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MOD 3.2

3D reflection tomography designed for complex structures
Fabrice Jurado, Delphine Sinoquet and Andreas Ehinger, Institut Francais du Petrole.

S u m m a r y
A 3D reflection tomography that can determine correct subsurface
velocity structures is of strategic importance for an effective use of
3D prestack depth migration. We have developed a robust and fast
3D reflection tomography that is designed to handle complex models.
We use a B-spline representation for interface geometries and for the
lateral velocity distribution within a layer and we restrict the vertical
velocity variation to have a constant gradient.
We solve the ray tracing problem by use of a bending method with
a circular ray approximation within layers. For the inversion we use
a regularized formulation of reflection tomography which penalizes
the roughness of the model. The optimization is based on a quadratic
programming formulation and constraints on the model are treated
by the augmented Lagrangian technique.
We show results of ray tracing and inversion on a rather complex
synthetic model.
Introduction
Ehinger and Lailly, 1995, have shown the interest of reflection
tomography for computing velocity models adequate for the seismic
imaging of complex geologic structures. In 2D, reflection tomography
has proved its effectiveness in this context (Jacobs et al., 1995).
In 3D, Guiziou et al., 199 1, have developed a ray tracing based on
a straight line ray approximation within a layer and an inversion of
poststack data. But it suffers of a non derivability of its traveltime
formula due to the Gocad interface representation.
We describe a 3D tomography that handles models with the necessary
derivability and allows inversion of more complex kinematics by the
use of a more accurate traveltime calculation.
Model description
We choose a blocky model representation of the subsurface, each
layer being associated with a geological macrosequence. A velocity
law has to be associated with each layer (Figure 1). The form of the
velocity law is    =   y) +  where  is the lateral
velocity distribution (described by cubic B-spline functions) and k is
the vertical velocity gradient.
Using blocky models can lead to difficulties associated with the
possible non-definition of the forward problem (situations where there
is no ray joining a source to a receiver) and more generally to all
kind of difficulties involved in discontinuous kinematics. The blocky
model representation allows velocity discontinuities as they exist in
the earth and thus to straightforwardly integrate a priori information
on velocities (see Lailly and Sinoquet, 1996, for a general discussion
on blocky versus smooth model s for seismic imaging of complex
geologic structures).
We use a cubic B-spline representation for interface geometries. This

Fig. 1 Example of a model presenting a pinch-out. Continuous lines are
the reflecting parts of interfaces, the dashed line is a virtual part that has no
physical meaning. Specifying a ray signature allows to sort good and bad rays.

gives the (at least)  regularity required for proper ray tracing
calculations. Following Clarke et al., 1994, the B-spline interfaces
are defined in the whole domain and can cross each other. The part
of an interface where the velocity is the same on both sides is called
a virtual part (Figure 1); this part exists only for convenience, it has
thus no physical meaning.
Ray tracing method
We compute normal (zero-offset) rays as well as multi-offset rays.
We have to define the ray paths in which we are interested in. This
consists in specifying the ray signature which is the ordered sequence
of interfaces crossed by the ray before and after reflection. In other
words, specifying the ray signature means specifying the nature of
the seismic event we are interested in. In particular it can be used
to remove artificially reflected rays i.e. rays that are reflected on the
virtual part of an interface (Figure 1).

Two-point ray tracing
The two-point ray tracing method (zero or multi-offset) is inspired
from the classical bending method. It consists of:
- a ray initialization, i.e. we choose a trajectory that starts at the

source, hits the reflector and ends at the receiver satisfying a given
signature. This trajectory is defined by the successive impact
points on the crossed interfaces;

- a formula for calculating the traveltime between two successive
impact points;

- the bending itself, i.e. the optimization technique that moves
impact points until the total traveltime is stationary (Fermat’s
principle).

