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Z-99 A dedicated constrained optimization method
for 3D reflection tomography
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Abstract

Seismic reflection tomography is a method for tle¢gednination of a subsurface velocity model
from the traveltimes of seismic waves reflecting gevlogical interfaces. From an optimization
viewpoint, the problem consists in minimizing a hosar least-squares function measuring the
mismatch between observed traveltimes and thoseulatdd by raytracing in this model. The
introduction of a priori information on the modsl ¢rucial to reduce the under-determination. The
contribution of this paper is to introduce a teciug able to take into account geological a priori
information in the reflection tomography problempesssed as constraints in the optimization
problem. This constrained optimization is based @nGauss-Newton Sequential Quadratic
Programming approach. At each Gauss-Newton stepol@tion to a strictly convex quadratic
optimization problem subject to linear constrailstsomputed thanks to an augmented Lagrangian
relaxation method. Our choice for this optimizatimethod is motivated and its original aspects are
described. The efficiency of the method is showrapplications on a 2D OBC real data set and on a
3D real data set: the introduction of constraimisninng both from well logs and from geological
knowledge allows to reduce the under-determinaticthe 2 inverse problems.

I ntroduction

Reflection tomography allows to determine a velogibdel from the traveltimes of seismic waves
reflecting on geological interfaces. This inversehpem is formulated as a nonlinear least-squares
function which measures the mismatch between obddraveltimes and traveltimes computed by ray
tracing method. This method has been successfolifeal to real data sets (Ehinger et al, 2001, dBrot
et al, 2003). Nevertheless, the under-determinabibthe inverse problem generally requires the
introduction of additional information on the model reduce the number of admissible models.
Penalization terms modelling this information cas ddded to the seismic terms in the objective
functions but the tuning of the penalization weggttay be tricky. In this paper, we propose to handl
the a priori information by the introduction of edjty and inequality constraints in the optimizatio
process. This approach allows to introduce lotasfstraints of different types, provided we have at
our disposal an adequate constrained optimizatiethad. We developed an original method designed
for the tomographic inverse problem which pres¢nésfollowing characteristics: it is a large scale
problem (10000-50000 unknowns), the forward oper&éononlinear and its computation may be
expensive (large number of source-receiver couplesy 500000), the problem is ill-conditioned.

In the first part of this paper, the chosen metlsothotivated and its original aspects are shortly
described (for further details, refer to Delbogsle2004). Applications on a 2D PP/PS real datasdt
on a 3D PP real data set are presented in a speond

Constrained optimization method designed for reflection tomography
The general problem in constrained reflection toraphy can be formulated as

2
Minimize (f(m):= %”T(m) —Tobs||§ +U7mT Rm) subject to(C.m=¢e)and(l <C,m<u),

wheref is the objective functionym the parameters of the moddl, is the nonlinear traveltime

operator, R is the regularization matribg is the associated regularization weight dbdare the

equality or inequality constraint matrices. In tHast formulation, we recognize the standard
regularized nonlinear least-squares problem ofec&fin tomography subject to linear constraints.
Two main approaches can be used to solve thismeanlioptimization problem: the penalty methods
including the famous Interior Points approach (Bfd the Sequential Quadratic Programming
approach (SQP). The current stage of the IP mesieeths to require more cost function evaluation
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than the SQP does. This is our motivation to dgvelo SQP approach for solving the reflection
tomography problems considering that the ray tiasiver is expensive in CPU time.

The SQP method consists in solving a sequenceaufrgtic problems subject to linear constraints.
To be efficient the SQP method must solve each rgtiadproblem, called also the Tangential
Quadratic Problem (TQP), in a reasonable CPU tirhe. TQP to be solved at the Gauss-Newton step
k can be formulated as

(TQP), : Minimize F, (dm) subject to(C..om=¢ )and(l, <C,.dn<u,),
whereF, is the quadratic Gauss-Newtonian approximatiorhefrionlinear functiorf in m, anddmis

the model perturbation to be computed fram.

