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SUMMARY

Integrated inversion of production history data and 4D seismic data for reservoir model characterization
leads to a nonlinear inverse problem that is usually cumbersome to solve : the associated forward problem
based, on one hand, on fluid flow simulation in the reservoir for production data modeling, and on the
other hand, on a petro-elastic model for 4D time lapse seismic data modeling, is usually computationally
time consuming, the number of measurements to be inverted is large (up to 500 000), the number of model
parameters to be determined is up to 100. Moreover, all the derivatives of the modeled data with respect to
those parameters are usually not available. We propose an optimization method based on a Sequential
Quadratic Programming algorithm which uses gradient approximation coupled with a BFGS
approximation of the Hessian. In addition, the proposed method allows to handle equality and inequality
nonlinear constraints. Some realistic applications are presented to illustrate the efficiency of the method.
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1. Introduction

The goal of reservoir characterization is the estimation of the unknown reservoir parameters by inte-
grating available data in order to take decisions for production scheme and to predict the oil production
of the field in the future. The reservoir parameters could be classified in two classes:

e those related to the geological modeling (spatial distribution of porosity, permeability, faults),

e and those related to the fluid flow modeling (relative permeability curves, productivity index of
the wells).

Those parameters could not be directly determined by measurements (or only locally using well logs),
this is the reason why this parameter estimation problem is formulated as an inverse problem with
some forward simulators that compute synthetic measurable data from those parameters : production
data acquired at production/injection wells (bottom-hole pressure, gas-oil ratio, oil rate), time lapse
seismic data (more precisely compressional and shear wave impedances for different seismic cam-
paigns at different calendar times during the production of the field). The associated forward models
are on one hand a fluid flow simulator, on the other hand, a petro-elastic model (PEM) based on rock
physic Gassmann equations. For further details on this application see Fornel et al.(2007) and Feraille
et al.(2003). Solving the forward problem is often CPU time consuming and the derivatives with
respect to the parameters are usually not available.

The optimization problem is formulated as the minimization of a least-square objective function
composed of two terms, one for the production data mismatch and one for the seismic data mismatch,
some weights are introduced to take into account data uncertainties and modeling errors. A natural
choice for the optimization method for this kind of problems is the Gauss-Newton algorithm which
relies on the computation of the Jacobian matrix. But, in our application, the estimation of the Jacobian
matrix is CPU time consuming (the first derivatives not being available, they are estimated by finite
differences) and its storage is impossible for large datasets involving seismic data. This is the reason
why, in this paper, we propose adapted techniques that furnish approximations of derivatives and
a quasi-Newton approach based on classical BFGS approximation of the Hessian of the objective
function. The IFP SQPAL optimization package ( Delbos et al.(2006)) provides the flexibility to
switch from one method to an other depending on the type of applications under study. In a first part,
we describe the main features of the SQPAL package useful for the history matching applications and
show its efficiency on some benchmark problems in a second part. The last part is dedicated to a 2D
synthetic reservoir application with the joint inversion of production data and 4D seismic data.

2. IFP SQPAL package

Optimization takes place in many IFP applications: estimating the parameters of numerical models
from experimental data (earth sciences, combustion in engines), design optimization (networks of oil
pipelines), optimizing the settings of experimental devices (calibration of engines, catalysis). These
optimization problems consist in minimizing a functional that is complex (nonlinearities, noise) and
expensive to estimate (solution of a numerical model based on differential systems, experimental
measurements), and for which derivatives are often not available, with nonlinear constraints, and
sometimes with several objectives among which it is necessary to find the best compromise. IFP has
engaged an active research in this field for a number of years and develops its own optimization tools
in order to match the needs of its applications as well as possible. The SQPAL solver is a sequential
quadratic programming method suited to nonlinear constrained optimization problems. SQPAL stands
for Sequential Quadratic Programming and Augmented Lagrangian: the tangent quadratic problem is
solved thanks to an original method based on a combination of an augmented Lagrangian method and
active-set method (cf. Delbos et al.(2006)).
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We consider the general constrained optimization problem

mlslllf(.’l,') subject to cg(z) =0, cr(x) <0, (D)
TE

where a real-valued function f : {2 — R is defined on an open set €2 in R", cg and cy are the vectors
of equality and inequality constraint functions, respectively. We further define the feasible set

