to be used for engine response depends on the
size of this domain: for tiny domains low order polynomials (second order)
are usually sufficient to accurately model engine responses. However, choosing
too small domains leads to difficulty in coherently fulfilling sub-optimal engine
maps (Castagné et al. 2008).

(i1) building the test matrix: various types of experimental designs can be used to
build a test matrix: D-Optimal, space filling. .. The choice of the type of design
as well as the number of tests to be done are directly correlated with the as-
sumed complexity of the model and thus with the size of the considered domain.
D-Optimal test designs are often used with hyper-cubic tiny domains (Ropke et
al. 2005).

(iii) running this test matrix on the test bench: as the tests are predefined, the exper-
iments can be performed in an automated way, which drastically improves the
productivity of the global process. In this case, special attention must be paid to
the validation of the experimental data.

(iv) modeling the engine responses: the type of mathematical models depends on the
complexity of the engine responses and on the size of the domain. In practice,
the engineer often prefers to limit the parameter variations in order to avoid
critical engine tunings that may lead to difficulty to realize the experiment at the
test bench. However, as already mentioned, reducing the size of the parameter
variations may lead to difficulties to build coherent optimal engine maps from
the obtained optimal settings in those tiny domains. Often, low order polynomial
functions are used coupled with D-optimal design of experiments. For some
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Fig. 1 Simulation of the cycle
from European legislation
(NEDC: New European Driving
Cycle) and selection of
operating points
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response as HC or CO emissions, this type of models may be too limited, then
non-parametric response surfaces may be chosen as RBF or kriging (Seabrook
et al. 2007). We will not detail this step of the calibration process in this paper,
the reader may find more details on this topic in Castagné et al. (2008).

(v) optimizing the engine control parameters to meet the allocations. The problem
may be formulated as a classical mathematical problem of optimization under
constraints or as a multi-objective optimization (searching for compromises be-
tween antagonist objectives) as it is detailed in the following section. For this
classical approach, the optimization is performed one OP after the other, con-
sidering the allocations of each OP as constraints. We refer in the following to
this optimization problem as the OP optimization problem.

When the optimal settings are found, the last step consists in integrating them

in the reference engine maps (if available) or building maps from these settings on
the whole engine operating domain (see Fig. 7 for examples of engine maps). For the
drivability of the target vehicle and because sharp evolution of air loop parameters are
not easily feasible during transient, it is necessary to provide smooth engine maps.
Thus, the settings are often moved away from their optimal values in order to build
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412 H. Langouét et al.

smooth engine maps, especially for air loop parameters. This smoothing process can
be performed with respect to local constraints (such as maximum gradients), as well
as to keep some predefined shapes. The difficulty of this step is thus to remain as close
as possible to the local optima while preserving a smooth shape of the map, in order to
keep all the benefits of the optimization work and satisfy the targets. This delicate step
is usually time-consuming and is likely to deteriorate the work performed during the
optimization phase by providing sub-optimal engine tunings. This is the motivation
for our proposal of an integrated method of map optimization described in Sect. 4.

2.2 The OP optimization problem formulation

The OP optimization problem consists in minimizing some engine responses under
constraints on other engine responses whereas the engine control parameters are kept
inside the domain usually modeled by linear constraints coupling the parameters (see
Fig. 2). It leads to the multi-objective optimization problem

m]g}v{fl (p), f2(p), ..., fu(P)} (1a)
pE
subject to
t<Ap=<u, (1b)
fitp) <s;, jell,d], (1c)

and d < n. A classical example in turbo-diesel engine is the two-objective problem
in which one attempts to minimize the particulate emissions and the NOy emissions
under constraints on fuel consumption (CO, emissions), on CO and HC emissions
and engine noise level.
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Fig. 2 Projection of the domain of parameter variations in the (boost pressure, air mass) plane. The limits
of the domain are generally modeled by linear constraints on the engine control parameters. The ellipse
indicates the parameter dispersions (here projected on the 2D space) modeled by a multidimensional Gaus-
sian probability law. The ellipsoid should remain in the engine physical domain in order to avoid that any
control parameter takes some value outside this domain after the implementation in the control unit
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Traditionally, the multi-objective problem (1) is replaced by a constrained opti-
mization problem where only one of the objectives is actually minimized, the other
being constrained to remain below the prescribed thresholds. In other words, if the
top priority is given to the ip-th objective function, then what we perform is

pnel]% fio(p) (2a)

subject to
t<Ap=<u, (2b)
fitp) <s;, jell,dl (2¢)

This constrained single-objective problem (2) is then solved by a classical SQP
method run several times with different initial points to search for the global opti-
mum.

