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A Derivative Free Optimization method for reservoir 
characterization inverse problem 
 

Hoël Langouët, Frédéric Delbos, Delphine Sinoquet a nd Sébastien Da 
Veiga  
 
 
Reservoir characterization inverse problem aims at building reservoir models consistent with 
available production and seismic data for better forecasting of the production of a field .  
These observed data (pressures, oil/water/gas rates at the wells and 4D seismic data) are 
compared with simulated data to determine unknown petrophysical properties of the reservoir.  
The underlying optimization problem is usually formulated as the minimization of a least-squares 
objective function composed of two terms : the production data and the seismic data mismatch. In 
practice, this problem is often solved by nonlinear optimization methods, such as Sequential 
Quadratic Programming methods with derivatives approximated by finite differences. 
In applications involving 4D seismic data, the use of the classical Gauss-Newton algorithm is 
often infeasible because the computation of the Jacobian matrix is CPU time consuming and its 
storage is impossible for large datasets like seismic-related ones.  
 
Consequently, this optimization problem requires dedicated techniques: derivatives are not 
available, the associated forward problems are CPU time consuming and some constraints may 
be introduced to handle a priori information. We propose a derivative free optimization method 
under constraints based on trust region approach coupled with local quadratic interpolating 
models of the cost function and of non linear constraints. Results obtained with this method on a 
synthetic reservoir application with the joint inversion of production data and 4D seismic data are 
presented. Its performance is compared with a classical SQP method (quasi-Newton approach 
based on classical BFGS approximation of the Hessian of the objective function with derivatives 
approximated by finite differences) in terms of number of simulations of the forward problem.  
 
 



Introduction

The goal of reservoir characterization is the estimation of unknown reservoir parameters by integrat-
ing available data in order to take decisions for production scheme and to predict the production of the
field in the future. Reservoir parameters can be classified in two classes: those related to the geolog-
ical modeling (spatial distribution of porosity, permeability, faults), and those related to the fluid flow
modeling (relative permeability curves, productivity index of the wells). These parameters cannot be
directly determined by measurements (or only locally using well logs). This is the reason why this pa-
rameter estimation problem is formulated as an inverse problem with forward simulators that compute
synthetic measurable data from the parameters : production data acquired at production/injection wells
(e.g. bottom-hole pressure, gas-oil ratio, oil rate), time lapse seismic data (more precisely compressional
and shear wave impedances for different seismic campaigns at different calendar times during the pro-
duction of the field). The associated forward models consist of a fluid flow simulator and a petro-elastic
model (PEM) based on rock physic Gassmann equations. For further details on this application see Rog-
gero et al. (2008). Solving these forward problems is often CPU time consuming and does not provide
the derivatives with respect to the parameters.

The optimization problem is formulated as the minimization of a least-squares objective function com-
posed of two terms, one for the production data mismatch and one for the seismic data mismatch. Some
weights are introduced to account for data uncertainties and modeling errors. In practice, these problems
are often solved by nonlinear optimization methods, as SQP1 method (Sinoquet and Delbos, 2008) with
derivatives approximated by finite differences (FD).
In our application, using the classical Gauss-Newton algorithm is often infeasible because the compu-
tation of the Jacobian matrix is CPU time consuming and its storage is impossible for large datasets
involving seismic data. Consequently, a natural alternative choice is a quasi-Newton approach based on
classical BFGS approximation of the Hessian of the objective function with derivatives approximated by
FD. Although these SQP methods are particularly efficient for the determination of active constraints,
the number of function evaluations is usually too high for industrial problems with expensive simulators.
Furthermore, the choice of the FD step, crucial for the convergence of this method, is generally cumber-
some because it depends on the accuracy of the function computation which is difficult to estimate in
practice. This is the reason why, we are interested in Derivative Free Optimization (DFO) methods.