Ray initialization
For a zero-offset ray, the initial trajectory for the bending method is
obtained by finding the successive intersection points of all interfaces
with a circle (why a circle? see below...) starting from the source,
with a given tangent vector (i.e. shooting angle), so as to reach
the nearest interface. We apply Snell’s law at the impact point
to simulate the transmission at the interface, and iterate the circle-
interface intersection procedure until the reflector is reached. The
ray initialization with a given tangent vector can be very useful in
the case of multiple arrivals in order to guide the bending method so
as to find the desired arrival. If the tangent vector direction is not
specified then by default the vertical direction is used.
In the case of multi-offset CMP acquisition, an offset continuation
strategy is applied. A new ray is initialized by copying, from the
previously calculated ray, the sequence of impact point coordinates
except for the source and receiver locations which are updated ac-
cording to the considered offset.

Traveltime formula
For the calculation of the traveltime between two successive impact
points, Guiziou et al., 1991, have proposed a formula based on a
straight line ray approximation. To improve the accuracy of the
traveltime calculation for velocity distribution with constant vertical
gradient (see ray tracing results, Figure 5), we use a formula suited
for such a velocity. In the case of constant lateral velocity, it is well
known that the ray trajectory is a circle that lies in the vertical plane
defined by the two successive impact points  and Pn. The
traveltime tn is calculated by (see Virieux, 1990):

where angles  and  are explained on Figure 2. Note that we
have translated the coordinate system origin to Pn-1 and rotated the
(x,y) plane to be in the vertical plane in which the ray lies (i.e. we
deal with a 2D problem). Then the circle center depth is  =  
and the  coordinate is obtained by finding the intersection between
this plane and the median of segment   
In the case of lateral velocity variations,  is approximated by the
mean of the velocity values at     and M (Figure 2). In the
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3D reflection tomography

case of strong lateral velocity variations, this approximation can be
poor. In order to improve the accuracy of the computed traveltime,
we can then introduce ghost interfaces within the layer. The ghost
interface has no physical meaning: its role is just to allow an extra
impact point, i.e. one more degree of freedom, so as to make the
approximation more accurate.

Fig. 2 Description of the traveltime calculation for circular ray path. C is
the center of the circle,  and  are successive impact points.  is
the mean of the velocity values at    ,  k is the vertical velocity
gradient.

Bending method
We define the total traveltime between the source  and the receiver

 b y   =   which is a differentiable function of

impact point coordinates    (thanks to 

We look for impact point locations that make the total traveltime
minimum. This is done using a quasi-Newton method which requires
only calculation of the first derivative of the traveltime with respect to
impact point coordinates. This method has asymptotically the same
convergence rate as a Newton method but is much cheaper and also
much more stable.

Since interfaces can cross each other, the ray signature may change
from one iteration of the bending to another (whenever an impact
point moves across another interface) and the bending algorithm can
find rays that violate the specified signature. We allow the bending
to find such rays but we discard them by checking the signature
a posteriori. Thus the bending algorithm is not slowed down by
extensive signature management and at the same time we are sure
to discard erratic rays. Note that finding no ray for a given source-
receiver pair is quite acceptable since we cannot be sure that there
exists such ray when dealing with a blocky model.

Also, as in all bending methods, there is no guarantee, in the case of
multiple arrivals, to find the arrival of interest: the solution depends
on the ray initialization, An a posteriori check of the shooting angle
of the ray allows to detect a change of the traveltime branch.

Despite this minor limitation our ray tracing has been designed to
be fast (thanks to the quite simple traveltime formula) and reliable
(thanks to the B-spline representation of surfaces leading to the dif-
ferentiable definition of the total traveltime). The bending algorithm
converges towards a trajectory with zero traveltime derivatives with
respect to impact point positions. This is an important condition to
be fulfilled for correct calculation of the Jacobian.

Tomographic inversion method
The tomographic inverse problem consists in finding the model -
namely, the B-spline parameters of the lateral velocity    and
the interface depths   for each layer (the constant velocity
gradient has a given and fixed value) - that yields traveltimes that
match the data. The data of the inversion are the prestack traveltimes.
These data could be obtained for instance from zero-offset (poststack)
traveltimes together with offset move-out information. We are able
to invert multivalued traveltimes if different branches of a traveltime
curve are defined by different shooting angles of the zero-offset
ray. This a priori information can be read from the zero-offset data

(first derivatives of the traveltime surface). Inversion of prestack
traveltimes gives the possibility to invert more complex kinematics
as compared to the direct inversion of stacking velocities. We also
expect better stability since prestack traveltimes yield a bigger amount
of information than the associated stacking velocity.