X={ze€Q:cpg(x) =0, c(z) <0}

and assume that f, cg and c; are differentiable functions. Moreover, c’E is surjective or onto for all x
in the open set §2. Presently, numerical methods to solve (1) can by gathered into two classes:

e the class of penalty methods, which includes the augmented Lagrangian approaches and the
interior point (IP) approaches,

e the class of direct Newtonian methods, which is mainly formed of the sequential quadratic
programming (SQP) approach.

Often, actual algorithms combine elements of the two classes, but their main features make them
belonging to one of them. The choice of the class of algorithms strongly depends on the features of the
optimization problem to solve. The key issue is to balance the time spent in the simulator (to evaluate
the functions defining the nonlinear optimization problem) and in the optimization procedure (to solve
the linear systems or the quadratic programs). In the seismic reflection tomography application Delbos
et al.(2006) argue that the SQP approach is the best fitted. Generally, this is particularly true for
applications where the forward modeling is CPU time consuming and where the number of iterations
with a Newton-like algorithm is less smaller than the one generated with IP algorithms. This type
of conditions are widely encountered at IFP, and particularly in inverse problems issued from earth
sciences. This is our main motivation for developing the SQPAL solver, which implements an SQP-
like algorithm.

Sequential quadratic programming is one of the most effective methods for solving nonlinearly
constrained optimization problems. The approach was first suggested by Wilson(1963) for the special
case of convex optimization, then popularized mainly by Biggs(1972), Han(1976), and Powell(1978)a,
Powell(1978)b for general nonlinear constraints. Gould & Toint(2000) survey the recent development
in SQP. The main idea of the SQP approach is to solve the nonlinearly constrained problem using a
sequence of quadratic programming (QP) subproblems. In each QP subproblem, the constraints are
obtained by linearizing the constraints in the original problem, and the objective function is a quadratic
approximation to the Lagrangian function.

SQPAL is a software developed for the general nonlinear optimization problem (1). Quasi-Newton
techniques are used to approximate the Hessian of the Lagrangian. Two types of quasi-Newton meth-
ods are implemented into the solver:

e the Gauss-Newton method, which is suitable for least-square formulations in which Hessian is
not available, while the Jacobian matrix of the forward problem can be computed and stored.
The convergence rate is closed to Newton method (quadratic convergence) for weakly nonlinear
problems or when the residuals between observed data and modeled data are small.

o the BFGS method ( Bonnans et al.(2006), Nocedal & Wright(1999)) which is adapted to appli-
cations where second order derivatives of the cost function are not available but where gradient
can be estimated (see algorithm 1). Larger is the number of iterations, better is the Hessian
approximation, the given initial approximation being usually the identity matrix.
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To be practical, an SQP method must be able to converge from remote starting points. Two class
of globalization methods can be used at this point: line-search or trust regions. For BFGS method, a
classic line-search based on Armijo rule is implemented. The BFGS Hessian approximations remain
positive definite if the initial approximation is positiv definite (see algorithm 1). The globalization
of Gauss-Newton approach is based on a trust-region method, a globalization by line-search being
delicate: the Gauss-Newton matrix may be ill-conditioned (as for many inverse problems) leading to
Gauss-Newton directions closed to be orthogonal to the gradient direction. Two kinds of trust-region
methods have been implemented (see algorithm 2 for the general framework of trust region methods):

o the well-known Levenberg-Marquardt method: a I2 penalty term is added to the Gauss-Newton
approximation in order to limit the size of the perturbation:

Hy = JF Ty + NI 2

with Jj, being the Jacobian matrix of the modeled data d(x) in the least-square formulation
f(@) = |ld(z) — d*|1>.

e and the Dog-Leg method which combines the steepest direction and the Gauss-Newton direction
if the perturbation computed by Gauss-Newton method p§$™ = —(JI Ji) L JE (d(zx) — d°°°)
is such that |[pgN || > Ay, ie.:

pr=pi" + (1 =)™ —pi")

with p? P = ——ka%v fx, perturbation along the steepest descent direction
Py kaTJ,?Jkak k> P g p .

