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Abstract. Reflection tomography allows the determination of a velocity model that fits
the traveltime data associated with reflections of seismic waves in the subsurface. A least-
square formulation is used to compare the observed traveltimes and the traveltimes com-
puted by the forward operator based on a ray tracing. This non linear optimization problem
1s solved classicaly by a Gauss-Newton method based on successive linearizations of the
forward operator. The obtained solution is only one among many possible models. Indeed,
the uncertainties on the observed traveltimes (resulting from an interpretative event pick-
ing on seismic records) and more generally the underdetermination of the inverse problem
lead to uncertainties on the solution. An a posteriori uncertainty analysis is then crucial
to delimit the range of possible solutions that fit, with the expected accuracy, the data
and the a priori information. A linearized a posteriori analysis is possible by an analysis
of the a posteriori covariance matriz, inverse of the Gauss-Newton approximation of the
matriz. The computation of this matriz is generally expensive (the matriz is huge for 3D
problems) and the physical interpretation of the results is difficult. Then we propose a
formalism which allows to compute uncertainties on relevant geological quantities for a
reduced computational time. Nevertheless, this approach is only valid in the vicinity of
the solution model (linearized framework) and complex cases may require a non linear ap-
proach. An application on a 2D real data set illustrates the linearized approach to quantify
uncertainties on the solution of seismic tomography and the limitations of this approach
are discussed.
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1 INTRODUCTION

Geophysical methods for imaging complex geological subsurface in petroleum explo-
ration requires the determination of an accurate propagation velocity model. Seismic
reflection tomography ([1]) turns out to be an efficient method for that: this method
allows to determine a seismic velocity distribution from traveltimes data associated with
the seismic waves reflecting on geological surfaces. This inverse problem is formulated as
a least-square minimization problem which consists in the minimization of the mismatch
between the observed traveltimes and the traveltimes computed by the forward problem
(solved by a ray tracing method). The first section of this paper presents an overview of
the reflection tomography method we have developed ([10], [11], [13], [9]).

Methods for the a posteriori analysis of the solution are then proposed and applied on a
2D real data set. Indeed, classically, the analysis of the solution consists only in checking
the misfits between observed traveltimes and calculated traveltimes by computing char-
acteristic values of the misfit distribution and by studying the spatial distribution of the
misfits. This analysis is not sufficient: even if these quality control criteria are matched,
the determined model is only one of many possible models that match the data. An
uncertainty analysis should be performed to quantify the range of admissible models we
can obtain from these data and the a priori information ([6]).

The different methods described here allow to access the uncertainties on the solution
model thanks to the analysis of the a posteriori covariance matrix ([7], [14]) obtained in
the linearized framework. The computation of this matrix is generally expensive for 3D
problems and the physical interpretation of its terms may be cumbersome. The simu-
lation of admissible models from the a posteriori probability density function allows a
more complete analysis than the sole analysis of the diagonal terms of the a posteriori co-
variance matrix and furnishes directly physical models. This method requires a Cholesky
decomposition of the Gauss-Newton matrix which may be unfeasible for 3D realistic mod-
els. To overcome this difficulty, we propose a formalism based on linear combinations of
model parameters (macro-parameters) that allows to compute uncertainties on relevant
geological quantities (the average thickness of a layer for example) for a reduced com-
putational time (the a posteriori covariance matrix is reduced to the macro-parameter
space). The application of these methods on a real data set shows their effectiveness and
their limitations are discussed, particularly the limitations due to the linearization: a non
linear approach is proposed in order to delimit the space of admissible solutions.