As shown in Delprat-Jannaud and Lailly, 1993, the inverse problem
has to be regularized. Indeed, some parts of the model may not be
illuminated by rays and thus are not determined by the data. We
have chosen to regularize by penalizing the second derivatives of the
difference between the actual model and an a priori model. We thus
solve the following minimization problem. where NT is the number
of traveltime data and the model m is composed of NV velocity

laws and of NZ interface depths 

The first term in the objective function measures the misfits between
the traveltimes computed by the ray tracing in the current model m
and the traveltime data. The regularization term means that we are
looking for a model with a roughness close to the a priori model or,
if there is no a priori model, a small roughness.

 represent weights which calibrate in the objective function the
different terms according to their physical meaning.  represents the
inverse of the uncertainty associated with traveltime  Choosing
the weights  correctly comes down to finding the appropriate
compromise between possibly contradictory pieces of information
(see Lailly and Sinoquet, 1996).

The minimization of the non quadratic objective function is carried
out with the Gauss-Newton method. In fact, for better stability, it is
important to put constraints on the model. Each iteration thus consists
in solving a constrained least-squares problem. We make use of a
quadratic programming formulation which allows the inversion of a
large number of data: with this formulation we just need to store the
Hessian matrix instead of the Jacobian matrix. To handle equality
and inequality constraints we make use of a specific implementation
of the augmented Lagrangian method. We can thus, for example,
fix the velocity at the surface or at well locations, or constrain the
depth or the slope of an interface, or constrain the relative position
of two interfaces.

Applications of ray tracing and inversion
Synthetic model
We have created a synthetic model to test our ray tracing and tomo-
graphic inversion, The model is inspired by a real salt dome structure

Fig. 3 Ray tracing on the synthetic model The depth of the ternary base
vanes from 600m to 1800m and the depth of the chalk base varies from
600m to 2800m (see Figures 6 and 7).
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in the North Sea and consists in total of 7 interfaces. The upper two
interfaces (Figure 3) are the tertiary base and the chalk base. Each
interface is explicit in the depth direction (Z(x, y)) and represented
by 30 x 15 B-spline coefficients on the independent axes. The model
extends from- 5000m to 13000m in x direction and from 0m to
9400m in y direction.
The lateral variations of the velocity in the first layer are shown in
Figure 6 (bottom right). The constant vertical velocity gradient is

 For the second layer, the lateral velocity is represented in
Figure 7 (bottom right). The vertical gradient is  Each lateral
velocity distribution is represented by 14 x 8 B-spline coefficients.
The acquisition survey consists in zero-offset shots and CMP gathers.
360 x 188 zero-offset shots are positioned on a regular grid of 50m
width. We place 37 x 24 CMPs on a regular grid of 400m width
with 60 offsets varying from 50m to 3000m The zero-offset shots
were first calculated by an accurate ray tracing developed by Clarke
et al., 1994, in order to access the shooting angles in a simple way
rather than by an interpretation. Using these shooting angles we then
recomputed the zero-offset data and the multi-offset data with our
ray tracing.
Ray tracing results
In Figure 5, we present the improvement of the circular ray formula
with respect to a straight line ray approximation. Figure 5 (left) shows
results of ray tracing using the circular ray approximation compared
to a straight line ray approximation, i.e. in each layer the ray is a
line and the traveltime is computed using the mean slowness value
(see Guiziou et al., 1991). We see that the difference can be large
especially for large offsets. In fact, the difference would be larger
when dealing with more complex interfaces. The ray tracing with
the circular ray approximation is faster than that with the straight
line ray approximation when no ghost interfaces are used; moreover
in practice one ghost interface is necessary for the straight line ray
approximation to deal with vertical velocity gradient and increase the
accuracy, its CPU time is then at least multiplied by 3.
To certify our ray calculation, Figure 5 (right) compares results
between the ray tracing with circular ray approximation and the ray
tracing of Clarke et al., 1994. We see the very good agreement
even for large offsets. For this common mid-point, the exact ray
tracing found three different branches but two of them are very close,
so we have fed the bending method with only two really different
shooting directions and have found only two branches. On Figure
4, the results of zero-offset raytracing with the shooting method and
the bending method (circular ray approximation) show also that the
bending method can have difficulties to find the desired arrivals when
the initialization shooting directions are too close for two branches.
The advantage of our ray tracing is to be 20 times faster (zero-offset
shots) than the exact ray tracing.

