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Abstract In the context of growing environmental concerns, hybrid-electric vehicles
appear to be one of the most promising technologies for reducing fuel consumption
and pollutant emissions.

This paper presents a parametric study focused on variations of the size of the
powertrain components, and optimization of the power split between the engine and
electric motor with respect to fuel consumption. To take into account the ability of
the engine to be turned off, and the energy consumed to start the engine, we consider
a second state to represent the engine: this state permits to obtain a more realistic
engine model than it is usually done. Results are obtained for a prescribed vehicle
cycle thanks to a dynamic programming algorithm based on a reduced model, and
furnish the optimal power repartition at each time step regarding fuel consumption
under constraints on the battery state of charge, and may then be used to determine
the best components of a given powertrain.

To control the energy sources in real driving conditions, when the future is un-
known, a real-time control strategy is used: the Equivalent Consumption Minimiza-
tion Strategy (ECMS). In this strategy, the battery is being considered as an auxiliary
reversible fuel reservoir, using a scaling parameter which can be deduced from dy-
namic programming results. Offline optimization results and ECMS are compared for
a realistic hybrid vehicle application.
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1 Introduction

Growing environmental concerns coupled with concerns about global crude oil sup-
plies stimulate research on new vehicle technologies. Hybrid-electric vehicles (HEV)
appear to be one of the most promising technologies for reducing fuel consumption
and pollutant emissions (German 2003). Indeed, it is well known that the kinetic en-
ergy gained by the classical vehicle after an acceleration can not be recuperated when
braking. One of the advantage of the hybrid vehicle is its ability to recuperate a part
(depending of efficiencies) of this energy, to store it in a battery, and to re-use it latter.
This electric energy can therefore be used by an electric motor to power the vehicle
and to save fuel.

Among all the possible configurations for typical HEV, the parallel powertrain is
one of the most effective. In a parallel HEV, an electric machine furnishes a traction
power alongside with the engine. The benefits of such system come from its ability to
provide a traction force to the drive train either with the engine, either with the only
electric motor, or with the both. It is thus possible to power the vehicle only with the
electric motor, while the engine is being off. Such powertrain configuration has often
been studied to minimize fuel consumption (see Sciarretta et al. 2004; Wu et al. 2002;
Delprat et al. 2004; Paganelli et al. 2002). Nevertheless, extra fuel consumption at
engine starts is never taken into account; we propose in the later to define a new state
to deal with this start-up cost.

The control of hybrid powertrains is more complex than control of classic engine.
Actually, the control laws have to deal with the state of charge of the battery, which
provides the level of remaining electric energy, and with the variable efficiency of
each element of the powertrain. To find the global optimal solution, control tech-
niques such as linear programming, optimal control (Delprat et al. 2004; Guzzella
and Sciarretta 2005), and especially dynamic programming (DP) (Wu et al. 2002;
Guilbaud 2002; Liu and Peng 2006; Sundström et al. 2008) have been studied. Op-
timization of energy management strategies on given driving cycles is often used. In
general, these techniques do not offer an on-line solution for real-time control, be-
cause they assume that the future driving cycle is completely known. Nevertheless,
their results can be used as a benchmark for the performance of other strategies, to
perform a parametric study, or to derive sub-optimal control laws to be implemented
on a vehicle.

The objective of the parametric study is to determine the influence of component
sizes on the fuel consumption, and to find the optimal size of some predominant
elements for a prescribed driving cycle. In Bonnans et al. (2002), the author con-
siders a bilevel optimization problem, with a simultaneous optimization of design
parameters and trajectories. Although the implementation of this method is compli-
cated, and the computation time is high, it allows obtaining the exact optimal size
of several elements along a driving cycle. Some other studies (Sharer et al. 2006;
Assanis et al. 1999) consider more accurate models, but do not control engine and
electric motor with an optimal controller. In this context, we chose to test different
component size values, and to get the best size obtained on an optimal trajectory,
thanks to a dynamic programming algorithm.

Among sub-optimal control laws used as real-time controller, ECMS (Paganelli
et al. 2002; Sciarretta et al. 2004) is based on physical considerations, and is then
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applicable much more generally than rule-based controllers. This controller is in-
spired from the Pontryagin Principle, and thus some links can be done between pa-
rameters of this controller and dynamic programming results (Bryson and Ho 1975;
Pontryagin et al. 1965). The performance of this controller resides in the control of
the energy ratio (called p in the following) between electrical energy and fuel energy.

