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Quantifying relevant uncertainties on the solution model of reflection tomography
Carole Duffet* and Delphine Sinogquet, Institut Frangais du Pétrole

Summary

Reflection tomography determines the velocity model
that best fits the travel time data associated with reflec-
tions of seismic waves in the subsurface. This solution
model is only one model among many possible models.
Indeed, the uncertainties on the observed travel times
(resulting from an interpretative event picking on seismic
sections) and more generally the underdetermination of
the inverse problem lead to uncertainties on the solution
model. An a posteriori uncertainty analysis is then
crucial to delimit the range of possible solution models.
The analysis of the a posteriori covariance matrix (inverse
of the Hessian matrix) gives the uncertainties on the
solution model but its computation is generally expensive
(the matrix is huge for 3D problems) and the physical
interpretation of the results is difficult. A formalism
based on linear combinations of model parameters
(macro-parameters) allows to compute uncertainties on
relevant geological quantities for a reduced computational
time (the matrices to be manipulated are reduced to
the macro-parameter space). A first application on a
synthetic example with basic macro-parameters shows
their potentialities. The generality of the formalism
allows a wide flexibility for the construction of the
macro-parameters.

Introduction

Reflection tomography aims to determine the subsur-
face velocity model that best fits the travel time data
associated with the main reflectors in the earth. The
picking of the observed travel times on seismic sections
leads to data corrupted by noise due to the difficulties
in following a continuous event. Modeling errors (ap-
proximations in the forward problem, parameterization
errors) come in addition to the errors on the input data.
These uncertainties on the data and, more generally,
the underdetermination of the inverse problem lead to
uncertainties on the solution model. Classically, the
analysis of the solution of the inverse problem consists
in checking the misfits between observed travel times
and calculated travel times by computing characteristic
values of the misfit distribution (the RMS (Root Mean
Square) value and the maximum misfit value) and by
studying the spatial distribution of the misfits (detection
of local zones with high misfits and trends). However,
this analysis is not sufficient even if these quality control
criteria are verified, the determined model is only one
of many possible models that match the data. An
uncertainty analysis should be performed to quantify the
range of admissible models we can obtain from these
data.

Let us consider a simple synthetic example (Figure 1) to
illustrate this. This 3D model is composed of one layer
with lateral velocity variations (v(z,y), there is no ver-
tical variations). We model synthetic data by ray trac-
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Fig. 1: Vertical slices in the 3D exact velocity model (Left: along
z axis, right: along y axis).

ing in the exact model. We add to these exact travel
times a white noise (described by a center Gaussian prob-
ability law) of 5ms standard deviation. The inversion of
these noisy data gives a solution model close to the exact
model (model 1 of Figure 2) with a RMS misfit of 5ms
and a maximum misfit of 20.47ms, result which is con-
sistent with the introduced noise on the data. But three
other solution models could be obtained with an equiva-
lent RMS misfit (Figure 2). Without knowing the exact
model or introducing discriminant a priori information on
the model, we could not choose between the four solution
models: they all match the data within the expected ac-
curacy. This example illustrates the necessity to be able
to estimate the range of possible models. If the resulting
uncertainties on the solution model is considered too high,
we should introduce other data or a priori information on
the model to reduce them.

In this paper, after the description of the chosen formu-
lation of reflection tomography, we apply different meth-
ods to access the uncertainties on the solution model of
the example of Figure 1. Following Tarantola (1987) and
Gouveia and Scales (1997), we study the a posteriori
covariance matrix and we discuss the limitations of the
different methods to analyze this matrix. We then pro-
pose a new method to quantify uncertainties on geological
macro-parameters (combinations of parameters).

Formulation of reflection tomography

In our approach (Jurado et al., 1996), the subsurface
model m is composed of 2D or 3D B-spline functions
describing velocity variations in a layer (v(z,y) + k.z
or v(z,y,z)) and 2D B-spline functions describing the
interfaces (Z(z,y), Y(z,z) or X(y, 2)).

The forward problem is a two-point ray tracing prob-
lem (sources and receivers are fixed) solved by a bending

method (Jurado et al., 1998). We denote by T°%(m) the
travel times computed by ray tracing in the model m.
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Fig. 2: Vertical slices along z axis in 4 different 3D solution ve-
locity models obtained by tomography. Model 1: solution model
with no vertical velocity variations (k = 0/s) - RMS of the travel
time misfits = 5ms - maximum value of the travel time misfits
= 20.47ms . Model 2: solution model with a fixed vertical gra-
dient k = 0.5/s - RMS = 5ms, Max. = 20.46ms. Model 3: so-
lution model with an erroneous parameterization of the velocity:
v(z,y, z) instead of v(z,y) - RMS = 5.5ms - Max. = 22ms. Model
4: solution model with a velocity parameterization by v(z,y, z)
and a constraint that keeps the vertical velocity gradient positive
- RMS = 5.5ms - Max. = 22ms.