3D reflection tomography

Fig. 4 Zero-offset times associated with the chalk base of the synthetic model
along a line y = 3025m They were obtained with a shooting method (Clarke
et al., 1994) and with the bending method (with the circular ray approximation).
The bending method retrieved two branches of the traveltime curve but was
not able to retrieve the third branch due to an initialization direction too close
to that of the second branch which then was calculated twice.

Inversion results
We performed inversion of the zero-offset and multi-offset traveltime
data associated with the two first layers of the synthetic model by a
layer-stripping approach.
First, we invert for the tertiary base starting from an initial constant
horizontal interface and an initial constant velocity; it leads to an
inversion for 450 B-spline coefficients for the interface and 112
coefficients for the velocity. The model was regularized by means
of second derivatives without any a priori model. Also weights on
the traveltimes data were tuned to give sufficient importance of the
large offset data with respect to the (huge) number of zero (or small)
offset data. We invert almost 130000 traveltime data.
Figure 6 shows the exact tertiary base compared with the interface
obtained after 17 iterations of the inversion and the same comparison
between velocities. The RMS traveltime misfit is 0.2ms (only 5
iterations were necessary to obtain a RMS misfit smaller than lms).
We now fix the tertiary layer to the obtained result and invert the
chalk base and the lateral velocity, again starting from constant val-
ues. Figure 7 shows the exact chalk base compared with the interface
obtained after 14 iterations and the same comparison between veloc-
ities. The RMS traveltime misfit is 0.7ms.
Only a few traveltime misfits remain large: they correspond to a
change of branch of the traveltime curve, the initialization shooting
angles being not sufficient to distinguish the different arrivals (see

Fig, 5 Triplicated multi-offset times associated with the chalk base of the synthetic model for a CMP ( x = 6775m) y = 4125m). Left side: comparison between
our bending method with the circular ray approximation and a bending method with a straight line ray approximation. Right side: comparison between our bending
method with the circular ray approximation and a shooting method (Clarke et al., 1994). Two initialization angles for the bending provide the two branches.
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section on ray tracing results).
The CPU time amounts to 20 and 45 minutes for one iteration of
the inversion for layer 1 and 2 (respectively) on a Silicon Graphics
Indigo² workstation (including ray tracing).

Conclusions
The 3D reflection tomography described in this paper has proven to
be efficient for a geologic synthetic structure. Using B-spline rep-
resentation of the interfaces and of the velocity gives the necessary
regularity for the ray tracing and the inversion. The ray tracing relies
on a bending method which is able to compute multiple arrivals pro-
viding that we initialize the process with reliable shooting angles (first
derivatives of zero-offset data). The bending method combined with
the circular ray approximation allows fast calculation and gives a suf-
ficient accuracy even with large velocity variations. The regularized
inversion formulation with constraints is robust and can overcome
the difficulties associated with irregular model illumination by rays
which is particularly true for complex structures.
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Fig. 6 Comparison between the synthetic model and the model obtained by reflection tomography for the tertiary layer. The RMS misfit is  the maximum
misfit is  (only 2 misfit values over 120390 are greater than 

Interface result Synthetic interface

Velocity result Synthetic velocity

Fig. 7 Comparison between the synthetic model and the model obtained by reflection tomography for the chalk layer. The RMS misfit is  the maximum
misfit is  (only 45 misfit values over 129300 are greater than 
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