In a first part of this paper, we focus on a Citroën C1, equipped with a gasoline
engine displacement of 1000 cc. From this vehicle, we consider an additional source
of power given by an electric motor located near the wheels. This motor takes its
energy from an additional battery. A model of this powertrain has been implemented
in AMESim environment for validation purposes, and also in Matlab, for optimiza-
tion. The later model is a simplified static model that allows fast computations, and
includes the start-up cost of the engine. Two different optimization algorithms are
presented and applied on this model, depending on the needs:

− a Dynamic Programming algorithm (Sciarretta et al. 2004; Scordia 2005; Wu et al.
2002), which provides the optimal control strategy on a prescribed cycle, and the
potential of a powertrain. In the algorithm is considered the extra fuel consumption
(called L2 in the following),

− a sub-optimal control law, based on the Principle of Pontryagin, used as a real-time
control law.

2 System modelling and optimal control problem

2.1 Optimal control problem

The optimal control problem under study consists in minimizing the fuel consump-
tion of the vehicle along a prescribed vehicle cycle, taking into account physical
constraints from battery, engine and electric motor.

Let x1 be a state, corresponding to the state of charge of the battery and x2 ∈ {0,1}
be a discrete state representing the state of the engine: x2 = 0 means the engine is off,
while x2 = 1 means the engine is on. We denote by x = {x1, x2} the state vector.

We define the control u = {u1, u2, u3} ∈ U(x2, t) by

u =
⎧
⎨

⎩

u1 the power split ratio between the engine and the electric motor,
u2 the gear number,
u3 starting up/stopping the engine,

(1)

with U(x2, t) is such that

U(x2, t) = {(u1, u2, u3)\u1 ∈ U1(x2, t), u2 ∈ U2(t), u3 ∈ U3(x2)}, (2)

where U1(x2, t) = [umin
1 , umax

1 ], U2(t) are discrete values, and U3(x2) are discrete
values {−1,0} or {0,1} depending on x2 value (see Sect. 3). The control u1 corre-
sponds to the classical control for HEV, u2 may be optimized too, especially for au-
tomatic transmissions or CVT transmissions (continuous variation of the gear ratio),
and u3 is only linked to x2 state.
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Fig. 1 NEDC driving cycle: vehicle speed at left, gear ratio at right

Let g(x1(T ), T ) be a penalization term handling a constraint on the final state
of charge of the battery, and L(x(t), u(t), t) be the instantaneous fuel consumption,
given by

L(x(t), u(t), t) =
⎧
⎨

⎩

L1(u1(t), t) if x2 = 1 (engine started),
0 if x2 = 0 (engine stopped),
L2 if x2 = 0 and u3 = 1 (engine start-up).

(3)

While x1(t) is a continuous state governed by ẋ1(t) = f1(u(t), t), the state
x2(t) is a discrete state, and takes only the values 0 or 1 corresponding to engine
stopped/engine started. The introduction of x2(t) permits to take into account an ex-
tra fuel consumption, L2, corresponding to the necessary energy to start the engine.
Physically, this energy comes from the inertia of the engine, and is consumed by the
starter (electric energy), and by the engine (small quantity of fuel to reach the idle
speed). The value L2 is considered as a constant.

The general optimization problem is the following:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
u∈U

{

J (u) :=
∫ T

0
L(x(t), u(t), t)dt + g(x1(T ), T )

}

subject to:
ẋ1(t) = f1(u1(t), t), x1(0) = x1,0,

x2(t
+) = x2(t) + u3(t), x2(0) = x2,0

xmin
1 ≤ x1(t) ≤ xmax

1

(4)

where 0 and T are respectively the initial and the final times of the prescribed driving
cycle, and f1 represents the dynamics of the battery.

This minimization problem must be solved on a prescribed cycle, for instance the
NEDC cycle, Fig. 1. Thanks to a vehicle model (mass, wheel diameter, aerodynamic
coefficients, etc.) and the vehicle speed request Vv(t), the requested torque Tw(t) and
speed ωw(t) at the wheels are computed. In this optimization problem, we consider
the cycle as a wheel torque Tw(t) and wheel speed ωw(t) trajectory to be followed.