3 Solving the OP multi-objective optimization problem

In this section, we present a method to solve the constrained multi-objective prob-
lem (1). It is based on the algorithm proposed by Igel et al. (2007), namely, the Multi-
Objective Covariance Matrix Adaptation Evolution Strategy method (MO-CMA-ES).
The MO-CMA-ES method belongs to the class of evolution strategy methods which
allow to solve global optimization problems. These methods are popular for their
ability to find a global minimum but their slow convergence rate is often criticized. In
Hansen and Ostermeier (1996) was proposed the CMA-ES method for optimization
of real-space functions, based on an original mutation operator that increases the con-
vergence rate thanks to the adaptation of the mutation distribution at each generation.

3.1 CMA-ES method for single-objective optimization

In the CMA-ES evolutionary algorithm, a new population x¢*1) is created from the
current population x®) by generating realizations of a Gaussian probability law

x]gg“‘l) NN(6(8)7 [0(8)]2(:(8)). 3)

Each subscript k£ € [1, K] corresponds to an individual of the population. In the dis-
tribution law N, the expected value ¢ is chosen to be

m
e® = Z wkxlizgl)(, (4a)
k=1

where the notation x,fl){ stands for the k-th best individual of the current population

x® with respect to the function to be minimized, and

m
Zwk=1 and O<w, <w, | <---<w;<l. (4b)
k=1
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In doing so, we ensure that the next population is directed towards the best points.

An ideal choice for the covariance matrix would be the inverse of the Hessian
matrix of the objective function. The idea proposed by Hansen is then to approxi-
mate this matrix as for a quasi-Newton method but without any computation of the
derivatives. The update formula for the covariance matrix is then

" @+ (9 g+ @\ 7T
g+ _ (1 _ 3 Z Yex  —€ Xk —€
C =1 —ceov)C¥ + Ccovk 1 Wk ( 5@ ) ( ) )

which amounts to adding to the current covariance matrix a p-rank term from the
best w individuals of the new population. An alternative update formula is proposed
by Hansen, which takes into account not only the last iteration as in (5) but also all
the previous iterations from the beginning.

In a similar fashion, an update formula of the standard deviation is built: the main
idea is here to avoid that two consecutive iterations lead to a displacement of the
barycenter e‘®) of the population in the same direction, replacing these two iterations
by one with a larger standard deviation would have been a better choice. Likewise,
a small standard deviation is preferred to a large one which leads to two iterations
with opposite displacements of the barycenter of the population. The reader is re-
ferred to Hansen and Ostermeier (1996) for more details. Figure 3 illustrates on a 2D
single-objective optimization example the adaptation of the covariance matrix and of
the standard deviation leading to an efficient evolution of the population toward the
global minimum.

3.2 MO-CMA-ES method for multi-objective optimization

Adapting the CMA-ES method to multi-objective optimization requires the definition
of new criteria to define what is a good and a bad individual in the selection step of
the evolutionary algorithm (see Igel et al. 2007). Two criteria are implemented in
MO-CMA-ES:

1. The first criterion is the Pareto dominance. Let us recall this notion.

Definition 1 An individual x is said to dominate another individual x’, which is
symbolized by x < x/, if and only if

eViell,...,n}, fi(x)<fi(x); (6a)
e die(l,...,n}, fi(x)<fi(x). (6b)

Definition 2 The non-dominated subset ndom(X) of a given set X is defined as
ndom(X):{xeXlﬂx’eX, x’<x}. @)
The elements of this subset are said to be Pareto-optimal points.

Additionally, the Pareto front is composed of the values taken by the objectives
for all the Pareto optimal solutions. Examples of Pareto fronts are given in Fig. 6.
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Fig. 3 An application of CMA-ES method on the analytical function f (x, y) = = ;By - %(cos(%’x) +

X

cos(z?ﬂy)) + 3. From top left to bottom right, the population at iterations 1, 5, 8 and 20 are represented.
The ellipse represents the 95%-isovalue of the Gaussian probability density of the mutation operator with
the adaptive covariance matrix

The individuals of a given population X are sorted by their non-dominance level.
The notion of level is defined by induction as follows. First, we consider that the
elements of ndom(X) have a non-dominance level L = 1. Then, we introduce the
points of level L = 2 as the non-dominated points of the population X without the
non-dominated solutions. For L > 1, we thus obtain the recursive definition

domg(X) = X; (8a)
ndom;y (X) = ndom(dom; _{(X)); (8b)
domy (X) =domg_(X) \ ndomp (X). (8¢)

2. The second criterion is a diversity criterion of the solutions to obtain an uniform
repartition of the solutions along the Pareto front. A measure of the dominance
hyper-volume at a non-dominated solution is defined by considering the surface
of the rectangles defined in Fig. 4 (one rectangle for each non-dominated point).