2 THE REFLECTION TOMOGRAPHY PROBLEM

Let us first present the reflection tomography method which was developed in KIM
consortium ([9]). The chosen model representation is a blocky velocity model where the
velocity distribution is described by slowly varying layer velocities (also called velocity
blocks) delimited by interfaces (see Figure 1 for an example). The model is thus composed
of two kinds of parameters: parameters describing the velocity variations within the layers
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Figure 1: An exemple of a blocky subsurface model.

and parameters describing the geometry of the interfaces delimiting the velocity blocks!.
Moreover, anisotropy of the velocity may be modelled by two parameters n and ¢ (see [13]
for more details). This blocky representation allows the representation of complex models
(e.g. presenting rapid lateral velocity variations and complex geological structures) with a
reasonable number of unknowns. A strong a priori information is introduced, the number
of layer being fixed: this reduces the underdetermination of the inverse problem.

The forward problem of reflection tomography consists in computing traveltimes of
reflected seismic waves, given a model, an acquisition survey (locations of the sources
and the receivers) and signatures (reflectors where the waves reflect). It is solved by a
ray tracing method which is a high frequency approximation of the wave equation ([11]).
We denote by T'(m) the forward modeling operator, that is the operator that gives, for a
specified reflector, the traveltimes associated with all source-receiver pairs.

Reflection traveltime tomography is the corresponding inverse problem: its purpose is
to adjust m such that T'(m) best matches a vector of traveltimes 7°* picked on seismic
data. A natural formulation of this problem is the least squares formulation

| T(m) — T [&-r + I m —mP e I, (1)
where

e ('p is the a priori covariance operator in the data space that allows to describe errors
on the data,

e mP"°" is an a priori model (coming, for instance, from geological knowledge and/or
additionnal information resulting from well measurements),

n our approach ([10]), the subsurface model m is composed of 2D or 3D B-spline functions describing
velocity variations in a layer (v(z,y)+k.z or v(z,y, 2)) and 2D B-spline functions describing the interfaces
(Z(2,y), Y (2,2) or X(y,2)).
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e () is the a priori covariance matrix in the model space that allows to describe
errors on the a priori model.

In practice, building an a priori model is difficult and the a priori term, which is
necessary to well pose the inverse problem, is often replaced by regularization terms made
up of second derivatives of the model ([5]) which leads to C};' = Q,, and mP" =

I T(m) =T 2 +€* || D*m |* (2)

where a continuation technique ([3]) is applied for tuning the regularization weight e: the
weight is decreased until the model matches the data with the expected accuracy. The
obtained model is then the smoothest model which fits the data. This methodology allows
to stabilize the inversion.

This large size non linear least-square problem (the objective function is not quadratic
since the forward modeling operator T'(m) is non linear) is solved classically by a Gauss-
Newton method based on successive linearizations of the forward operator which needs the

computation of the Jacobian matrix of 7' (J(m) = g% (m)) 2. The resulting approximation

of the Hessian is noted H(m) = J(m)'Cp'J(m).
The resulting quadratic approximation of the objective function (2)

Ca(0m) = [[Judm — OT*[[2, 1 + €| D (my, + om)|? (3)

is minimized at each Gauss-Newton iteration n by a preconditionned conjugate gradient
(m,, is the current model, dm is the model perturbation, J, = B—T:Q(mn) is the Jacobian

B
matrix evaluated at m,,, and §7°% = T — T (m,,)) ([4]).

3 PRESENTATION OF THE APPLICATION

Let us consider a 2D PP/PS? real data set studied by [2]. 45338 traveltime data were
interpreted and an uncertainty of 5ms (resp. 8ms) are associated with PP data (resp.
PS data). A layer-stripping approach (separate inversion of each velocity layer from the
shallower layer to the deeper one) furnished the velocity model of Figure 2. The model
is described by four interfaces, corresponding to the interpreted events (hl, h3, h4 et
h5) which define only three layers with lateral velocity variations for the two first upper
layers (v(x), there is no vertical variations) and the last layer stretching from h3 to hb
with a 2D velocity vph(z, z) and vsb(z, z) (Figure 2). This model is composed of 4588
parameters, 592 for the interfaces and 3936 for the velocities. Anisotropy in the deepest
layer is parameterized by n and § ([2]) which are assumed constant per layer (n can

2The computation of the derivatives of T' with respect to the model parameters is cheap, thanks to
the Fermat principle ([1]).