2.2 System modelling

In this application, we consider that the engine is located upstream of the gearbox,
as on conventional vehicles. Besides, the electric motor is located downstream of the
gearbox, beside the wheels. Let us introduce now some useful notations to describe
the powertrain and to define the control u(t):
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• the requested torque at wheels is written as Tw(t) = Rf arRgrTe(t) + Tm(t) +
Tbk(t), and can be achieved thanks to the engine torque Te(t) multiplied by the
front axle ratio Rf ar and by the gear ratio Rgr , and thanks to the motor torque
Tm(t). A brake torque Tbk(t) can also be applied by braking system.

• the engine torque is Te(t) = u1(t)Tw(t)/(Rf arRgr),
• the electric motor torque is Tm(t) = (1 − u1(t))Tw(t).

During braking phases, Trq(t) < 0, the braking torque can complete the electric motor
torque to slow down the vehicle: Tbk(t) = Tw(t) − T min

m (t) with T min
m (t) the minimal

electric motor torque depending on the engine speed, thus depending on time.
A simple model of the battery is implemented, the state of charge of the battery

evolving as

ẋ1(t) = f (u1(t), t) = −ωm(t)Tm(t)K ′

Ubatt(t)ncapa
(5)

with ωm(t) the electric motor speed, Ubatt(t) the battery voltage, K ′ an efficiency,
and ncapa the nominal capacity of the battery. In the following, we assume that the

battery voltage is constant along the cycle. We set K = K ′
Ubatt.ncapa

and by replacing
Tm(t) by its expression, we obtain

ẋ1(t) = −Kωm(t)(1 − u1(t))Tw(t). (6)

This very simple model for battery dynamics may be complexified to take into
account resistive loses.

The state equation for x2 is ẋ2=0. It is easier to consider x2 in discrete time to
understand its behavior (see Sect. 3).

In this optimal control problem, we make several assumptions about the power-
train: (i) the wheel speed ωw is equal to the electric motor speed ωm, (ii) as the
optimization problem is applied on a full hybrid vehicle, the engine can be stopped
when the torque is provided only by the electric motor. As mentioned above in the
definition of L(x(t), u(t), t), a fuel consumption penalty corresponding to the nec-
essary energy to start the engine must be considered, (iii) recharging the battery is
possible for negative torques (braking request) or by an additional engine torque be-
yond the driver request torque. In the last case, the command u1(t) is larger than 1,
(iv) we consider that the average efficiency of the electric motor is 0.85.

As in the general optimal control problem (4), the command variables u(t) and the
state variables x(t) are submitted to several constraints:

• the engine can only produce a positive torque, and is limited to a maximal torque
which depends on engine speed ω(t): 0 ≤ Te(t) ≤ T max

e (ω(t)),
• the electric motor torque is bounded: T min

m (ω(t)) ≤ Tm(t) ≤ T max
m (ω(t)),

• the storage capacity implies a minimal and a maximal state of charge of the battery
(which are fixed to 50% and 70% in our study): x(1)min ≤ x1(t) ≤ x(1)max,

• the final state of charge is constrained to be close to the initial state of charge to
maintain a null electrical energy balance (to avoid to discharge totally the battery
for minimizing the consumption) x1(0) = x1(T ).
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Notice that Tw(t) and ωw(t), which depend on the vehicle model, are computed
thanks to a quasistatic approach (Beck et al. 2007; Tate and Boyd 2007; Anatone
et al. 2005):

ωw(t) = Vv(t)

rwh

, (7)

Tw(t) = − 1

rwh

(

mg sinα + Fr(Vv(t)) + 1

2
ρSCx(Vv(t) + v0)

2

−
(

m + Jwh

r2
wh

)
dVv(t)

dt

)

, (8)

where rwh is the wheel radius, α is the road slope, 1
2ρSCx(Vv(t) + v0)

2 corresponds
to the aerodynamic loses, Fr(Vv(t)) is the rolling resistance force, m is the vehicle
mass, Jwh is the wheel inertia, and v0 corresponds to the wind speed (null here).