Combining these two criteria allows to be sorted the individuals of the current popu-
lation with respect to the multiple objectives and then to apply the CMA-ES update
formula of the covariance matrix adaptation for the mutation. For more details on the
MO-CMA-ES method, the reader is referred to Igel et al. (2007).
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Fig. 4 Contributing dominance f2
hyper-volumes for the

evaluation of the diversity

criterion

3.3 Application of MO-CMA-ES method to a real case of engine calibration

In this section, we present some results obtained from a real dataset associated with a
turbo-diesel engine. We consider the optimization problem (1) at a given engine oper-
ating point (1750 rd/mn—1 bar). Models of the engine responses have been built from
experimental data, the tests being designed thanks to a classical D-optimal criterion:
the models are cubic polynomials. Figure 5 illustrates the quality of the models at
some validation points chosen randomly in the admissible domain (those points were
not used for model building). An average value of the measurement error has been
estimated from some repeated measurements. The model of NOy emissions matches
very well the data within the error bars whereas the model of particulate emissions is
less accurate: this is due to large error measurements for the engine response and a
bad approximation of the measurement error when considering this error to be con-
stant. Nevertheless, engine experts have validated this model considering that the
trends were well modeled.

The optimization is performed on 6 engine control parameters: the main injection
timing, the pilot fuel injection quantity, the pilot injection timing, the fuel injection
pressure, the mass air flow and the boost pressure.

The optimization objectives are the particulate emissions and the NOy emissions,
CO», HC and CO emissions and the engine noise being constrained to remain smaller
than a given threshold. Linear constraints defining physical limits of the domain of
variations of the parameters are introduced. These linear constraints may take into
account the parameter dispersions, these new constraints are denoted by robustness
constraints hereafter.

Thus, the multi-objective optimization algorithm has been modified to deal also
with linear and nonlinear inequality constraints: they have been introduced via a /g
penalty term added to the objectives (if the j-th constraint is not satisfied, the misfit
with the bound is added to the objective functions, the penalty weight varying during
the iterations).

The results are presented in Fig. 6: two optimizations are compared, one without
taking into account the parameter dispersions and one with the robustness constraint
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Fig. 5 Comparison of experimental data and model predictions for given parameter sets (those points
were not used for model building) at OP 1750 rd/mn—1 bar for NOx (a) and particulate emissions (b)
in g/h. Error bars correspond to measurement error estimates from some repeated experiments

which consists in taking into account the possible dispersion of the engine control
parameters when applied on the vehicle. This dispersion is modeled by an uncor-
related Gaussian probability law, thus by one standard deviation by parameter. As
shown in Fig. 2, a vicinity of the engine setting is defined and this vicinity should
remain inside the physical limits. The impact of this constraint is noticeable in Fig. 6
by an important shift of the Pareto front and a modification of its shape. The points
indicated in pink are associated with successive runs of a local single-objective opti-
mization with different initial points and with a weighted sum of the two objectives
(different weight values have been tested). We notice that these optimizations lead to

@ Springer



418 H. Langouét et al.

OP r=1750 rd/mn - c=1 bar

45 : . T
afs ee . . . . 4
z
{ .
5'-: 3 5_3_ '\.with robustness constraint i
o - 3
i T /
2 b “© e
.g 3+ i‘ 1&_& . 4
]
E M, -
';1: 251 e ‘H&“&M.. 1
g #ﬁ‘_'*“h* '*""ql L ]
o2 “, L} |
Vi - ‘
iy
150 ey . . R q
0.7 0.8 0.9 1 1.1 1.2 13 1.4 15

f1 (particulate emissions g/h)

Fig. 6 Pareto fronts (crosses) of the bi-objective optimization of particulate emissions and NOx emissions
(in g/h) obtained with the MO-CMA-ES method for the OP 1750 rd/mn—1 bar. The front at the right side
of the figure is associated with an optimization taking into account the parameter dispersion (robustness
constraints that ensure the effective engine control parameter values to remain inside the engine physical
domain). The other front results from an optimization without these constraints. The dots indicate solutions
obtained by single-objective optimizations (weighted sum of the two objectives) associated with different
initial points and different penalty weights

points not located on the Pareto front: these points are some local minima. Moreover,
as expected, the points obtained on the Pareto front are located on the convex parts
only.

The MO-CMA-ES method has performed on this example 3 times more evalua-
tions of the objective functions than the local optimization with different initial points
and different weights. Even if this performance is already very encouraging, some
work on the stopping criteria may reduce the number of evaluations of MO-CMA-
ES.