Three main approaches can be used to solve thigegkoguadratic problem subject to linear
constraints : Interior-Points approach (IP), AugtednLagrangian approach (AL) and Active Set
approach (AS). AS approach has been discarded $ma#uits inefficiency to quickly identify the
active constraints. In the present context thergiatill-conditioning of the linear system assdei
with IP method and the necessity to use iteratie¢hods to solve them appear to us as a deterrent
factor. Then, we believe that an AL method impletadrin such a way that it does not require any
matrix factorization is the appropriated methoddbre the TQP.

The AL method consists in solving a sequence oticaiec problems subject to bound constraints.
Each of them, called the Lagrange Problem (LP)efigciently solved by an original method
combining the three following ingredients: the pigd gradient method, the active set algorithm and
the conjugate gradient iterations. At each AL itiera the Lagrange multipliers are updated thaoks t
the classical multiplier method of Hesteness ansldio

The overall method explained above has been suatiggested on several reflection tomography
applications (the next section presents two of daeérar further details on the different optimizatio
method used to solve our constrained reflectionogmaphy problem, we refer the reader to Delbos
(2004).

Applications of constrained reflection tomography on real data sets

2D PP/PS data set: In this section, we present an application of aamséd reflection tomography to
one 2D line of a 3D 4C OBC survey with PP and P&.daroto et al. (2001) have already interpreted
and studied this data set using an unconstrainestsion method. The velocity model is described by
four velocity layers and five interfaces (cf Figuréeft). The isotropic assumption was satisfyimgjlu
the last layer (layer which contains the last twteifaces h4 and h5). By applying the anisotropic
inversion methodology of Stopin (2001) on the l&ster, they obtained a model that fits the
traveltimes better than any of the previous isdtrapodels and that, in addition, has more reliable
velocity variations. The value af anisotropy parameter has been obtained by a dndl error
approach in order to match approximately the h5thdegven by well logs. Actually, the under-
determination of the inverse problem does not attesvjoint inversion of the velocities, interfacesd
anisotropy parameters (especidlgarameter, Stopin, 2001).

This applied methodology is obviously not optimaldeed, the manual tuning of the anisotropy
parameters requires lot of time: an important nusiloé anisotropic inversion with different couples
(n,9) have to be performed before getting a satisfyesplt. Secondly, it is very hard to make this
method accurate: we note a discrepancy of 150 mé&tethe reflector depth h5 compare to the depth
given by the well data. Finally, it turned out ingsle to determine the anisotropy paraméteo that
both the reflector depths of h4 and h5 given bywk# logs be reasonably matched.

The solution we propose here is to compute a moslielg our constrained inversion method in
order to fit with the reflector depths given by thell. In the left and right part of Table 1 we bav
respectively summed up the results of the finadlet® obtained with the unconstrained inversion and
with a constrained inversion. The final model (Fay right) of the constrained inversion matches th
traveltime data with the same accuracy than theltrebtained by unconstrained inversioand it
strictly verifies the reflector depths given by Webs.

Then, the introduction of constraints at wells floe two reflectors h4 and h5 reduces the under-
determination and allows a joint inversion of vdies, interfaces and anisotropy parameters to dind

! The smooth velocity model does not allow smallaveltime misfits than 6.3ms when h4 depth is cairstd at well location. Allowing a
velocity discontinuity contrast at h4 interface niegJp to obtain smaller misfits.
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model that matches the traveltime data and thededd.

14 RMS (s) | Delta z (m) n 0 14 RMS (s) | Delta z (m) n o)
h4-PP 3,6 190 h4-PP 6,3 0
h5-PP 4,6 150 6,2% 2,0% h5-PP 3,9 0 8,2% 15,9%
h5-PS 9,8 h5-PS 8,1

Table 1:Inversion results of the unconstrained inversieft)(and the constrained inversion (right)