Constraints on command u1(t) are directly derived from the constraints on maxi-
mal and minimal engine and electric motor torque

u1(t)Trq(t) ≤ T max
e (t), (9)

T min
m (t) ≤ (1 − u1(t))Trq(t) ≤ T max

m (t). (10)

3 Dynamic programming

The Dynamic Programming method (DP) is classically applied to solve the problem
(4) (Scordia 2005; Wu et al. 2002): it relies on a very simple idea, the principle of
optimality, stated by Richard Bellman. It states that an optimal policy can be built
step by step, first by building an optimal control for the “tail subproblem” involving
the last step, then by extending the optimal policy to the “tail subproblem” involving
the last two stages, and by iterating until an optimal control has been built for the
complete time interval. Thus, the optimization problem is solved backward from final
time to initial time.

The criterion to be minimized in (4) is thus discretized in time, leading to

min
u∈U

J (u) :=
N−1∑

k=0

L(xk,uk, k)�t + g(x1,N ), (11)

where L(xk,uk, k)�t is the cumulated fuel consumption over the time interval
[k, k + 1], xk is the state vector at step time k, and N is the final time of the driving
cycle. The constraint on the final state of charge x1,0 = x1,N has been introduced via
a penalization term g(x1,N ) = β(x1,N − x1,0)

2, with β , a constant to be chosen.
In general, β is most probably different for battery size. However, the same value

of β , chosen high enough, has been used for all the tested battery capacities.
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Notice that this minimization must be done under state constraints x1 ≤ xmax and
x2 ≥ xmin, and the control (u1, u2, u3) = u ∈ U = {U1,U2,U3} with

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

U1(x2, k) = [umin
1 (x2, k), umax

1 (x2, k)],
U2(k) = �gmin(k), . . . ,gmax(k)�,

U3(x2) =
{

{−1,0} if x2 = 1,

{0,1} if x2 = 0,

(12)

where gmin(k) and gmax(k) correspond to minimal and maximal allowed gears (which
are discrete values) at time step k, and umin

1 (x2, k) and umax
1 (x2, k) come from (9)

and (10) expressed at time step k.
From Bellman principle, the minimum cost-to-go Vk(xk) for the time interval

[k,N], 0 ≤ k ≤ N − 1, is then expressed as follows

Vk(xk) = min
uk∈U

(
L(xk,uk, k)�t + Vk+1(xk + f (xk,uk, k)�t)

)
, (13)

where f (xk,uk, k) is the system dynamics given by:

xk + f (xk,uk, k) = xk+1 =
{

x1,k+1 = x1,k + f1(uk, k)�t,

x2,k+1 = x2,k + u3,k.
(14)

At time N , the cost function is

VN(xN) = g(x1,N ). (15)

This optimization problem is solved backward from final time step to initial time
step using a discretization of function V in the control space and in the state space,
that gives a 3-D grid (time t , state of charge x1, and engine state x2 nodes). A standard
time step used in our examples is �t = 0.5 s, the discretization step �x1 for the state
x1 is 0.25%, and x2 takes only 0 or 1 values. Thus, the number of state nodes is M =
2((xmax

1 −xmin
1 )/�x1). A standard DP algorithm consists in determining, at each step

k and at each state value, the control feasible set U(xk, k), and calculating the optimal
control that minimizes the sum (L(xk,uk, k)�t + Vk+1(xk + f (xk,uk, k)�t)).

Once initial time step is reached, a control law synthesis can be done, starting from
initial conditions, minimizing again L(xk,uk, k)�t +Vk+1(xk +f (xk,uk, k)�t), and
integrating state equations.

As the number of control is relatively small, about one hundred chosen controls,
it’s easy to select the optimal one by a simple minimization procedure.

This method allows a fast optimization: (N − 1)M constrained optimization prob-
lems (13) of only three parameters u1,k , u2,k and u3,k are solved with a fine time
discretization of the variables. This provides the optimal power repartition u∗

k at each
time step (we refer to Guilbaud (2002) for some theoretical results on the convergence
of the method and error estimations).

