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Abstract: Hybrid-electric vehicles appear to be one of the most promising tech-
nologies for reducing fuel consumption and pollutant emissions. The presented
work focuses on two types of architecture : a mild hybrid and a full hybrid where
the kinetic energy in the breaking phases is stored in a battery to be re-used
later via the electric motor. This additional traction power allows to downsize
the engine and still fulfill the power requirements. Moreover, the engine can be
turned off in idle phases for both architectures and for the parallel architecture,
it may be turned off whereas the electric motor furnishes all the traction power.
The optimal control problem of the energy management between the two power
sources is solved for given driving cycles by a classical dynamic programming
method and by an alternative method based on Pontryagin Minimum Principle.
The real time control laws to be implemented on the vehicle are derived from the
resulting optimal control strategies. These control laws are evaluated on another
driving cycle which was not given a priori.

Keywords: Hybrid vehicle, Optimal control, Dynamic programming, Pontryagin,

Control strategies

1. INTRODUCTION

Growing environmental concerns coupled with
concerns about global crude oil supplies stimu-
late research on new vehicle technologies. Hybrid-
electric vehicles appear to be one of the most
promising technologies for reducing fuel consump-
tion and pollutant emissions (German, 2003) :
mainly thanks to the system stop’n go that allows
to turn off the engine in idle phases, to the recu-
perated braking energy to be stored in a battery
and re-used later via the electric motor and to the
possibility to downsize the engine.

The energy management of hybrid power trains
requires then some specific control laws : they rely

on the estimation of the battery state of charge
which provides the remaining level of energy, and
the variable efficiency of each element of the power
train has to be taken into account. Optimization
of energy management strategies on given driving
cycles is often used to derive sub-optimal control
laws to be implemented on the vehicle (see among
others (Sciarretta et al., 2004), (Scordia, 2004),
(Wu et al., 2002), (Delprat, 2002)).

IFP, in partnership with Gaz de France and the
Ademe, has combined its downsizing technology
with a natural gas engine in a small urban demon-
strator vehicle (VEHGAN vehicle), equipped with
a starter alternator and supercapacitor manufac-
tured by Valeo (Tilagone and Venturi, 2004).



In this paper, we present two different optimiza-
tion algorithms and apply them to a simplified
model of the VEHGAN vehicle and to a parallel
architecture version of this vehicle: a classical Dy-
namic Programming algorithm ((Wu et al., 2002),
(Scordia, 2004), (Sciarretta et al., 2004)), and an
original algorithm based on Pontryagin Minimum
Principle that allows to handle constraints on the
state and control variables. Finally, we propose
two types of control strategies derived from the
optimization results on given driving cycles and
evaluate them as a real time strategy on a driving
cycle which was not given a priori.

2. SYSTEM MODELLING AND OPTIMAL
CONTROL PROBLEM

2.1 Characteristics of the considered hybrid vehicle

Two different architectures are modelled:

e a mild hybrid architecture : the engine can
not be stopped when the requested torque is
provided only by the electric motor, except
for the stop’n go mode at the idle speed.
So, for a control that cancels the engine
torque and for positive torque request, the
fuel consumption does not vanish (Figure 1),

e a full parallel hybrid architecture : the engine
can be stopped to let the electric motor
power alone the vehicle. In that case, the fuel
consumption vanishes.

In both cases, the battery is regenerated in brak-
ing phases accordingly to the available minimum
electric torque at the considered engine speed.

In order to solve the optimal control problem of
energy management, we build a simplified model
which is composed of :

e a driving cycle to be followed (imposing ve-
hicle speed and gear shifts),

e a vehicle model defining its mass, wheel in-
ertia, resistance force,

e a manual gearbox with 5 gear ratios,

e a 660CC natural gas engine characterized by
a fuel consumption map displayed in Figure 1
and a maximum torque depending on the
engine speed (see (5)),

e a starter alternator (3kW for mild-hybrid,
6kW for full-hybrid) characterized by a max-
imum torque and a minimum torque for re-
generative braking phases, both depending
on the engine speed (see (6)). Its efficiency is
assumed to be 1 in the presented examples,

e a battery characterized by a capacity of
0.4Ah for mild-hybrid architecture and 40Ah
for full-hybrid one. The variations of the bat-
tery state of charge are modelled by
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Fig. 1. Fuel consumption map of natural gas
engine of VEHGAN vehicle
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with w(t), the electric motor and engine
speed (assumed to be equal), Upqst, the bat-
tery voltage considered to be constant, K’,
a scaling constant and 7icqpq, the nominal
capacity of the battery.