There are mainly four classes of DFO methods in the literature. The first class is composed of direct
search methods that explore the variable space by sampling points from a predefined class of geometric
patterns or involve some random process (Nelder and Mead, 1965; Audet and Dennis, 2003; Kolda et al.,
2003). These methods do not assume generally, smoothness of the objective function and therefore can
be applied to a broad class of problems. But, on the other hand, a relatively large number of function
evaluations are often required. These methods are theoretically simple and relatively easy to implement.
The second class is the class of metaheuristic methods, for instance the evolution strategy (Hansen and
Ostermeier, 1996), or the simulated annealing (Kirkpatrick et al., 1983): they explore the parameter
space with a population of sampling points evolving towards the global optimum. This class of methods
does not assume any regularity assumption on the objective function but requires a large number of
function evaluations. The third class of methods combines gradient approximation techniques (e.g. finite
difference (Sinoquet and Delbos, 2008) or simplex gradient (Kelley, 1999; Winslow et al., 1991)) with
quasi-Newton methods. These methods are not always robust, especially in the presence of noise, which
is often the case for derivative-free applications. The fourth class of methods is based on sequential
minimizations of models of the objective function to limit the number of evaluations of the expensive
function. These models can be local or global models:

• A global model constructed from a limited number of evaluations of f for parameters values
1Sequential Quadratic Programming
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chosen according to a relevant criterion (minimum prediction error, space filling, expected gain
improvement.), can be, for instance, kriging models (Schonlau, 1997; Jones, 2001; Villemonteix,
2008) or Radial Basis Functions (RBF) (Gutmann, 2001; Regis and Shoemaker, 2007). But they
are limited to small size problems (10-30 parameters).

• A local model is generally based on linear or quadratic polynomial interpolation of evaluations
of the objective function at sample sets (Conn et al., 2000, 2009a; Powell, 2006, 2007; Marazzi
and Nocedal, 2002; Vanden Berghen, 2004). Some recent comparison (Langouët and Sinoquet,
2009) based on a benchmark proposed in Moré and Wild (2009), illustrates good performances
of trust region model-based methods compared to three other approaches, even for noisy and
piecewise-smooth problems. Even if the three others class of methods are still widely used in
the engineering community, they require generally more simulations than the local trust region
model-based methods.

In this paper, we propose an adapted method based on local surrogate models (Conn et al., 2000, 2009b;
Powell, 2006) belonging to the fourth class of method: these methods are inspired by SQP methods
with trust region globalization. The proposed Sequential Quadratic Approximation method (SQA) is
an extension of NEWUOA, the efficient Derivative Free Optimization method of Powell (2006), for
constrained optimization.

In the first part of this paper, we describe the main features of the SQA method. The second part presents
results of this method applied to a challenging benchmark proposed by Jones (2008). The third part is
dedicated to a 3D synthetic reservoir application with the joint inversion of production data and 4D
seismic data.

SQA Method

The SQA method is a DFO method adapted to constrained optimization of nonlinear function

min
x∈Rn

f(x)

s.t.
{

CDB(x) ≤ 0,
CDF (x) ≤ 0,

(1)

where the derivative free constraints CDF (responses of simulator with unknown derivatives) and the
constraints with given derivatives CDB are separated (CDB : Rn → RnDB , CDF : Rn → RnDF ).
The SQA algorithm is given in Algorithm 1. At an initial stage, a quadratic model f̃ of the function f
is constructed in a neighborhood of the current point. It interpolates m points2 (usually m = 2n + 1
is chosen) in the admissible domain (at least matching linear constraints). For each derivative free
constraint, a quadratic model C̃DF is also constructed from the same interpolation points. Indeed, for
any function f or CDF and any poised set Y = {y0, y1, ..., yp} ⊂ Rn, the minimum-norm interpolating
polynomial Q and C̃DF that interpolate f and CDF on Y can be expressed as

f̃(x) =
p∑

i=0

f(yi)li(x), C̃DF (x) =
p∑

i=0

CDF (yi)li(x), (2)

where {li(x), i = 0, ..., p} is the set of minimum-norm Lagrange polynomials for Y (see Conn et al.
(2009b)).