3PS-wave results from the conversion at the reflector of a down-going P-wave (compressional wave)
into an up-going S-wave (shear wave). In opposition to the PS-wave, the pure P mode is often called the
PP-wave.
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be seen as a measure of the velocity an-ellipticity, whereas 6 controls the near vertical
velocity propagation of the P-waves). For the two first layers, the inversion results are
very satisfactory, with a traveltime misfit RMS (root mean square) of 3.5ms for the PP-
data and of 7ms for the PS-data. For the last layer, the traveltime misfit RMS is of 3.7ms
and of 5.6ms for, respectively, h4 and h5 PP-data and of 8.5ms for hb PS-data, results
which are consistent with the data uncertainties (Figure 3).

As already shown by [13], it turns out that the anisotropy parameter § is strongly
undetermined from seismic data. The value of § parameter was obtained by a trial and
error approach in order to match approximatly the depth of h5 horizon given at well
location. We propose then to carry on an a posteriori uncertainty analysis in order
to quantify the uncertainties on this solution model: we focus on the anisotropic layer
delimited by h3 and hb (velocities vph and vsh).

I0.3

12 X (km) 23.5 12 23.5

0.0 1.5 0.0

= VP5| |2 Q
k-] S £
= < <
N S :

H5

P-Velocity I3.o 5.0 I 15

Figure 2: Solution velocity model obtained by tomography. Left: P velocity. Right: S velocity. The
RMS value of the traveltime misfits is 6.2ms. The anisotropy parameters values are: n = 6.29% and
0 = —4.43%.

5.0

4 QUANTIFYING UNCERTAINTIES ON THE SOLUTION MODEL: A
LINEARIZED APPROACH

A classical approach to quantify uncertainties consists in the analysis of the Hessian
matrix (or its inverse: the a posteriori covariance matrix) associated with the linearized
problem (3) around the solution m.,. This approach is valid in the vicinity of the solution
model, the size of the vicinity depending on the non-linearity of the forward map.
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Figure 3: Interfaces of the solution velocity model obtained by tomography and their associated traveltime
misfits: impact points of rays reflected on h4 and h5 (Left: PP rays. Right: PS rays), colors represent
traveltime misfits. Notice that the illuminated zone extends from 14km to 20.5km.

Traveltime Misfits
-

The bi-linear form associated with the Hessian matrix measures the influence of a
model perturbation dm on the quadratic cost function defined around the solution m.:

~ ~ 1 1
C(ém)— C(0) = §(J(moo)5m)TCgl(J(moo)5m) + iémTC]\}lém
=C(moo)
—omT (J(moo)TCH T (o) — Cifmiss)
=g(ms)=0, gradient of C(m) vanishes at the solution ms
1
— §5mT(J(mOO)T051J(mOO) + Cyf)om (4)
_ %5mTH(moo)§m. (5)

The a posteriori covariance matrix is defined by

Chy = (J(moe) " C5 T (o) + Ct) (6)
The space of admissible models can be characterized by the contour lines

(m — moo) T Chpt(m — my) = constant, (7)

which are ellipsoids of center m, and correspond also to contour lines of the a posteriori
Gaussian probability density function

1 /
exp <—§5mTC']\21(5m). (8)
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The diagonal terms of ('), are the uncertainties on the parameters describing the model
and the off-diagonal terms are the correlations between these uncertainties. For instance,
the probability that the true model parameter p; verifies —QC']’WM. < Pi — Poo < 20}\41,@'7
independently of the values of the other model parameters, is about 95%. To take into
account the correlations between the parameters, we should study the 95% confidence
ellipsoid. The axes of the ellipsoids (7) are defined by the eigenvectors of C',, the square
root of the eigenvalues giving the uncertainties on the associated eigenvector.