The driving cycle is converted in a (engine speed,
torque) trajectory either thanks to a backward
model based on the vehicle model, or thanks to a
forward model as in AMESim Drive library which
furnishes a more realistic trajectory taking into
account a simulated behavior of a driver as the
anticipation of the driving cycle.

2.2 Optimal Control Problem

The optimal control problem under study consists
in minimizing the fuel consumption of the vehicle
along a given driving vehicle cycle, taking into
account physical constraints from battery, engine
and electric motor. The control variable associ-
ated with this problem is called wu(t). It represents
the distribution of the requested torque 7.4, be-
tween the engine torque T, and the electric motor
torque T,,, written as

T.(t) = u(t)Tyy(t)
Tout) = (1= ult) Ty 2).

TTQ(t) =T, (t) +Tm (t)
(2)

The state variable is the battery state of charge
z(t) and follows from (1)

£(t) = —Kw(t)(1 — u(t))Trq(t) = f(u(t),1), (3)

’
where K = K|
battMcapa

The resulting optimization problem is then the
following :



T
min § J(u) = / L(u(t), t)dt + g(a(T), T)
subject to : 03'0 = f(u(t),t), x(0)==xg )
Tmin < x(t) < Tmaz
umln(t) S U(t) S umam(t)

with 0 and T, respectively the initial and the
final times of the given driving cycle, L(u(t),t),
the instantaneous fuel consumption, computed
from the map displayed in Figure 1, g(z(T),T),
the penalization term that constrains the final
state of charge to be close to the initial state of
charge in order to maintain a null electrical energy
balance (to avoid to discharge totally the battery
for minimizing the consumption).

The bound constraints on the state and on the
control in (4) are derived from the following con-
straints :

e the engine can only produce a positive
torque, and is limited to a maximum torque
which depends on engine speed w(t), written
as 0 < To(t) < T"**(w(t)), and leads to

0 < u(t)Trg(t) < T (w(t)), (5)

e the electric motor torque is limited between
a maximum torque and a minimum torque
during regenerating breaking, T (w(t)) <
T (t) < T (w(t)), and leads to the control
constraints

T (w(t) < (1— ult) Ty (t) < T (@ (1)).(6)

m

e the storage capacity implies a minimum and
a maximum state of charge of the battery
(which are fixed to 0% and 100% in our
example)

Lmin S J?(t) S Tmaz- (7)

In this optimal control problem, we make several
assumptions

e the pollutant emissions are not taken into
account in the optimization process,

e the engine speed and the electric motor speed
are equal,

e in the mild hybrid case, recharging the bat-
tery is only possible for negative torques
(breaking request), we did not consider re-
generation by an additional engine torque
beyond the driver request torque. Thus the
control u(t) remains between 0 and 1. In the
full hybrid case, u(t) can take values larger
than 1, allowing battery regeneration with
additional engine torque.

In the following, we will call U(¢) in continuous
time (respectively Uy, in discrete time) the feasible
domain for u(t) (respectively uy) with respect to
the constraints (5) and (6).

3. DYNAMIC PROGRAMMING
OPTIMIZATION

The Dynamic Programming method (DP) is clas-
sically used to solve the problem (4) ((Wu et
al., 2002), (Scordia, 2004)) : it relies on the prin-
ciple of optimality or Bellman principle. First, the
optimal control problem (4) is discretized in time

N-1
mirrjl J(u) == Z Li(ug) + g(zn)
uk €U k=0 (8)

subject to 1 xp41 = fr(zk, uk), x(0) =0

Tmin < Tk < Tmaz

where Lg(uy) is the cumulated fuel consumption
over the time interval [k, k + 1], x is the state
of charge of the battery at time k, fi is the
function that modelizes the battery state of charge
evolution in the discrete form of (3) and g(xy) =
B.(xn — x)? is the penalization term for the
constraint on final state of charge (£ is a constant
to be chosen!), N being the final time of the
driving cycle.