Then, at each iteration the problem is solve for the current precision on parameters ρ3: the current
quadratic model f̃ is minimized under constraints CDB and models of derivative free constraints C̃DF

2The incomplete quadratic models (n + 2 ≤ m ≤ (n + 1)(n + 2)/2) are completed by minimizing the Frobenius norm
of the hessian matrix variations of the models (Powell, 2006)

3ρ is the current resolution expected on x. It is updated during optimization process (see in Algorithm 1).
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in a trust region of radius ∆ around the optimal point by a SQP method:

min
d∈Rn

f̃(xopt + d)

s.t.





CDB(xopt + d) ≤ 0,

C̃DF (xopt + d) ≤ 0,
‖d‖ ≤ ∆.

(3)

f and CDF are evaluated at x∗ = xopt + dk, solution of (2).

If the merit function

ϕ(x) = f(x) +
nDF∑

i=1

λiCDF(i)
(x), (4)

measuring the constraint violation and f , has decreased, x∗ is validated as the new current optimal point
xopt, where λ is supposed to represent the unknown Lagrange multipliers in this algorithm. λ is set to a
constant value that takes into account the normalization of the function f and the constraints CDF .

Otherwise, another point is added in order to improve the quadratic models: a criterion based on the
interpolating Lagrange polynomial is maximized, see Powell (2006). Finally, the trust region radius ∆
is updated according to the comparison of the reduction of the merit function based on models f̃ and
C̃DF and the effective reduction of the merit function based on f and CDF :

R =
ϕ(xk)− ϕ(xk + dk)
ϕ̃(xk)− ϕ̃(xk + dk)

. (5)

So, ∆ is increased if the ”modeled” merit function has the correct trends compared to the ”real” merit
function or decreased otherwise. The quadratic models f̃ and C̃DF are updated to interpolate the m
closest points to the current optimal point (where f and CDF were evaluated). The algorithm is stopped
when the minimal trust region radius (accuracy on the solution requested by the user) is reached or when
the maximum number of simulations given by the user has been performed.

MOPTA08 Benchmark

The MOPTA08 benchmark is a very complex and challenging minimization problem proposed by Jones
(2008) : it was built from a real automotive problem. The goal is to optimize vehicle performance subject
to security constraints. The simulation (e.g. crash test) is very expensive in terms of computationnal
time: 60 simulations can optimistically be computed per day. This function depends on 124 parameters
under 68 derivative free constraints (blackbox constraints).

In order to share this application with the optimization communauty, Jones (2008) built kriging response
surface of the objective function and of the constraints from simulations of the real problem. The main
objective of this benchmark is to reduce the objective function value below a threshold of 228 (the initial
function value is 251) in less than 1800 evaluations (15 times the number parameters which corresponds
to one month of CPU time of the real simulator).

The result obtained by SQA method is presented in Figure 1, where the evolution of the objective
function is depicted with respect to the number of simulations.

They are very promising: indeed, the threshold of 228 is reach in 800 simulations and all the constraints
are satisfied. Jones has shown that lot of tested optimization methods failed to solve this problem: a
classical SQP with finite differences, an evolution strategy method,... Only, one method based on RBF
(radial basis functions) approximation of the objective function and of the constraints (Regis, 2009)
gives similar performances than SQA method. With this application, we show the ability of SQA to
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Algorithm 1 SQA Algorithm (Sequential Quadratic Approximation)

(1) Initialization : Select m initial interpolation points. xopt is the initial point for which f is minimal
among the m points. Determine the first quadratic model f̃ ≈ f of the objective function f and
the quadratic models C̃DF of the derivative free constraints CDF .

∆ is the trust region radius: ρ = ∆ = ρbeg.

(2) Solve the problem for a precision on x: ρ

(a) (i) Minimize the model :
mind f̃(xopt + d)

s.t.




