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Abstract 
 
Stratigraphic inversion of prestack seismic data allows the determination of subsurface elastic 
parameters (density, P and S-impedances). Based on a Bayesian approach, the problem is 
formulated as a non-linear least-squares local optimization problem. The objective function to 
be minimized is composed of two terms, the first one measures the mismatch between the 
synthetic seismic data (computed via a forward operator) and the observed seismic data, the 
second one models geological a priori information on the subsurface model.  
It is crucial to estimate the a posteriori uncertainties because the solution model of the 
inversion is only one solution among the range of admissible models that fit the data and the a 
priori information . The goal of this paper is to propose an optimized deterministic method to 
estimate a posteriori uncertainties in stratigraphic inversion.  
The proposed method is based on the hypothesis that the covariance matrices describing the 
uncertainties on the data and on the model are laterally uncorrelated (no cross correlation 
among parameters of different traces). Moreover, the covariance matrix on the data is also 
supposed laterally stationary. Application on 2D synthetic PP data illustrates the 
performances of the method. Extension and limitations of the method are discussed. 
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Introduction 
 

In a Bayesian approach, which is a natural formulation for many geophysical problems, 
solving an inverse problem consist not only in estimating the best probable set of subsurface 
parameters but to estimate the posterior probability density function (PDF) on the model 
space. This is particularly true in seismic facies analyses of 4D data where the noise level is in 
the magnitude of interpreted parameters : from on vintage to the other very small differences 
in subsurface elastic parameters are correlated a posteriori to production effects (see Nivlet 
2007). Presently, numerical methods for estimation of posterior PDF can be gathered into at 
least two classes: the class of stochastic approaches which is mainly formed of Markov Chain 
Monte Carlo method, and the class of deterministic approaches which includes linearized a 
posteriori analysis. Often actual methods combine elements of the two classes, but their main 
features make them belonging to one of them.  
In stochastic approaches, no assumption on the posterior PDF function is needed. The Monte 
Carlo method consists in sampling the prior PDF function in the model space and then uses a 
Metropolis type algorithm with a random walk to map the posterior PDF function (see 
Mosegaard 1998 for example). Considering the large size of the model and data space (up to 
108 unknowns and data samples in stratigraphic inversion) and the computational cost of the 
forward modelling, this class of method is often rejected. 
Deterministic approaches are based on a gaussian assumption of the posterior PDF and also of 
all the 'input' probabilities densities. This assumption provides an explicit analytical form of 
the posterior distribution which can be computed at a lower computational cost (see Tarantola 
2005). The computation of the posterior distribution has been the subject of many algorithm 
studies, we mention the following techniques: frequency methods using Fast Fourier 
Transform (FFT), and direct methods using factorisation techniques (LU factorisation for 
example). 
In frequency methods, one solves a sequence of small decoupled linear equations obtained by 
transforming a linearized inversion problem into the Fourier domain (see for instance Buland 
et al. 2003). Thanks to FFT, this method has the advantage to be very cheap in computational 
cost. Its drawback comes from the restrictive assumptions to be postulated: the covariance 
function of the prior model has to be stationary and homogeneous (which not allows 
applications to complex media with high lateral variations or with more than one geological 
unit), the ratio between the P-wave velocity and the S-wave velocity is assumed to be constant 
(which is not the case in general) and finally this method works on a linearized AVO 
inversion problem (with the loss of the complexity of wave propagation). 
Direct methods do not need to work on a linearized version of the inversion problem. Then in 
a non linear context, uncertainty analysis consists in assuming a gaussian approximation in 
the vicinity of the optimal subsurface model which has been previously estimated via a non 
linear optimization method (see Gouveia et al. 1998). Then this approach is less restrictive 
than the frequency one. Nevertheless, the estimation of the posterior distribution is a more 
difficult task since it requires the inversion of a very large matrix (its size is n×n where n is 
the number of unknowns). 
In the following, we first briefly describe an optimized method of posterior uncertainty 
analysis, based on the deterministic approach coupled with a direct. Then the method is 
applied on a 2D synthetic seismic data set corresponding to 2D realistic reservoir zones where 
optimal model and its error bars are plotted. 
 

Uncertainty Analysis for Prestack Stratigraphic Inversion 
 

For uncertainty analysis we use the prestack stratigraphic inversion algorithm described by 
Tonellot et al. 2001 which minimizes the objective function 

(m)J(m)Jmmdw*(m)RJ(m) GS

2

Cprior
θ

2

C

obs
θθθ 1

m
1

d

+=−+−= −−∑  



 

70th EAGE Conference & Exhibition — Rome, Italy, 9 - 12 June 2008 

P S ρ 

P 

S 

ρ 

composed of two terms. JS(m) is the seismic term where RӨ(m) is the Aki-Richards 
reflectivity series corresponding to the current model m and to the angle Ө, wӨ is the wavelet, 
and dobs

Ө is the observed seismic trace. JG(m) is the geologic term where mprior is the elastic a 
priori model. Cd and Cm are the prior covariance matrices describing uncertainties on the data 
and on the model, they are assumed here laterally uncorrelated, Cd is also assumed laterally 
stationary. The maximum a posteriori (MAP) model is the model mpost which minimizes J(m). 
Then, by a linearization of RӨ(m) operator, a gaussian approximation of the posterior PDF 
centered on mpost is obtained. This distribution is then quantified by the posterior covariance 
matrix 
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where G is the jacobian matrix of RӨ(m) in mpost and WӨ is the convolution matrix of the 
wavelet at angle Ө. It is straightforward to show that the first term HS is a Gauss-Newton 
approximation of the hessian of JS in mpost. The second term, which is the inverse of the 
covariance prior matrix on the model is exactly the hessian of JG. As the prior covariance 
matrices are diagonal, Cpost is a nT×nT block diagonal matrix (the parameters are laterally 
uncorrelated) where nT is the number of traces . Then computing Cpost requires two steps: 

(1) the computation of the matrix HS, and 
(2) the inversion of the nT diagonal blocks of Cpost.  