From Bellman principle, the minimum cost Vi (xx)
at the time step k, 0 < k < N — 1, is expressed as

Vi(zr) = uineigk([/k(uk) + Vi1 (fr(ur))).  (9)

At time N, the cost function is Vy(zn) = g(zn).

This optimization problem is solved backward
from final time step to initial time step using a
discretization of function V' in the control space
and in the state space.

3.1 DP Optimization algorithm

A standard time step used in our examples is 1s,
and the step for state discretization is 0.5%. Two
algorithms may be used to solve the DP problem :

e a classical DP algorithm, called Ford algo-
rithm in the following (Scordia, 2004), con-
sists in exploring all the feasible controls (to
go from a point :1:}~C to an other point :ci_H),
finally taking the best trajectory (the trajec-
tory which minimizes at each step k the sum
Li(uk) + Vig1(fr(ug))). In such a method,
the state of charge trajectory remains on the
points of the defined grid in the state space
which may lead to inaccurate results.

e the chosen algorithm interpolates the func-
tion V(xg,k) in the state space, for each
time step k thanks to an upwind scheme
(Guilbaud, 2002) :

1 In the following results, a value depending of battery
capacity has been implemented
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Fig. 2. Urban Artemis cycle (Top); Optimal state of charge trajectory of VEHGAN vehicle computed

with PMP & DP algorithm (Bottom).

Vk(:vfc) = min [AtLg(ug) + Vk+1(x§€+1)

up €Uk

Vir1 (@} 1) = Vg (@i3))
Az

where Ax and At are respectively the state
and the time discretization step size. We refer
to (Guilbaud, 2002) for some theoretical re-
sults on the convergence of this method and
error estimations. Therefore, it is possible
to use a (state) continuous constrained opti-
mization algorithm to solve each problem (9)
which should furnish more accurate results
than Ford algorithm. Nevertheless, this algo-
rithm is generally more expensive in terms of
computing time.

+ fr(uk) At], (10)

These two optimization algorithms are only used
when T,, > 0 : when the requested torque is
negative, the optimal control uj; is completely
known, as the battery is regenerated as much as
possible, the control uy being constrained by the
minimal electric motor torque from (6) and by
maximum SOC from (7).

Optimization results obtained with DP method
are displayed on Figure 2.

4. PONTRYAGIN MINIMUM PRINCIPLE
OPTIMIZATION

In this section, we propose an alternative method
to solve the optimal control problem (4). It relies

on the Pontryagin Minimum Principle (PMP)
and unlike the DP method does not require any
discretization scheme.

4.1 Pontryagin Minimum Principle

First we consider the optimization problem (4)
and introduce the Hamiltonian function, without
considering state and control constraints

H(u(t), z(t),p(t)) = L(u(t),t) + p(t)2(t). (11)

p(t) is called the co-state of our system. We
assume here that L is a smooth convex function
of u.

The Pontryagin Minimum Principle states the
following conditions for the unconstrained optimal
control problem :

o _ o _
or ou
We refer to (Pontryagin et al., 1974) and (Bryson

and Ho, 1975) for further details about Pontryagin
Principle.

—p  and 0. (12)

4.2 Application

The fuel consumption L(u(t),t) to be minimized
in (4), is defined by a discrete map L(w, T, ), mod-



elled by a 2-order polynomial, which is represented
as

2
Lw,T.) =Y KijwTY, (13)
i,j=0

which allows to model a large variety of engine
maps (Rousseau et al., 2006).

4.2.1. Mild-Hybrid case In the mild-hybrid ve-
hicle case, the fuel consumption can not be can-
celled. We do not consider the stop and start, as
well as the possibility to power the vehicle only
with the electric motor.

From (12) and (3) we obtain

p = 0= p = constant = py. (14)

Without any constraint on the state and on the
control, the problem of minimizing H can be easily
solved. The minimum fuel consumption is then
reached for u* so as

L)

OH _OL | Of _
ou  Ou

=0. 15
py (15)
The optimal control ©* can be calculated easily by
solving the equation (15), which depends linearly
on u (thanks to (3) and (13)) . «* finally depends
on p(t), Trq(t) and w(t)

2
S Kaw(t) +po.Kw(t)
=0

u*(t) = — (16)

2
23 Kpw(t) Tpy(t)
=0

The expression of py is obtained by replacing
u*(t) by its expression in the state equation (3),
and by integrating this equation in time, between
Tinit and 7, Tinie and 7 being respectively the
considered initial and final times.