‖d‖ ≤ ∆,
CDB(xopt + d) ≤ 0
C̃DF (xopt + d) ≤ 0

(ii) If ‖dk‖ < 1
2ρ : → (2)(b) (necessary to ensure the validity of the model before doing

small steps).
(iii) Calculate f(xopt + dk), CDF (xopt + dk),

ϕ(xopt + dk) = f(xopt + dk) +
∑nDF

i=1 λiCDF(i)
(xopt + dk) and update the trust region

radius ∆ from the predictivity of the quadratic models R = ϕ(xopt)−ϕ(xopt+dk)
ϕ̃k(xopt)−ϕ̃k(xopt+dk) .

Update interpolation points : xopt = xopt + dk if ϕ(xopt + dk) < ϕ(xopt) and update
the models f̃ and C̃DF in order to interpolate the function f and the derivative free
constraints CDF in xopt + dk.

(iv) If R > 0.1→ (2)(a)(i)
Otherwise continue.

(b) Test the validity of the model f̃ and C̃DF . The model is considered valid if all the current
interpolation points xi, i = 1, ..., m are close to the optimal point xopt, i.e. if the Euclidean
distance ‖xi − xopt‖ < 2∆ for all xi, i = 1, ...,m.

(i) If the model is not valid :
Improve the quality of the model f̃ and C̃DF :
maxd∈Rn |lt(xopt + d)|
s.t.

{ ‖d‖ ≤ ∆,
CDB(xopt + d) ≤ 0

Calculate f(xopt + dk) and CDF (xopt + dk), the worst point of the interpolation set is
replaced by a new point closer to the current minimum.
Assuming that the accuracy of the updated models f̃ and C̃DF has been improved →
(2)(a)(i).

(ii) If the model is valid : If ‖dk‖ > ρ→ (2)(a)(i)
Otherwise continue

(c) If ρ > ρend : reduction of ρ and ∆→ (2)(a) (zoom on x)
Otherwise end of the algorithm.
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deal with large size problem with a large number of constraints. In the next section, SQA is applied to a
realistic reservoir application.

Figure 1: Objective function versus simulation number for optimization with SQA method for 249
interpolation points (2n + 1).

Reservoir application: inversion of monitor seismic datasets

The PUNQ test case is a 3D synthetic reservoir model derived from real field data. It was already
used for comparative inversion studies in the European PUNQ project (Floris, 2001) and for validation
of constrained modeling and optimization scheme development methods (Roggero, 2001). The top
structure of the reservoir is presented in Figure 2.

Figure 2: Top structure of the reservoir.
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The reservoir is surrounded by an aquifer in the north and the west, and delimited by a fault in the south
and the east. A small gas cap is initially present. The geological model is composed of five independent
layers. The layers 1, 3, 4 and 5 are assumed to be of good quality, while the layer 2 is of poorer quality.

The initial model consists of a 19 × 28 × 5 grid, with a constant step of 180 m in the horizontal X
and Y directions. In order to illustrate the potential of the algorithm on large seismic data sets, we
decided to build a larger model. Therefore, our reference model consists of a 76 × 56 × 5 grid, with a
constant step of 45 m in the X direction and 90 m in the Y direction. Each geological unit is modeled
by one layer, with a Gaussian distribution of the porosities and a spherical variogram. The geostatistical
simulation parameters are listed in Table 1. The permeability on each layer is defined by a (log K − φ)
relationship, i.e. log(Kx) = Aφ + B with constant ratios Ky/Kx and Kz/Kx. The corresponding
reference parameters are given in Table 1.