A direct constrained optimization of (11) is an alternative method but leads to a
large non linear optimization problem with a large number of inequality constraints.
This is the reason why the DP algorithm is often preferred when the number of state
variables is small (one or two state variables).
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Table 1 Fuel consumption for
the reference case Fuel consumption (l/100 km) Gain (%)

Conventional vehicle 4.76

HEV 3.76 20.99%

4 Variations of the size of some powertrain elements

On conventional vehicles, the maximal engine power is mainly defined by its dis-
placement. Economic vehicles have a small engine, with a small fuel consumption,
but with a low maximal torque. When engine displacement is higher, fuel consump-
tion is higher, but maximal engine torque is also higher.

In hybrid vehicles, engine displacement has still almost the same impact on fuel
consumption. However, the presence of a second energy source, which implies at
least an electric motor and a battery, gives other degrees of freedom to decrease the
fuel consumption.

In this study, the optimization of gear shifting is not presented, because gear shift-
ing is imposed on the NEDC cycle. However, it is possible to impose a penalty at
each time the gear is shifted.

The following results have been obtained by testing different sizes of elements of
the powertrain. This approach has been preferred to parametric optimization, which is
a quite complicated problem. The reader can nevertheless see some examples in Bon-
nans et al. (2002).

4.1 Reference case

The reference case is a Citroën C1 with a 1000 cc gasoline engine. We consider on
this vehicle that an electric motor of 10 kW is located downstream of the gearbox,
at the same level as the wheels, and that a battery of 1.3 kW/h provides the electric
energy to the motor. The potential of this vehicle is assessed on the NEDC cycle, and
gives the results summarized in Table 1.

4.2 Variations of battery capacity with constant battery weight

The battery dynamic (5) depends on the battery capacity: for a constant control, the
battery dynamic is bigger as the battery capacity is smaller. As a result, the state of
charge limits, xmin

1 and xmax
1 , can be more often reached with a very small battery

than with a big battery.
As the system dynamic does not depend on the state x1, the fuel consumption will

not evolve with the battery capacity as soon as the state of charge remains inside its
bounds xmin

1 , xmax
1 without touching them. Table 2 gives optimal fuel consumption

on NEDC cycle for varying capacities.

4.3 Variations of battery capacity and battery weight

By considering the variations of battery capacity and the corresponding variations of
its weight, not only the available electric power is changed, but also the global weight
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Table 2 Study of the impact of
the battery capacity Fuel consumption

(l/100 km)
Gain (%)

Conventional vehicle 4.76

HEV with battery 0.325 kWh 3.78 20.40%

0.65 kWh 3.76 20.99%

1.3 kWh 3.76 21%

2.6 kWh 3.76 21%

5.2 kWh 3.76 21%

Table 3 Study of the impact of
the battery capacity with weight
variations

Fuel consumption
(l/100 km)

Gain (%)

Conventional vehicle 4.76

HEV with battery 0.325 kWh 3.78 20.40%

0.65 kWh 3.76 20.84%

1.04 kWh 3.76 21.01%

1.3 kWh 3.76 20.99%

1.625 kWh 3.76 20.90%

1.95 kWh 3.76 20.79%

of the vehicle. In this context, the necessary power to match the requested vehicle
speed of the cycle becomes higher as the weight of the battery increases. Thus, the
variation of battery capacity causes the engine to change its operating points: same
engine speeds, but different requested torques. Also, the vehicle will potentially be
able to recover much more electric energy during braking, if control constraints are
not activated. Consequently, the analysis of these results is not trivial.

We consider in the following that the battery weight varies according to 1 kg for
50 W h. The Table 3 shows obtained results.

It is noticeable that those results show a different trend than the results of Table 2.
An optimal value is reached for ncapa = 1.04 kW h, as seen on Fig. 2.

4.4 Variations of maximal and minimal electric motor torques

The car manufacturers are interested in estimating the best size of an electric motor
for a hybrid vehicle, according to its use, as there is no need to have a very powerful
motor if half of its maximum power is never reached.

The variations of maximal and minimal electric motor power may change the fuel
consumption, but it also changes the state of charge trajectory (see results in Table 4).