Algorithm 1. BFGS method for unconstrained problem

data: Starting point zg, convergence tolerance ¢ > 0, initial Hessian approximation Hg, ¢; > 0
k=0
while ||V fi|| > e do

compute search direction

pr = —H, 'Vfi 3)

set Tpy1 = Tk + Pk
where «y is computed from a line search procedure to satisfy Armijo’s condition

fzr + agpr) < f(z) + c1aV i py “4)

define sy = z+1 — o and y = V fr1 — Vfi;
compute Hy thanks to BFGS formula:

HpspstHy  ykyd

Hy 1= Hy — )

T T
sy Hisg Y Sk

end

For constrained optimization problems, as previously said, the QP at each SQP iterate becomes
a quadratic problem under linearized constraints which is solved thanks to an original method based
on the Augmented Lagrangian method ( Delbos et al.(2006)). The constrained QP is transformed in

11" European Conference on the Mathematics of Oil Recovery — Bergen, Norway,
8 - 11 September 2008



Algorithm 2. Trust-Region method for unconstrained problem

data: Given a maximal trust region radius A, the initial Trust Region radius Ag € (0, A),
n €[0,1/4)
fork=1,2,...do
obtain the perturbation pj, by solving (approximately) the Tangent Quadratic Problem

n}}nmk(p) =fr+Viip+1/2p" Hyp st ||p|| < Ay, (6)

compute py, from

= @)~ f )
mk(0) — mi(pk)
if px, < 1/4 (the predicted reduction is bad) then
Apy1 = i”pkn
else
if p > 3/4 and ||pr|| = Ak (the predicted reduction is good and the step size is equal to the
trust region) then
Ak—H = min(2Ak, A)
else
Agy1 = Ag

end
end
end

)

a sequence of bound constrained quadratic problems via the Lagrangian Augmented method. Each
bound constrained problem being solved by a classical combination of gradient projection algorithm,
active set method and conjugate gradient algorithm. The difficulty linked to the augmentation param-
eter determination is based on a precise theoretical study Delbos & Gilbert(2005), which has led us to
design a suitable and effective heuristic ( Delbos et al.(2006)).

Concerning the globalization of BFGS method by line-search, a [; exact penalty function is used
as merit function in order to measure the progress of the new iterate according to the minimization of
the objective function but also to the respect of the constraints. Up to now, the Gauss-Newton meth-
ods coupled with trust region are generalized only to linear constraints. To overcome the difficulty
associated with linearized constraint in-feasibility, we follow the elastic mode idea proposed by Gill
et al.(2005) in SNOPT implementation.

3. Reservoir application: inversion of monitor seismic datasets

The presented reservoir application is 2D synthetic case : a reservoir cross section made up of two
block units. Its size is 3240m in x-direction and 90m in z-direction. Four different facies are con-
sidered: two sandstones and two clays. In the following we will consider only the two sandstones
(facies 3 and 4 on Figure 1). A black oil model is considered, three wells are used, two producers and
one injector (water is injected in the aquifer to maintain pressure). Two synthetic monitor surveys are
available after 181 and 547 days (see Figure 3 for P impedance data of base seismic dataset). The ob-
jective function is thus composed of 3 different parts associated with the base seismic and 2 different
monitor seismic surveys: the mismatch between data modeled by forward operator and P impedances
for base seismic, the mismatch of AIp (differences of Ip between base seismic and monitor seismic
for the two calendar times ¢ =181 days and 547 days).
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Figure 1: Facies description of the cross section of the considered reservoir : the facies 1 and 2 are
associated with clays, 3 and 4 with sandstones. There are two production wells and one injector well.