Table 1: Corresponding reference of geostatistical simulation parameters.
φ mean φ variance A B Ky/Kx Kz/Kx

Layer 1 0.1722 0.0078 8.585 0.701 1 0.364
Layer 2 0.0802 0.0004 14.383 0.258 1 0.339
Layer 3 0.1677 0.0050 8.683 0.781 1 0.314
Layer 4 0.1615 0.0006 4.209 1.789 1 0.211
Layer 5 0.1892 0.0049 8.98 0.793 1 0.296

Then, the geostatistical simulations are upscaled to come back to the original 19×28×5 grid in order to
work with a faster fluid flow simulation in the reservoir. The synthetic production data are produced by a
numerical simulation using the ATHOS model over a eight-year period. The production results selected
as synthetic measurements are the gas oil ratio (GOR), the bottomhole pressure (BHP) and the water cut
value (WCUT) at the six producing wells (PRO-1, 4, 5, 11, 12 and 15). We give on the left of Figure 3
the reference production data for all wells.

Then, pressure and saturations maps simulated by the ATHOS model at times 0 days, 181 days (half a
year) and 2192 days (six years) are extracted and downscaled to the 76 × 56 × 5 grid. A petro-elastic
model (PEM) involving Gassmann and Hertz equations is defined with given bulk and dry modulus, bulk
densities and Hertz exponents. The combination of downscaled pressure and saturations maps with this
petroelastic model allows to compute synthetic P and S impedance maps at times 0, 181 and 2192 days.
These maps serve as a synthetic 4D seismic data set. An example of the reference impedance map on
layer 5 at time 0 and Delta impedance maps at times 181 and 2192 is depicted on the right of Figure 3.

For history matching, the parameters of the simulation model are constrained by both production and
seismic data. An optimal matching is sought by minimization of an objective function defined as follows:

f(x) =
1
2

6∑

i=1

np∑

j=1

(dsim
Pi

(x, tj)− dobs
Pi

(tj))2 +
1
2

ngrid∑

k=1

(dsim
S (x, k)− dobs

S (k))2, (6)

where i = 1, ..., 6 is the well index, tj , j = 1, ..., np are the measurement times of production data and
k = 1, ..., ngrid denotes the cell indices. The geometric data, the geological structure, the fluid properties
and the geomechanical parameters of the PEM are presumed known. The inversion parameters are the
porosity means (one for each layer), the A and B coefficients for the permeabilities (two coefficients
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per layer) and the permeability ratios (two ratios per layer). These parameters are submitted to bound
constraints.

(a) WCUT
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(b) IP at time 0

(c) GOR
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(d) ∆IP at time 181

(e) BHP
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(f) ∆IP at time 2192

Figure 3: PUNQ field: Reference production data (left), seismic data (P impedance map) for layer 5
(right).

The SQPAL BFGS method (Sinoquet and Delbos, 2008), the SQA method for differents number of in-
terpolation points (2n + 1, n + 6 and n + 2) and the SQPAL Gauss Newton (GN) method are applied to
the minimization problem of the objective function (6) with respect to these 25 inversion parameters un-
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der bound constraints. Both BFGS and Gauss-Newton approaches belong to the class of Quasi-Newton
methods which solve sequentially a minimization problem based on a quadratic objective function with
the same gradient as the original objective function and an approximation of its Hessian matrix:

min
d

1
2
dT H̃d + gT d. (7)

The BFGS formula provides an update of the approximation of the Hessian matrix at each iteration
depending on the gradients of the objective function and of the parameter values

H̃k+1 = H̃k +
γkγ

T
k

γT
k δk

− Hkδkδ
T
k HT

k

δT
k HT

k δk
, (8)

with δk = xk+1 − xk and γk = ∇xf(xk+1, λk+1) − ∇xf(xk, λk). For Gauss-Newton method, the
approximation of the Hessian matrix is computed from the Jacobian matrix J , first derivatives of the
calculated data (Jij = ∂di

∂xj
):

H̃ = JT J. (9)

Figure 4: Objective function versus simulation numbers for five optimization runs, respectively with
SQA for differents number of interpolation points (solid lines, blue crosses), with BFGS method with
line search globalization (dashed line, red circles), and with GN method (dashed line, pink circles).