4.2.2. Full-Hybrid case  With the full-hybrid
case, we have to consider the possibility to power
the vehicle only with the electric motor. The
previous expression of Hamiltonian becomes un-
adapted, as the fuel consumption can be com-
pletely cancelled. The fuel consumption function
is then discontinuous

Lin(w(t), Te(t)) = {L(w(t),Te(t)) if u(t) # 0.

The Hamiltonian, in the only electric motor case
(u(t) = 0), is then written

Hun(2(1), p(t)) = p(t)2 (). (18)

(17)

The optimal control ©* must then be written as

u* = argmin[H(u(t), 2(t), p(t)), H ((), p(t))]-(19)

4.2.8. Handling constraints on control and state
variables ~ The previous section presents the
computation of the optimal control of the con-
tinuous problem in a restricted case where no
constraint is introduced. While control constraints
are generally easily taken into account, handling
the state constraints in the continuous optimal
control problem is cumbersome: several singular
cases can be found in (Bryson and Ho, 1975).
In our application, we are not able to find an
analytic solution of the optimal control problem
with control constraints : indeed, these constraints
depends on time and depends on pg which depends
on final SOC (cf. previous section). By an iterative
method (called algo! in the following), we can
compute the value of py in order to reach the
desired SOC at final time with the control, ex-
pression (16), projected on its bound constraints.

(Hartl et al., 1995), (Pontryagin et al., 1974),
(Evans, 2000), (Bryson and Ho, 1975), (Guilbaud,
2002) have studied the general problem (4) with
the state constraints. In our application, we can
show that p(t) presents discontinuities at the
time steps where the state inequality constraints
are saturated. These time steps are not a priori
known : this prevents us to solve explicitly the
continuous optimal control problem with these
state constraints.

4.2.4. PMP Optimization algorithm  Consider-
ing the difficulties described in previous section,
we propose a heuristic iterative method that al-
lows to find a sub-optimal trajectory from the
constrained continuous optimal control problem
(4). The proposed algorithm consists in an initial-
ization step and 3 steps :

(0) algol is applied on the driving cycle [0,T]
(see Figure 3 Step 0). The obtained optimal
trajectory violates the state constraints, the
farthest SOC (ie the "most violated point”)
from the bounds being for instance at point
(x(ty) = —37%,t, = 818s). The initial time
is called t;, here set to 0.

(1) The SOC at t, is projected on the nearest
bound of the feasible state domain (for in-
stance, SOC is fixed to Ty, = 0 at point
ty).

(2) algol is applied again on [t;,t,] (see Figure 3
Step 2). If the obtained trajectory still vio-
lates the state constraints on [t;,t,], steps 1
and 2 are applied again on the farthest SOC
from the bounds (defining a new point t,).
This procedure is repeated until the trajec-
tory remains on the feasible domain. Then
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Fig. 3. The proposed algorithm based on Pontrya-
gin Minimum Principle.

the last point ¢, becomes the new initial time
t; in step 3.

(3) algol is applied on [t;, T] (see Figure 3 Step
3). If the obtained optimal trajectory still
violates the state constraints, steps 1 and 2
are repeated. This sequence is repeated until
we reach the final step T" at the desired final
SOC, without violating the state constraints
(Figure 3 bottom right).

4.8 Some optimization results

4.8.1. Mild Hybrid case ~ We can compare the
two optimization algorithms (DP and PMP) on
the Urban Artemis driving cycle (André, 2004),
in the mild Hybrid case, on Figure 2. The curves
are very similar; we can notice that smaller is the
state step size, nearer to the PMP curve are the
DP curves.

Figure 4 presents the operating points (OP) of the
engine obtained with PMP algorithm.

In this vehicle configuration, the state constraints
are active 5 times, giving 6 different values of the
Lagrange multiplier p(¢). We display the six curves
(green lines) %(p) = 0, which give optimal en-
gine torque, function of engine speed. The engine
OP are thus moved toward the green optimal
curves when it is possible: the OP located below
the curves remain unchanged (no battery regen-
eration being possible for positive torque requests
for mild hybrid) whereas the OP located above are
moved toward the curves by decreasing the engine
torque as much as possible (saturating electric
motor torque constraints).