For this vehicle used on the NEDC cycle, the fuel consumption does not evolve
anymore if the electric motor power is larger than P = 15 kW. Smaller powers of
electric motor do not affect much the fuel consumption, as the gain for an electric
motor is still 20.15% for a power of 5 kW.
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Fig. 2 Variation of gain of fuel consumption with battery capacity

Table 4 Study of the impact of
the maximal motor power Fuel consumption

(l/100 km)
Gain (%)

Conventional vehicle 4.76

HEV with motor P = 5 kW 3.80 20.15%

HEV with motor P = 10 kW 3.76 20.99%

HEV with motor P = 15 kW 3.74 21.25%

HEV with motor P = 20 kW 3.74 21.25%

5 Real-time control strategy

5.1 Validation of DP results on a more realistic model

Results obtained with the dynamic programming applied on the Matlab model are
tested on a more realistic model implemented in AMESim, corresponding to the ref-
erence case, see Fig. 3. By comparison with the Matlab model used for optimization,
this AMESim model includes all axle inertias, lag times of engine and electric motor,
and a driver model which controls acceleration and brake pedal to follow the speed
request from the cycle. Figure 4 shows the behavior of AMESim model with the op-
timal control of electric motor obtained from dynamic programming on the Matlab
model.

Figure 4(a) shows the effective vehicle speed (blue), compared with the speed re-
quest from the cycle (red). Figure 4(b) and (d) show the motor and engine torques,
while Fig. 4(e) specifies if the engine is started or stopped. Figure 4(c) shows a com-
parison between optimal SOC trajectory obtained with Matlab model, and the one
obtained with AMESim model.

The global fuel consumption obtained with AMESim model is 310.2 g
(3.81 l/100 km) while the one with Matlab model is 310.34 g (3.75 l/100 km), but
the vehicle linear displacement is not the same: Matlab model covers 11.01 km, but
AMESim model only covers 10.84 km, because of inertia that cause a bad follow-up
of the vehicle cycle at low speeds. The resulting error between the two models is
about 1.5%.
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Fig. 3 Validation AMESim model

5.2 Real-time control strategy

In this section, suboptimal control law is derived from the optimization results. The
chosen real-time control law is the Equivalent Consumption Minimization Strategy
(Sciarretta et al. 2004; Guzzella and Sciarretta 2005; Paganelli et al. 2002): it is based
on instantaneous equivalent fuel consumption, the battery being considered as a sec-
ond energy source. ECMS aims to choose the cheapest energy source, between fuel
tank and battery storage.

This strategy is inspired by the Pontryagin’s Principle, which set optimality con-
ditions for the unconstrained continuous optimization problem (4). Some important
theoretical results can be found in Pontryagin et al. (1965). To apply this strategy, we
form the Hamiltonian function H, associated to the problem (4) without considering
the state constraints, and given by

H(x(t), u(t),p(t), t) = L̂(x(t), u(t), t) + p(t)ẋ1(t), (16)

where L̂(x(t), u(t), t)�t represents the variation of fuel consumption, and given by

L̂(x(t), u(t), t) =
{

L1(u(t), t) if x2 �= 0,

0 if x2 = 0,
(17)

ẋ1 corresponds to the variation of state of charge over a time step, and p is a La-
grange multiplier associated with the constraint ẋ1(t) = f1(u(t), t). In this strategy,
the optimal control is the admissible one which minimizes H, taking into account all
the control constraints. The same models as the ones used in dynamic programming
algorithm are used in ECMS, which is the advantage of this model-based strategy.
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Fig. 4 Results of optimal control applied on AMESim model

5.3 Meaning of p

The coefficient p corresponds to the price of electric energy. The larger is p, the
more expensive is the electrical energy, and the more interesting to be recovered. The
smaller is p, the cheaper is the electrical energy, and the more interesting to be used
to power the vehicle conjointly with the engine.