In both cases, the first derivatives of the objective function (BFGS) or of the calculated data (Gauss-
Newton) are computed by finite differences which requires at each iteration n + 1 simulations of the
forward operator. Moreover, Gauss-Newton approach needs the storage of the Jacobian matrix of size
n × ndata (ndata = np + ngrid is the total number of observed data). The storage of such a matrix
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becomes cumbersome for joint inversion of production data and seismic data because of the huge number
of measurements. In our application case, this storage is still possible for 128500 measurements but it
will be untractable for more complex problems with larger number of measurements. The SQA method
requires as the BFGS method only the storage of the gradient and of the Hessian matrix of size depending
only on the number of parameters.

The results obtained by the five methods are presented in Figure 4, where the evolution of the objective
function is depicted with respect to the number of fluid flow and petroelastic simulations. In all cases, we
can observe that the objective function decreases: the five different methods seem to converge to a local
minimum. As expected, we can also notice that SQA (version 2n+1 interpolation points) requires more
evaluations during the initialization phase than SQPAL (m = 2n + 1 compared to FD computations
which require n + 1) and others SQA (version n + 6 and n + 2). However, SQA achieves in all cases
a greater reduction of the objective function much faster than SQPAL BFGS. This is the key advantage
of SQA versus SQPAL BFGS: it allows to reduce the number of evaluations of the simulator, which
are very CPU time consuming. We can also observe that SQPAL GN achieves a fastest reduction of
the objective function than other methods through the use of information of the jacobian matrix. SQA
(version n + 2) is the only method with performances closed to SQPAL GN.

The production data at well 12 obtained by the initial model and the SQA matched model are compared
to the reference data on the left of Figure 5. SQA provides a model which is much closer to the reference
production data than the initial model. The reference, initial, and optimal impedance map of layer 5 at
time 0 obtained with the SQA method is given on the right of Figure 5. We can observe that SQA
succeeds to give a good match also for seismic data.

SQA method is then able to solve this large size reservoir history matching problem (in terms of number
of measurements) without requiring to store the large size Jacobian matrix. It is quite encouraging for
future real applications involving complex datasets and computationnaly expensive simulators.

Conclusions

In this paper, we proposed a Derivative Free Optimization method based on Sequential Quadratic Ap-
proximations (SQA) of the objective function to solve the joint inversion of production and 4D seismic
data. As shown on a realistic application, this method allows to limit the number of evaluations of
the computationnaly expensive forward problem compared to classical optimization method coupled
with gradient approximated by finite differences as BFGS Quasi-Newton method. We compared also
SQA method with Gauss-Newton method : in that case, we obtained comparable results when using a
small number of interpolation points to build the quadratic model of the objective function (a quadratic
polynomial model built from n + 2 points). These results are very encouraging for applications with a
large number of measurements: for such cases, Gauss-Newton method is not applicable due to storage
requirement (the Jacobian matrix is too huge to be stored).

An other interesting feature of SQA method shown in the paper is its ability to deal efficiently with
nonlinear constraints (with or without given derivatives). SQA succeeded to solve a challenging opti-
mization benchmark with 68 black-box constraints (with unknown derivatives) and 124 parameters. A
study of a reservoir engineering application with nonlinear constraints is in progress and preliminary
results are presented in Metla et al. (2010). The aim of this work is to compute parameter uncertainty
estimations and confidence intervals of a forecast response based on solutions of history matching prob-
lems.

In order to take into account the nature of the objective function in history matching problem, namely
its least-square characteristic, we are currently working on adapting SQA method to construct several
models to form the objective function (basically, one model for each data misfit or for each type of
data misfit), following the idea proposed by Zhang et al. (2009). The objective is to obtain more ac-
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curate models taking into account the characteristics of the objective function, and then obtain a faster
convergence.

(a) WCUT for well 12
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(c) GOR for well 12
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(e) BHP for well 12
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Figure 5: Comparison between reference production data (blue) and simulated production data for initial
point (red) and optimal point obtained with SQA (cyan) (left). P Impedance maps at time 0 obtained
with SQA (right).
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Sciences Appliquées.
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