The inverse problem consists in minimizing the objective
function (Delprat-Jannaud and Lailly, 1993)

Clm) = [ (m) = T"|[},zs + || D% (m — m” ") |3
M

with [|D?(m)||?® a regularization term which is necessary
to well pose the inverse problem (this term is composed
of the sum of the second derivatives of the velocity vari-
ations and the interface depths) where m is a subsurface
model defined by N; interfaces and Ny layer velocities.

||.||Cd_1 is the norm in the data space, Cy being the a

priori covariance operator on the data. Its diagonal ele-
ments specify the uncertainties on the data (errors on the
data themselves and modeling errors), and its off-diagonal
elements specify the correlations between these uncertain-
ties. ||-||a+ is the norm in the model space (here the L2
norm). € is a regularization weight that allows to tune
the regularization effect.

The objective function (1) is not quadratic since the
forward modeling operator T°*(m) is non linear. We
solve this non linear minimization problem with a Gauss-
Newton algorithm, which consists in successive lineariza-
tions of the forward operator. The resulting quadratic
objective function

Cn(ém) = (2)

1 obs||2
= §||Jn6m_5Tn ”Cd_l

solution model of reflection tomography
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+ EIIDQ(mn +m —mP )R (3)

is minimized at each Gauss-Newton iteration n where

my, is the current model, dm is the model perturbation,
Jn = ag:l (mn) is the Jacobian matrix evaluated at mn,
and 6T = T°% — T°*(m,,). Solving this minimization
problem is equivalent to solving the linear system

(JECT T + € Qreg)dm = Jr CF 16T (4)
where Q,¢q is the matrix made up of the regularization
terms.

Quantifying uncertainties on solution model
A classical approach consists in the analysis of the Hes-
sian matrix (or its inverse: the a posteriori covariance
matrix) associated with the linearized problem (2)
around the solution model mq,. This approach is valid in
the vicinity of the solution model, the size of the vicinity
depending on the non linearity of the forward map.

The Hessian matrix measures the influence of a model
perturbation dm on the quadratic cost function defined
around Meo

Coo(6m) — Coo(0) = 6mT (JE O oo + €2 Qpeg)dm  (5)

with Coo(0) = C(mwo). The a posteriori covariance ma-
trix is defined by

Cr = (JoC7 " Joo + € Qreg) ™. (6)

The space of admissible models could be characterized by
the ellipsoids of center mo, contour lines of

(7)

The axes of the ellipsoids (7) are defined by the eigenvec-
tors of C),, the square root of the eigenvalues giving the
uncertainties on the associated eigenvector.

(M —meo) T Ci ' (M — Mo).

The square root of diagonal terms of Cj, are the uncer-
tainties on the B-spline parameters describing the model
and the off-diagonal terms are the correlations between
these uncertainties. In Figure 4, we notice the very high
values for the boundary B-spline coefficients. It is not sur-
prising: the sensitivity of the B-spline function to these
coefficients is small. We observe in Figure 3 also high cor-
relations between the uncertainties on these coefficients:
this is the effect of the regularization, these coefficients
being mostly determined by this information. The un-
certainties on the B-spline parameters are not very in-
teresting in practice: the very high uncertainties on the
boundary coefficients are intrinsic to the B-spline defini-
tion. We would rather compute uncertainties on physi-
cal quantities, for instance, the evaluation of the B-spline
functions in the physical domain.

As Delprat-Jannaud and Lailly (1992), we have stud-
ied the eigenvector decomposition of the a posteriori co-
variance matrix to have access to the worst/best deter-
mined model directions and the associated uncertainties.
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Fig. 3: A posteriori covariance matrix of the solution model 1 of
Figure 2.
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Fig. 4: Uncertainties associated to model parameters (square root
of the diagonal terms of the a posteriori covariance matrix ) associ-
ated with the model 1 of Figure 2. The horizontal (resp. vertical)
axis represents the index of the B-spline parameter in z (resp. y)
direction.

The best (resp. worst) determined model direction corre-
sponds to the smallest (resp. highest) eigenvalue of the a
posteriori covariance matrix , i.e. highest (resp. small-
est) perturbation of the quadratic cost function. The
uncertainties associated with these eigenvectors, namely
the square root of the eigenvalues, are meaningless, the
eigenvectors being composed of mixed velocity and in-
terface parameters. A careful choice of the norm in the
model space to be used for the decomposition of the a
posteriori covariance matrix has to be done (Tarantola
(1987), Delprat-Jannaud and Lailly (1992)). We should
check that the method furnishes intrinsic results which
do not depend on the physical units or on the dicretiza-
tion for instance. We do not recommend this approach
in applications mainly because of the difficult physical in-
terpretation of the eigenvectors. The eigenvectors are a
combination of interface and velocity parameters, what
we compute is thus the uncertainties on these combina-
tions which are usually difficult to link to physical quan-
tities. Moreover, this approach is expensive: the diago-
nalisation of the huge a posteriori covariance matrix has
to be performed. Another approach is the simula-
tion of admissible models from the a posteriori probabil-
ity density function that allows a more complete analy-
sis than the sole analysis of the diagonal terms of the a
posteriori covariance matrix. Indeed, the correlations be-
tween the uncertainties are taken into account. Moreover,
the simulations furnish directly interpretable results, i.e.
physical models. The method (see, for instance, Parker
(1994)) consists in random simulations of model pertuba-
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Fig. 5: Slices along z axis in the 3D simulated velocity models.
Left: velocity variations. Right: interface depth variations.

tions from the probability density function
1 T~
exp{—55m Cpdm}.