Finding a NOy/particulate emissions compromise is a classical calibration prob-
lem for diesel engine. Engine experts were thus very interested in the different com-
promises between the two objectives that have been obtained by the multi-objective
optimization method. We clearly observe 3 interesting valleys on the Pareto front with
a significant decrease of NOy emissions for a small increase of particulate emissions.
This method allows then a finer choice of the calibration control parameter set than a
classical method based on a mono-objective formulation.

4 Solving the map optimization problem

In the classical calibration process described in Sect. 2, the engine map building in
the smoothing step is delicate and time-consuming. In this section, we propose an al-
ternative method that consists in directly optimizing the cumulated engine responses
over the cycle via deformations of the engine maps themselves instead of optimizing
individually the selected OP and building afterward the engine maps by the smooth-
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ing step. The map optimization problem is formulated as

T
~ min { /0 Fi(r(1), c(t), m(r (1), C(t)))dt}lgsn (%)
subject to
0(r,c) < Am(r,c) <u(r,c), (r,c)eR?, (9b)
/OT Fi(r(0),c(®),m(r(t),c(®)))dt <Sj, jell.d] 9¢)
Here,

o t € R (r(t), c(t)) € R? denote the (known) trajectory of the cycle within the
engine speed-load domain;

e (r,c) e R?2 > m(r,c) € RM are the 2D engine maps; the components of m are
called engine control parameters;

e F; is the model of the engine response i, as a function of the engine control param-
eters but also of the speed and load.

The objectives to be minimized (or constrained) are the engine responses cumu-
lated on the considered driving cycle: the cumulated responses are here (see (10)) the
weighted sums of the local models defined at chosen representative OP but if global
models of the engine responses are available (models including engine speed and
load dependency), a finer optimization may be performed with a fine sample of the
integrals in the original optimization problem (9). Additional smoothing constraints
such as global smoothing constraints (to preserve the regularity of the original maps)
or more local constraints (for example limits on the gradients of the maps) can also
be introduced.

Using a quadrature rule involving the OPs (4, ¢4), g € [1, Nop], to approximate
the continuous integral (9a), we end up with the discrete version

Nop
: (@)
~ min {Z&,E (m(rq. cq)) (10a)
q=1 1<i<n
subject to

E(VLIva)SAm(rq7cq)§M(FQ7CL])5 qe[laNOP]v (lOb)

Nop

Y &, P\ m(rg.c) < 5. jell.d). (100)

g=1

4.1 Modeling the engine maps

In the formulations (9) and (10), minimization has to be carried out with respect to a
function m(., .) : R — RM which is a continuous object. In order to fully discretize
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Fig. 7 Examples of LoLiMoT parameterization of engine map. Left: patching of the domain. A local
linear model is defined on each patch. Right: the resulting surfaces modeled by LoLiMoT for two different
engine control parameters from given discrete reference maps

the problem, we have to consider a parameterization of the engine maps that must be
flexible enough to model the very different shapes of engine map surfaces (Fig. 7)
and that should not require too many parameters to limit the number of unknowns
in the optimization process. LoLiMoT models (Nelles 2001; Hafner and Isermann
2001) seem to be a good compromise between flexibility, accuracy and complexity:
some very simple local models (linear or bilinear) are combined by a weighted sum

with

The weights @, (r, ¢) are normalized Gaussian functions defined as
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A
m(r,c) = th\)h(r, )P (r, 0),

A=1

my.(r,c¢) =00 + 011 + 6Oc 5c.

D, (r,c) =

N, (r, c)
YA Ne(r0)

(11a)

(11b)

(12a)
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0\ 2 0\ 2
1 r—r, c—c,
M, (r, c) = exp T pr + e . (12b)
A A

Their purpose is to control the degree of smoothness of the global surface. « is a
global smoothing parameter. As far as the coefficients 6y, 6, and 6., are con-
cerned, each of them is a vector of size M. Therefore, the continuous function m(., .)
has been replaced by a vector

with

P =1{60,x,0r5,0c} 1<r<A (13)

whose size is N = 3M A. Substituting (11) into (10) brings us back to problem (1).

The advantage of the LoLiMoT representation (11) lies in its ability to adaptively
refine the surface: the patching associated with the definition domains of the local
models may be refined during the optimization process. A finer patching allows a
finer optimization (the number of degrees of freedom being increased) but may lead
to a cumbersome optimization of a large number of parameters. The parameterization,
namely the patch definition for LoLiMoT description of the maps should reflect the
degree of smoothness the user expects for the maps: for some parameters like boost
pressure, the map should remain smooth, for others like main injection timing, the
smoothing constraint is not as strong. An example of the LoLiMoT parameterization
in the context of engine tunings is displayed in Fig. 7.