The unknown parameters of the inversion problem are the mean porosity of the two units and
some parameters which control the spatial variations of the porosity (gradual deformations of Gaus-
sian stochastic models of porosity, see Hu et al.(2001)). It ends up with 10 parameters and 70000
measurements. This is a small test case, a real case is usually larger: especially the number of mea-
surements, up to 1M ( Berthet et al.(2007)).

An important point is that the gradient of the objective function is not available in the forward
simulators, the derivatives are thus computed thanks to finite differences. Then, a key point is the
choice of the perturbation size: we have adopted an adaptive step depending on the size of the trust
region. If the size of the trust region is small, the step size is reduced. A too small step size leads
to difficulties, some numerical instabilities in the forward simulator being observed. Even in BFGS
method with line-search globalization, a trust region is updated thanks to the estimation of p in (algo-
rithm 2), the trust region radius being used to compute an adapted perturbation step size for gradient
computation as explained before. Approximations of cost function may be used to estimate numerical
gradients (linear and quadratic approximations), simulations already performed at previous iterations
are re-used in order to reduce the number of simulations to be done at each iteration: finite differences
require np simulations at each iterate (np being the number of optimized parameters).

The applied methodology is composed of two steps: the fist one consists in fitting the base seismic
data (P impedance and time shift at the reference time) and then in a second step in adding the fitting
of the differences between seismic data associated with the different calendar times and the base
seismic data. The results for P impedance of the base seismic are presented in Figure 3 for initial and
solution models. The misfits are reduced, especially in the upper part of the reservoir. The 2 curves
in Figure 2 illustrate the decrease of the cost function for the two steps : fitting the base seismic
and fitting the two seismic surveys. We succeed to reduce the cost function by 30% and 39%. A
comparison of SQPAL methods is done for a simplified version of the first step: 4 parameters of
gradual deformations are tuned to fit only the base seismic. The results are presented in Figure 4. We
observed the decreasing objective function obtained with the three different methods. BFGS method
with line-search globalization, Gauss-Newton approach with Levenberg-Marquardt penalization and
Gauss-Newton Dog-Leg method. We observed similar decrease for the three methods, even if the two
Gauss-Newton approaches are more efficient in the first iterations than the BFGS method. This is not
surprising: the initial Hessian approximation being the identity matrix, several iterations are necessary
to build a more accurate Hessian approximation. Despite this remark, BFGS approach is preferred for
large dataset, the Jacobian matrix of the Gauss-Newton approach being too large to be estimated and
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Figure 2: The cost function versus the simulation numbers is displayed for the two steps of the ap-
plication: the first step corresponds to the fitting of base seismic (left) and the second step the fitting
of the two monitor seismic surveys (right). These results have been obtained with BFGS option of

SQPAL.
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Figure 3: Results obtained by SQPAL BFGS option - P impedance of base seismic dataset (top), mod-
eled P impedance for initial (middle left) and solution parameters (middle right) and the P impedance
residuals for initial (bottom left) and solution parameters (bottom right).
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Figure 4: Cost function versus simulation numbers for 3 optimizations performed, respectively, with
BFGS method with line search globalization (in blue), with Levenberg-Marquardt Gauss-Newton
method (in pink) and with Dog-Leg trust region method (in red). Each tag on the curves indicates one
nonlinear iteration. This application is the fitting of the base seismic with 4 parameters.

5. Conclusions

IFP SQPAL package has given promising results on the presented 2D reservoir characterization prob-
lem: the results obtained with BFGS and Gauss-Newton options are similar but the BFGS method
needs only the estimation of the gradient of the objective function whereas the Gauss-Newton method
requires the estimation and the storage of the Jacobian matrix which is an obstacle for application on
large datasets. A special care has been put on the choice of the perturbation step size for numerical
gradient computation with finite differences. A study of surrogate optimization techniques as Derivate
Free Optimization approach proposed by Conn et al.(2000) and Powell(2000) is in progress in order
to limit the number of expensive simulations.
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