We propose in the next sections two methods to quantify geological uncertainties on
the solution model which avoid the expensive computation and the cumbersome analysis
of the generally huge a posteriori covariance matrix C'),.

4.1 Simulations of admissible models

The first proposed method to quantify uncertainties is the simulation of admissible
models from the a posteriori probability density function (8) (pdf). The simulations
furnish directly interpretable results, i.e. physical models. The method (see for instance
[12]) consists in random simulations of model perturbations following the pdf (8).

First, we apply the variable transformation:

dm' = Udm, 9)

where U is the lower triangular matrix obtained by a Cholesky decomposition of the
inverse of the a posteriori covariance matrix Cy;' = H = UTU (symmetric semi positive
definite matrix). The method consists then in simulations of the uncorrelated Gaussian
pdf with unit variance

exp (—%5m/T5m’). (10)

Simulations dm’ are transformed into correlated Gaussian simulations of vector m by the
inverse transformation of (9).

Figures 4, 5, 6, 7 and 8 show 100 simulated models obtained by this method from
the solution model of Figure 2: interfaces h4 and hb5, variations of velocities vpb and vs5
along x and z directions and histograms of the anisotropy parameters 7 and §. From these
simulations, we observe that the highest uncertainties on the lateral velocity variations
are located at the boundaries of the model, areas that are not well illuminated by the rays.
Indeed, for a slice at constant z = 2.7km, we observe uncertainties of ~ 690m/s for vp5
and of ~ 260m /s for vs5 at the boundaries of the model and uncertainties of ~ 450m/s
for vp5 and of ~ 140m/s for vsh in the illuminated parts of the model. Concerning the
interface depths, we observe uncertainties of &~ 180m for reflector h4 and of ~ 220m for
reflector h5 at the boundaries and of ~ 90m for reflector h4 and of ~ 100m for reflector
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h5 elsewhere. For the anisotropy parameters 1 and d, we notice uncertainties around 0.3%
on n and 2% on §. This method is quite attractive for the straightforward interpretation
of the results despite its cost (cost of the Choleski decomposition): it furnishes physical
models leading to small perturbations of the quadratic cost functions (3) (see Table 4.3).

23.5

X (km)
Interface H4

12

1

Z (km)

25
Figure 4: Reflector h4 extracted from the 100 simulated velocity models. The bold line represents the

solution interface.

X (km) 23.5
2.5 Interface H5

Z (km)

3.5
Figure 5: Reflector h5 extracted from the 100 simulated velocity models. The bold line represents the

solution interface.
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Figure 6: P-velocity variations along = axis at z = 2.7km (left) and along z axis at © = 16km (right)
extracted from the 100 simulated velocity models.

4.2 Uncertainties on geological macro-parameters

We propose here a method that allows to deal with large size models at a reasonable
cost and furnishes uncertainties on chosen physical quantities. The proposed approach
consists in building macro-parameters (MP) with a geophysical interest. These macro-
parameters are linear combinations of the inverted parameters such as the mean of the
velocity variations in a zone, the slope of an interface, the average thickness of a layer,
etc. [8] has introduced the notion of macro-parameter (his main motivation being to avoid
numerical problems in the inversion of the complete Hessian). We propose here a general-
ization of his work (general definition of macro-parameters) which allows the computation
of uncertainties for huge 3D problems.

We define a macro-parameter as:
P = Bp, (11)

where p is the np model parameters vector, P is the n,/p macro-parameters vector and
. . . . . . . =~/ .