4.2 Application of map optimization on a real case

The map optimization has been applied on the turbo-diesel engine application de-
scribed in Sect. 3.3. The optimization problem is here defined as a constrained single-
objective optimization problem on the whole driving cycle whereas a two-objective
formulation was used for the local optimization problem at a fixed OP. The cumulated
particulate emissions on the cycle are minimized and the cumulated CO,, CO, HC
and NOy emissions are constrained to remain under thresholds (given in Table 1). The
unknowns of the optimization problem are the 378 LoLiMoT parameters describing
the 6 initial engine maps. Linear constraints are added to take into account the limits
of the physical domain for each point of the engine maps. The obtained results are
listed in Table 1 and the optimized engine maps are displayed in Fig. 8. These engine
maps have been run at the test bench and particulate emissions have been measured,
those measures are displayed in Fig. 9.

Table 1 Results of map optimization on a diesel engine application

Initial maps Optimized maps Upper bounds Error bar
Particulate (g/km) 0.128 0.090 - 0.003
NOx (g/km) 0.219 0.240 0.241 0.025
HC (g/km) 0.137 0.150 0.150 0.014
CO (g/km) 0.815 0.847 0.896 0.039
CO; (g/km) 168.89 164.40 168.89 1.055
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Main injection timing

Fuel injection presg
ms x 10t 2

Fig. 8 Optimal engine maps obtained by the map optimization on the NEDC driving cycle. 378 LoLiMoT
parameters are necessary to model the 6 maps with the expected regularity. The green points indicate the
engine operating points for which models of engine responses are available

Fig. 9 Comparison of measures Particulate emissions
of particulate emissions at the (measured at test bench)
test bench for the initial engine Initial
. 20 I
maps (top) and the optimal ones 2
(bottom) obtained by the
proposed map optimization L
method =
8
o
g i
=
bl
23
B
a
% 50 4500
0 r (speed rd/mn)
20 Optimized
= 2g/h
™
g
-
g
0

500 4500

r (speed rd/mn)

Table 1 shows that the objectives of optimization are reached: the particulate emis-
sions are minimized whereas all the other cumulated engine responses remain un-
der the constraint thresholds. Moreover the chosen map parametrization allows us
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to match the smoothness constraints, which is crucial for the feasibility of the en-
gine tunings. The comparison of the particulate emissions obtained at test bench with
the initial maps and the optimized on Fig. 9 illustrates the obtained gain: in the area
covered by the optimized driving cycle (under 3000 rd/mn and under 10 bar), the
emissions are obviously minimized. In the other parts of the operating domain, the
differences are the result of the smoothing constraints applied on the maps introduced
in the optimization formulation by means of second derivatives minimization. In con-
trast to successive local OP optimizations, the global optimization offers the flexibil-
ity to increase slightly the particulate emissions locally if it is necessary to match the
smoothing constraints. It is the trend we observe on Fig. 9 in the area located around
1750 rd/mn—7 bar.

Conclusions

Throughout this contribution, we have demonstrated the relevance of the two ap-
proaches proposed for engine calibration. By extending the standard local single-
objective formulation in two directions, namely, the local multi-objective formulation
and the global single-objective formulation, we seek to provide engine experts with a
more powerful tool that enables them to achieve better results.

The technical challenges we had to face were solved by existing dedicated al-
gorithms. For the local multi-objective approach, the constrained multi-objective
optimization was successfully carried out by the MO-CMA-ES method, which we
slightly modified to handle inequality constraints. The performance of this method on
the considered real case application is very encouraging, in the sense that the Pareto
front obtained gives worthy information on the possible compromises between antag-
onist engine responses, such as particulate emissions and NOy emissions of a diesel
engine. As far as the global single-objective approach is concerned, the fact that it
rests upon a cycle optimization of the engine maps instead of a pointwise optimiza-
tion allows us to avoid the cumbersome step of map smoothing in classical engine
calibration process. The numerical results testify to a notable gain in efficiency thanks
to intrinsic smoothing constraints introduced via the LoLiMoT parameterization.

An upcoming study for the map optimization will be to apply a multi-objective
approach as for the OP optimization. Here, the difficulty lies in the large size of the
parameter space (500 parameters to describe all the engine maps). Another improve-
ment in this approach will be the use of global models of engine responses (defined
on the whole engine operating domain instead of the local models at a limited number
of OP): this optimization is expected to yield finer results.
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