3D PP data set: During the European KIMASI project, reflection tography was applied on a 3D
North Sea data set from bp (Ehinger et al, 2001P-¥elocity model was obtained thanks to a top-
down layer-stripping approach where lateral andicadrvelocity variations within Tertiary, Paleoaen
and Cretaceous (divided in two velocity layers)sihiave been determined sequentially (Figure 2). A
strong velocity under-determination in the uppertiiey layer was detected during the inversion
process due to the large layer thickness (2.5km)tarthe very poor ray aperture. Several inversions
with different velocity parameterizations gave g@ne traveltime misfit RMS. These different tests
are time consuming (each test is a whole inversaow) the reflector depths given by well data arte no
well retrieved, this information being not expligiintroduced in the inversion process. To obtain a
model more consistent with well data, we proposegply our developed constrained tomographic
inversion. The interface depths are constraine8 atell locations and we constrain the range of
variations of the vertical velocity gradient in thertiary layer thanks to well measurements (T@ble
To limit bad data fitting for deeper layers, a gilbimversion approach is applied. This global updat
only possible if the layer thickness are constr@iteeavoid any non-physical intersection of inteefs
The experiment consists then in a global inversabn127569 traveltimes for 5960 unknowns
describing 4 velocity layers and 5 interfaces, scibjo 2300 constrairftsThe results are presented in
Figure 3: the obtained model matches the data thighsame accuracy as the model obtained by
Ehinger et al (2001) and verifies all the introddicenstraints. The total number of conjugate gradie
iterations for each Gauss-Newton Stapless than 10000 (less than twice the numbemkhowns),
which is a very good result for a problem with 23@dstraints.

Constraints Model without constraints Model with constraints

Mean depth mismatch tpal 96m Om
at well locations tchalk 132m om
bchalk 140m om

Verltlcallvelom.ty 01<k<0.3 k=0 K~0.18/s

gradient in Tertiary

2.5 <vpal< 4 km/s ok ok
Velocity range 3.5 <vichalk < 5.7km/s ok ok
4.2 < vchalk < 5.8km/s ok ok

Table 2:Description of the equality and inequality conistimintroduced in the inversion. Starting the irsien with the model obtained
by unconstrained tomography (Ehinger et al, 20@&)succeed to obtain a model that matches theaddtthe 2300 constraints.

Conclusion

Reflection tomography often requires the introductdf additional a priori information on the
model in order to reduce the under-determinatiothefinverse problem. A nonlinear optimization
method that allows the introduction of linear coaisits on the model has been developed. The
applications on two real data sets have showrffitsescy.

References

[1] Broto, K., Ehinger, A. and Kommedal, J., 2003, Atigpic traveltime tomography for depth consisiemging of PP and PS data,
The Leading Edge, 2003, pp. 114-119.

[2] Ehinger, A., Broto, K. and Jardin, A. and the KIMIA8am, 2001, 3D tomographic velocity model detevation for two North Sea
case studies, 6Conference and Technical Exhibition, EAGE, Expahébstracts.

[3] Delbos, F., Sinoquet, D. and Gilbert, J.-@,be submitted in 2004, Constrained optimization in reflection tomograplay
augmented Lagrangian SQP method, Geophys. Jounteanh

[4] Delbos, F., Problemes d’optimisation de granddetalec contraintes pour la tomographie de réftex@004, Ph.D. Thesis,
université Paris VI, France.

[5] Stopin, A., Reflection tomography of compressiod ahear modes for determination of anisotropicaiglanodels, 2001, Ph.D.

Thesis, université de Strasbourg I, France.

Acknowledgments

The authors would like to thank bp to have provided the data sets, Karine Broto and Anne Jardin for their precious comments on the
applications and Carole Duffet for her crucial help.

2 The constraints on the velocity variations andrenlayer thickness are applied on a grid of 10200nd 20x20 points.
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Figure 1:the left velocity models (Vp and Vs) are compuitth the unconstrained inversion method,;
the right velocity models (Vp and Vs) are computétth the constrained inversion method.
The white crosses symbolize reflector depths measinom the deviated well logs.
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Figure 2:Velocity model (slices along x (left) and alon@right) at one of the 5 well locations)
obtained with the unconstrained reflection tomobgya@he RMS value of the traveltime misfits is 6slm
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Figure 3:Velocity model (slices along x (left) and alongright) at one of the 5 well locations)

obtained with the constrained reflection tomograghe RMS value of the traveltime misfits is 6.5ms.