4.3.2. Full Hybrid case  Figure 5 gives optimized
operating points for the engine and the electric
motor (PMP algorithm is used). In addition to

kinetic energy, we assume that it is possible to
recharge the battery by using the engine at better
OP, with an ideal efficiency of 1.

As for mild-hybrid case, the optimal trajectory
(continuous green line) gives the optimal operat-
ing points of the engine by finding the solution of
% = 0. Thus, many of low torque OP are moved
to the optimal trajectory, recharging the battery
by imposing a negative electric motor torque. As
the full-hybrid configuration allows to turn off
the engine for non-zero vehicle speed (pure elec-
tric mode), most of OP associated with engine
speed below 3000 rpm and requested torque below
20Nm, lead to turn off the engine (points where
engine torque is zero) : turning off the engine
is more efﬁcien{g than the optimal engine torque
L =0).

(green curve : 57

5. REAL-TIME CONTROL

From optimization results on Urban Artemis cy-
cle, we derive suboptimal control laws that will
be tested on an other cycle. In this section, the
FTP72 cycle has been chosen, for its realism of
urban driving.

Two different control laws will be tested : the first
one, based on Optimization results from Pontrya-
gin principle, consists of varying the value of p
regarding to the state of charge, to control wu(¢),
then the electric motor. The reference Lagrange
multiplier value p is the mean of optimal values of
p, obtained on Artemis Urban cycle with off-line
optimization using PMP algorithm.

The second one uses a map of electric motor
torque created by the optimization results on
Urban Artemis cycle. The electric motor torque
from the map is then weighted by the state of
charge of the battery : reduced if the SOC is
low, increased if the SOC is high. The obtained
results are displayed in Table 1. For the mild hy-
brid configuration, the suboptimal laws give fuel
consumptions which are close to the optimal one.

Table 1. Fuel Consumption

Consump. Th. Optimal p-control  Elec. mot.
(1/100km) veh.  control based torq. map
Mild-H. 3.32 3.22 3.23 3.23
(-3,01%)  (-2,71%)  (-2,71%)
Mild-H with 2.86 2.87 2.88
Stop’n go. (-13,62%)  (-13,49%)  (-13,33%)
Full-H. 2.70 2.83 2.86
(-18.67%)  (-14,76%)  (-13,85%)

For the full hybrid architecture, the two control
laws give degraded results compared to optimal
results. Many reasons can explain these differ-
ences. First, even if Urban Artemis cycle and
FTP72 cycle are both realistic of an urban driv-
ing, operating points are very different. While
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requested operating points of Artemis cycle are al-
most uniformly located in the whole engine speed
and torque space, all requested operating points of
FTP72 are below w = 3200 rpm, with a majority
below w = 2000 rpm. The consequence is a un-
adapted electric motor map for the second control
law. Concerning the first control law, the optimal
p (obtained with PMP algorithm on FTP72) is
quite different from the optimal p obtained for
Artemis cycle, leading to degraded results.
Nevertheless, the consumption gain remains high :
—14.76%.

These results illustrate that several driving cycles
are needed to develop efficient suboptimal control
laws based on p-control or electric motor map.
The vehicle speed (related to engine speed by gear
ratios) could also be taken into account to improve
fuel consumption gains.

6. CONCLUSIONS

In this study, we have presented two methods
for optimal control optimization. The heuristic
method based on Pontryagin Minimum Principle,
well known in the free state constraint case, has
been applied successfully to our state constrained
problem, with very similar results to Dynamic
Programming methods and a computation time
divided by 100. Nevertheless, there is currently no
theoretical proof to confirm the presented valida-
tion results. Moreover, there are some limitations
to this approach, mainly the assumptions on the
fuel consumption map, modelled by a smooth con-
vex function of control u (2-order polynomial) ;
this limitation could lead to a bad approximation
of the real fuel consumption for some particular
engines.

Other degrees of freedom, as the gear-shifting
sequence should also be taken into account in
the optimization problem to improve the fuel con-
sumption gain. Reduction of pollutant emissions
will also be studied by considering a second state
based on exhaust temperature.

From optimization results are derived two types of
suboptimal feedback laws based on state of charge
measurements. These laws give encouraging re-
sults even if it needs to be improved in the full
hybrid case.
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