Figure 5 shows 20 simulated models obtained by this
method: slice of the interfaces and lateral variations of
the velocities along = direction. The highest uncertainties
(~100m) on the interface depth are located at the bound-
aries of the model, areas that are not well illuminated by
the rays. In other areas, the order of magnitude of the
uncertainties of the depth is a few meters. Concerning
the lateral velocity variations, we observe uncertainties
of 100 — 200m/s distributed on the whole domain. This
method is quite attractive for the straightforward inter-
pretation of the results despite its cost.

Uncertainties on geological macro-parameters

The methods described in the previous section present
some interesting features but remain expensive for 3D
applications. Here, we propose a method that allows to
deal with large models at a reasonable cost. Moreover,
we want to give to the geophysicist some uncertainties on
physical quantities, and not on some numerical parame-
ters that we invert for in the tomography process. The
proposed approach consists in building macro-parameters
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with a geophysical interest. These macro-parameters
are linear combinations of the inverted parameters: for
instance, the mean of the vertical velocity variations in
a zone, the slope of an interface, the average thickness
of a layer, etc. Grenié (2001) has introduced this notion
of macro-parameter (his main motivation being to avoid
numerical problems in the inversion of the complete
Hessian). We propose here a generalization of his work
(general definition of macro-parameters) which allows
the computation of uncertainties for huge 3D problems.

‘We apply this method on our example. We choose simple
macro-parameters: the mean of the velocity variation in
the layer, the mean of its first derivatives, the mean of
the interface depth and of its first derivatives. The uncer-
tainties on those macro-parameters are calculated on the
solution model 1 and on the solution model 4 of Figure
2, the latter model being obtained with a parameteriza-
tion of the velocity by a 3D B-spline v(z,y, ) instead of
a 2D B-spline v(z,y). The results are listed in the Table
1. For the inversion with a v(z,y,2) parameterization,
we notice the bad determination of the velocity and es-
pecially of its vertical variations (uncertainty of 0.17/s,
twice the standard deviation) (as already shown with the
different solution models presented in Figure 2). This
result is not surprising: the rays propagate close to the
vertical direction, the travel times are thus not very sen-
sitive to vertical velocity variations. This method with
its general formalism allows to compute uncertainties on
relevant geological quantities with a reasonable computa-
tion cost. Gaussian simulations of the macro-parameters
(using the reduced a posteriori covariance matrix ) can
also be performed: it furnishes interesting information on
the correlations of macro-parameter uncertainties and has
a lower computational cost than simulations of the model
parameters with the complete a posteriori covariance ma-
trix.

Conclusions

Reflection tomography furnishes the velocity model that
best fits the travel time data: however, this solution
model is only one out of many admissible models. An
a posteriori uncertainty analysis is crucial to delimit
the range of possible solution models that would fit the
data and the a priori information with the expected
accuracy. In this paper, we describe different methods to
perform a linearized a posteriori analysis, approach valid
only in the vicinity of the solution model. The methods
based on the analysis of the a posteriori covariance
matrix (huge matrix for 3D models) are generally too
expensive and the physical interpretation of the results is
difficult. We propose a general formalism to reduce the a
posteriori analysis to geological quantities of the model:
we evaluate the uncertainties on macro-parameters
(linear combinations of model parameters) that have a
geological interest. This method allows the manipulation
of reduced matrices and thus becomes feasible in 3D.
A first application on a synthetic example with basic
macro-parameters shows the potentialities of the method.
The generality of the formalism allows a wide flexibility
for the construction of the macro-parameters. Neverthe-

less, we should keep in mind that this approach is only
valid in the vicinity of the solution model (linearized
framework) and complex cases may require a non linear
approach.
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MODELS Macro-parameters
Function DZ
Model 1 (v(z,y)) velocity 3m/s -
Model 4 (v(z,y, 2)) 126m/s 0.085/s
Model 1 (v(z,y)) | interface 0.76m -
Model 4 (v(z,y, 2)) 0.76m -

Table 1: Standard deviations (square roots of the diago-
nal terms of Cj,) associated with different macro-parameters:
mean of the B-spline function, of its first derivative in z on
the definition domain. This uncertainty analysis is performed
for the solution model 1 of Figure 2 obtained with the exact
parameterization and also for the solution model 4 of Figure 2
obtained with a velocity parameterization v(z,y, z).