B is the condensation matrix. We compute the a posteriori covariance matrix C; in the

macro-parameter space:

Cy = BC,, BT, (12)

Note that C‘;\/[ (a narp X nprp matrix) is small compared to Cy, (a n, x n, matrix) since
nyp < ny. To obtain this matrix, we do not need to compute the whole inverse of the
Hessian, O, = H~', in the parameter space. Indeed, to obtain Cy; = H~! = BH~'BT in

9
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Figure 7: S-velocity variations along = axis at z = 2.7km (left) and along z axis at x = 16km (right)
extracted from the 100 simulated velocity models.

the MP space, we just need H~'B], where B] are the different columns of B". We thus
solve nyp linear systems, H ;' = BH'BT, that are similar to the linearized problem
we solve at each Gauss-Newton iteration. Thus the computational cost for one MP is
comparable to one iteration of the inversion process.

We applied this method on the model of Figure 2. We choose simple MP: the mean of
the velocity variations and the mean of the interface depth in the illuminated part of the
layer (region covered by rays)?. The results are listed in the Table 1. The uncertainty on
anisotropy parameter ¢ is high: £3.2% (if we consider twice standard deviation) and we
observe high correlations between n and ¢ (0.93) and also correlations between anisotropy
parameters and H5 depth (—0.33 and —0.36). We notice also the bad determination of
the velocities: £22% (relative value). All these results are consistent with the simulations
results (section 4.1).

This method with its general formalism allows to compute uncertainties on relevant
geological quantities with a reasonable computation cost and to highlight easily strong
coupling between the chosen MP.

4.3 Discussions on the two methods

As already mentioned, the two methods described in sections 4.1 and 4.2 rely on the
quadratic approximation (3) of the non linear cost function. In the table 4.3 we have listed
the RMS of traveltime misfits for 20 simulated models. Note that the RMS traveltime

4From figure 3, we define the illuminated region by z € [14, 20.5km].

10
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Figure 8: Histograms of the 100 simulated velocity models. Top: anisotropy parameter n. Bottom:
anisotropy parameter . o corresponds to the standard deviation on the anisotropy parameter 7 ( resp.
d) given by the macro-parameter method.(see section 4.2).

o | s oo
Anisotropy parameter delta (%)

misfit for the solution model is 6.2ms. Thus, there is only one model which is not accept-
able (11.6ms for the model 15), the others are admissible models with a RMS traveltime
misfit bounded by 7ms. The simulation method has then furnished model perturbations
that correspond to small perturbations of the quadratic cost function but also to small
perturbations of the non linear cost function (RMS of traveltime misfits remain small).
It shows for this example, the good concordance between the quadratic cost function and
the non linear one around the solution model.

Figure 9 illustrates isovalues of the probability density function (8) in the MP space,
i.c. ellipsoids defined by 6m%, ,Ch; dmarp: we visualize the 2D-marginal probability den-
sity functions for several relevant MP couples, the 68% confidence ellipsoid and the 95%
confidence ellipsoid for n and d, vp5 and vsb, § and h5. This representation allows to

11
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Vp5 Vs n o Hy H5
Vp5 | 475.1 m/s 0.002 -0.03 | -0.02 0.005 0.01
(22%)
Vs5 0.002 168.9 m/s | -0.04 | -0.03 0.005 0.01
(22%)
n -0.03 -0.04 0.22% | 0.93 -0.16 -0.33
(4%)
) -0.02 -0.03 0.93 1.6% -0.17 -0.36
(37%)
Hjy 0.005 0.005 -0.16 | -0.17 | 77.1 m 0.06
(5%)
H5 0.01 0.01 -0.33 | -0.36 0.06 80.3 m
(3%)

Table 1: Standard deviations in bold (square roots of the diagonal terms of the a posteriori covariance
matrix) associated with the MP "mean in the illuminated part of the model” and the normalized corre-
lations between the uncertainties on the different defined MP. This uncertainty analysis is performed for
the solution model of Figure 2. The normalized values x 100 of the standard deviations (o) are
also indicated in italic.

o
lvaluesot|

underline the correlations between the anisotropy parameters n and ¢ which are quite
strong in this example: the 68% and the 95% confidence ellipsoids are elongated (left
part of the figure 9). On the opposite, the P and S velocities are uncorrelated: we obtain
almost a circle (middle part of the figure 9). We can also observe correlations between the
anisotropy parameter § and the mean of the last reflector depth A5 (right part of the figure
9). On this Figure, we have also superimposed the anisotropy parameters 1 and § and the
MP vp5 and vsh, 6 and MP A5 built from the 100 simulated models. This figure allows
to point out the equivalence of the simulation method and the macro-parameter approach.