The first step can be very high in computational cost if not made properly. We have optimized 
it using two improvements. The first one is to store in a matrix ZӨ the result of the matrix 
products WӨC

-1
dW

T
Ө. The second one is to use the following explicit analytical formula  
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which gives the value of the element ((t1,p1,x,y),(t1,p1,x,y)) of the matrix HS(Ө). The 4 uplet 
(t,p,x,y) is a parameter coordinates in the subsurface grid (t is the time index, p the parameter 

type index, x and y the crossline and inline indices). t
θω~  is the tth column of the matrix 

product C-1
dW

T
Ө and ⊗  is the cross-correlation product. As the cross-correlation values 
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optimized (one no need to recompute these values from one trace to the other). 
The second step (the inversion of the matrix Cpost) is more conventional: it can be processed 
very fast using direct method such as a LU factorisation (see Anderson 1999). In fact, the size 
of each diagonal block is small (around 1000×1000) and this step 
is naturally parallelisable (each matrix inversion being send to 
one processor). 
 
A typical diagonal block of the matrix HS is shown in Figure 1. 
This 3×3 block matrix shows the autocorrelation of the P-wave 
impedance, S-wave impedance, and density on its main diagonal 
and the cross-correlation among different parameters in the off-
diagonal blocks. 
 
2D synthetic study 
 

The exact model (see raw 1 of Fig. 3 for the elastic parameters) is a 2D crossline of a 3D 
realistic model representative of a turbiditic complex channel in a deep offshore environment 
(see Bourgeois et al. 2005). The inversion window is 3km long and 960m thick (832 ms) from 
1.5km to 2.46km in depth (time range is 600-1432ms). This area is discretized on regular grid 
of 151 traces (one each 20m) and of 417 time samples (one each 2ms). Using the exact model, 
the P-P Aki-Richards reflectivity formula and a 1D convolution operator, a seismic data 
set is generated. Four angle-limited stacks are generated: 05°-15° (see Fig. 2), 15°-25°, 25°-

Figure 1: one diagonal block of the posterior covariance matrix 
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Figure 2: (near section) synthetic seismic (left); residuals (right) 

35°, 35°-45°. The wavelet used for each angle is a 5-10-60-80Hz linear band-pass filter. The 
prior model (not displayed here) is the exact model filtered using a 20-40Hz low-pass filter. 
The prior covariance matrices Cd and Cm are choosen diagonal and respectively filled with a 
1% noise-to-signal ratio and a 
5% standard deviation with 
respect to the average values of 
exact elastic parameters: 
σ

P
prior=465, σ

S
prior=270 and 

σ
ρ
prior=0.12. 

 
 
 
 
Then, the MAP model mpost (see raw 2 of Fig. 3) and its associated residuals (see Fig. 2) are 
computed through the inversion process. The estimated elastic parameters are well recovered : 
mpost is very close from mexact and the residuals are almost null (noiseless seismic data). Using 
the method described previously an uncertainty analysis is processed : absolute (σ) and 
relative (σrel: σ normalysed by σprior) standard deviations for mpost are respectively displayed in 
raw 3 and 4 of Figure 2. That provides insight into the different degree of data resolution for 
the 3 elastic parameters. The prior standard deviations are reduced to the ranges of : 40-100 
(8%-20%) for the P-impedance parameters, 44-80 (16%-30%) for the S-impedance and 
0.066-0.08 (54%-67%) for the density. It confirms the already known fact that for P-P data 
the P-impedance is the best resolved parameter, followed by the S-impedance and then the 
density : left and right parts of Figure 4 respectively shows that the P-impedance is 1.2 to 1.3 
times better resolved than S-impedance and 3 to 5.5 times better resolved than the density. 
Note that, this analysis is neglecting the off-diagonal terms of the posterior covariance matrix. 
A more detailed analysis would consist in generating pseudo-random realizations of posterior 
subsurface models. This analysis is straightforward once Cpost has been evaluated. 
 

Conclusions 
 

The proposed method, optimized for laterally uncorrelated prior matrices and a laterally 
stationnary prior matrix on the data, gives a first insight towards a complete uncertainty 
analysis. Generalization to multicomponent (see DeVault et al. 2007) or 4D prestack joint 
inversion is in principle straightforward. The stated assumptions may be restrictive. 
Nethertheless, for some realistic case, where for example the horizontal correlation length is 
small with respect to the horizontal dimensions of the model, choosing diagonal prior 
matrices may be appropriate. Moreover, a patent is being written on the extension of this 
method using exponential covariance operator on the prior model.  
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Figure 3: result table of inversion and uncertainty analysis 
The result type is in row and the parameter type is in column 

Figure 4: σP
rel over σS

rel (left); σP
rel over σρrel (right) 