The variation of p depends on the time evolution of the dynamic state variable x1,
according to the Euler-Lagrange equations, namely

ṗ(t) = − ∂H
∂x1

(x(t), u∗(t),p(t), t). (18)

As either L̂ or ẋ1 do not depend on x1, (18) gives

ṗ(t) = 0. (19)

As a results, when no state constraint is active, p is constant for the considered sys-
tem (6). When a state constraint becomes active, the sign of ṗ is completely known,
depending on the active constraint: x = xmin or x = xmax. Indeed, if the augmented
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Hamiltonian is written, with state constraints, we get

H(x(t), u(t),p(t), t) = L̂(x(t), u(t), t) + p(t)ẋ1(t) + λ1(t)(x
min
1 − x1(t))

+ λ2(t)(x1(t) − xmax
1 ), (20)

where λ1 ≥ 0 and λ2 ≥ 0 are Lagrange multipliers associated with state constraints
xmin

1 − x1 ≤ 0 and x1 − xmax
1 ≤ 0. Solving ṗ = − ∂H

∂x1
leads to ṗ = λ2 − λ1. One can

verify that if x1 = xmin
1 , then λ2 = 0 and λ1 ≥ 0 meaning that ṗ ≥ 0. The same idea

is used with the second state constraint.

5.4 Control of p

In ECMS, the value of p is often controlled thanks to rules of Delprat et al. (2004),
Liu and Peng (2006), mainly depending of the state of charge. Indeed, as the future is
not known, it can be better to keep the state of charge x1 far from its bounds, and to
control p as a function of x1 with a feedback controller. However, in this paper, we
consider that p remains constant, and we just try to show the potential of this strategy
with an adequate initial value of p.

An estimation of p can be obtained by calculating the equivalent Lagrange mul-
tiplier with the dynamic programming results. From Bryson and Ho (1975), equiva-
lence between Pontryagin’s principle and dynamic programming in continuous time
can be found, assuming that V is differentiable, with

p(t) = ∂V

∂x1
(t, x1), (21)

where V (t, x1) corresponds to the cost-to-go function.
To estimate the value of p, we calculate the partial derivative of V (defined in (13))

with respect to x1 with finite differences, for each step k. Using theses results allows
to estimate that the average value1 of p should be into the range [−3400;−3000].
Because of some differences between the model used with dynamic programming
and the AMESim model, a trial & error method has been applied to end up with
p = −3075.2 This value allows to reach a final state x1(T ) close to the initial
state x1(0).

5.5 Results of the ECMS Real-time controller

The Fig. 5 shows some results obtained with this real-time control strategy, with a
correct value of p.

Figure 5(a) shows that the hybrid vehicle still follows the speed request from the
cycle. However, some differences appear on the state of charge, Fig. 5(b). The fuel

1In practice, a shooting algorithm can be used by setting the initial value of p, integrating the system
equations, and iterating on the initial value of p to reach the desired final state of charge.
2If the variations of fuel and chemical energies are used instead of the variations L̂(u(t), t)�t and ẋ1(t)�t ,
the coefficient p can be scaled to a smaller value.
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Fig. 5 Results obtained with a sub-optimal strategy applied on AMESim model

consumption obtained with this sub-optimal strategy is 326.8 g, corresponding to
3.97 l/100 km. Compared to conventional vehicle, this controller—with an ideal value
of p in this example—allows to save 16.6% of fuel on the NEDC cycle. Some rules
to control p with the state of charge should be implemented to make this controller
more robust.

6 Conclusion

In this paper, has been presented a study of a full hybrid vehicle, with a classical
offline optimization tool, and an example of a real-time control strategy inspired from
optimal control theory.

A simple model in Matlab has been implemented and coupled with a dynamic
programming algorithm. Through this model, an engine startup cost L2 has been
introduced in the optimal control problem, thanks to a discrete variable x2, to take
into account the extra fuel consumption of the engine in order to reach its idle speed.
This penalization term in the cost function avoids too many successive engine stops
and engine starts, and is usually never considered in this kind of optimal control
problems.

This optimization tool allows to estimate the optimal sizes and powers of the ele-
ments of hybrid powertrain. Nevertheless, these results, obtained on the NEDC cycle,
depend on the chosen driving cycle: so the optimal sizes can be a little different on
other cycles.
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After a validation of the optimal trajectory and torques applied on a more realistic
model in AMESim, a model-based sub-optimal controller has been implemented,
inspired by Pontryagin’s Principle and optimality conditions. In the paper, we briefly
show how to take into account some dynamic programming results to initialize the
value of p.

However, even if an average value of p can be estimated from offline optimization
results, which provides an initial value, the choice of an adequate initial value remains
a delicate task, and p should be tuned regarding to the evolution of the state of charge
of the battery, and to the type of the cycle.
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