Note that the macro-parameter approach furnishes interesting information on the cor-
relations of macro-parameter uncertainties and has a lower computation cost than simula-
tions of the model parameters with the complete a posteriori covariance matrix. We could
also perform gaussian simulations of the macro-parameters using the reduced a posteriori
covariance matrix.

5 NON-LINEAR A POSTERIORI ANALYSIS

We have shown in the previous sections that a linearized uncertainty analysis allows to
delimit the range of possible solution models that fit, with the expected accuracy, the data

12



Carole DUFFET and Delphine SINOQUET

Models | RMS(ms) | vp5(km/s) | vs5(km/s) | h4(km) | h5(km) | n(%) | 6(%)
1 6.7 3.736 1.154 1.783 3.131 6.5 -2.6
2 6.6 3.121 1.222 1.925 3.222 6.2 -4.9
3 6.4 2.746 1.102 1.790 3.060 6.0 -5.9
4 6.9 2.701 1.315 1.857 3.259 6.2 -3.7
5 6.2 3.300 1.416 1.817 3.142 5.7 -8.3
6 6.5 2.542 1.245 1.926 3.181 6.1 -4.6
7 6.6 2.536 1.137 1.925 3.143 6.1 -5.D
8 6.2 1.919 1.087 1.844 3.102 6.3 -4.8
9 6.2 3.182 1.078 1.875 3.267 6.5 -3.5
10 6.4 2.960 1.388 1.736 3.198 6.0 -6.2
11 6.2 3.247 1.452 1.815 3.173 6.0 -6.4
12 6.2 2.592 1.073 1.664 3.147 6.6 -1.4
13 6.5 2.510 1.239 1.817 3.239 6.2 -4.9
14 6.6 3.995 1.130 1.717 3.208 6.5 -1.9
15 11.6 2.344 1.172 1.770 3.144 6.0 -6.1
16 6.5 2.154 1.323 1.853 3.2322 6.3 -4.5
17 6.3 2.855 1.307 1.797 3.296 6.3 -3.4
18 6.2 2.125 1.049 1.921 3.118 5.9 -6.8
19 6.6 1.431 1.048 1.772 3.144 6.4 -3.7
20 6.3 2.371 1.225 1.864 3.166 6.0 -6.6

Table 2: RMS values of the traveltime misfits, mean value of the velocities vp5 and vs5, of the interfaces
h4 and A5 in illuminated region (MP defined in section 4.2 and anisotropy parameters 7 and ¢ for 20
simulated models (chosen among the 100 simulations presented in section 4.1).

and the a priori information. Nevertheless, we should keep in mind that this approach is
only valid in the vicinity of the solution model (linearized framework) and complex cases
may require a non linear approach.

Model 15 of table 4.3 indicates that some of the simulated models may produce unac-
ceptable traveltimes misfits (RM S ~ 11ms and MAX = 25ms for PP data and = 41ms
for PS data). It shows the limitation of the quadratic approximation of the non linear cost
function and thus the limitation of the linearized methods of uncertainty quantification.
Moreover, [4] has shown that a tomographic inversion with constraints on the location of
the interfaces at well locations furnished a very different model (model 2 of Figure 10)
than the solution model of Figure 2. The two models verify the traveltime data with the
expected accuracy. This second model does not belong to the range of possible models
detected by the two methods we proposed: indeed, § is equal to 15.94% whereas the
expected range of values was between —8% and —1% (see for instance Figure 8). It shows

13
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Figure 9: 68% and 95% isovalues of the marginal probability density function for the anisotropy param-
eters 1) and ¢ (left), P-velocity and S-velocity (middle), 6 and the interface depth of reflector h5 (right).

sol

The represented values are the relative ones (for instance: %, where o, is the standard deviation for
n

the anisotropy parameter 7). The crosses represent the MP values of the 100 simulated models.

again the limitations of the linearized approach.

To perform a non linear analysis we have chosen an experimental approach which
consists in performing several inversions allowing to test different geological scenarii to
try to delimit the space of admissible solutions. For instance, we could test different
hypothesis on the values of the anisotropy parameters for which a strong uncertainty has
been detected by the linearized approach. If we introduce a constraint on the anisotropy
parameter ¢, such as 6 > 0, we find the model 3 displayed in Figure 11: this result
expands the range of admissible models (variability of ¢ detected by MP approach was
—4.43 + 3.2%). In the same way, we can test the variability of the anisotropy parameter
n. We notice (see table 5) that the value of the anisotropy parameter 7 of the model 2
(Figure 10) is 8.27%, but all the simulated values of this parameter are around 6% and
the variablity of n furnished by the MP is 0.44%. Nevertheless, tomographic inversion
under the constraint n < 4% or n > 8% does not furnish a model that satisfies both
these constraints and the data with the expected accuracy. We have shown that, by
constrained tomography, we can test different geological hypothesis and delimit the space
of admissible models and go further than the linearized approach which explores only the
vicinity of the solution model which may be one local minimum around others.
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Model 1 Model 2 | Model 3
mean of the P-velocity 2.849 km/s | 3.623 km/s | 2.895 km/s
mean of the S-velocity 1.229 km/s | 1.621 km/s | 1.213 km/s

n 6.29% 8.27% 6.2%

o -4.4% 15.94% 2%
mean of the depth of the reflector Hj | 1.838 km 1.755 km 1.659 km
mean of the depth of the reflector H5 | 3.167 km 3.021 km 2.882 km

Table 3: 3 different solution models. Model 1 is the model of Figure 2, Model 2 is the model of Figure
10 and Model 3 is the model of Figure 11.

12 X (km) 23.5 12 X (km) 23.5

0.0 . I 0.3
X
‘(\D‘
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= S

N =

>

I1.5

Figure 10: Solution model 2 obtained by tomography with additional constraints on the interface depth
at well locations. The RMS value of the traveltime misfits is 6.0ms. The anisotropy parameters values
are: ) = 8.27% and § = 15.94%. The crosses represent the wells.

5.0 P-Velocity

6 CONCLUSIONS

Reflection tomography furnishes the velocity model that best fits the traveltime data:
however, this solution is only one among many admissible models. An a posteriori un-
certainty analysis is crucial to delimit the range of possible solution models that would
fit the data and the a priori information with the expected accuracy. In this paper, we
describe two methods to perform a linearized a posteriori analysis, approach valid only
in the vicinity of the solution model. The simulation method based on the analysis of
the a posteriori covariance matrix (huge matrix for 3D models) is quite attractive for
the straightforward interpretation of the results despite its cost. We propose a general
formalism to reduce the a posteriori analysis to geological quantities of the model: we
evaluate uncertainties on macro-parameters (linear combinations of model parameters)
that have a geological interest. This method allows the manipulation of reduced matrices
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Figure 11: Solution model 3 obtained by tomography with a constrain on § parameter to remain positive.
The RMS value of the traveltime misfits is 6.371ms. The anisotropy parameters values are: n = 6.2%

and 6 = 2%.

5.0

and thus becomes feasible in 3D. Nevertheless, we have confirmed on this real data set
that this approach is only valid in the vicinity of the solution model (linearized frame-
work) and that some cases require a non linear approach to search for local minima of
the cost function. An experimental approach has consisted in solving the inverse problem
under constraints (for instance constraints on anisotropy parameters) to test the validity
of some geological hypothesis.
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