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CONSISTENT EXPERIMENTAL INVESTIGATION OF THE APPLICABILITY OF BIOT-

GASSMANN’S EQUATION IN CARBONATES 

 

 

ABSTRACT 

Carbonate formations are characterized by multiscale heterogeneities which control their 

flow and acoustic responses. At the laboratory scale, carbonate rocks already do not show a 

strong correlation between P- and S-wave velocities and porosity. The velocity disparities 

between carbonates of similar mineralogy and porosity result from different microstructures 

derived from their sedimentary facies and subsequent diagenetic transformations. The still 

discussed applicability of Biot-Gassmann’s equation for fluid substitution in carbonate rocks 

remains another key issue. We propose an integrated experimental workflow that allows a 

consistent checking of the applicability of Biot-Gassmann’s equation and provide key geological 

and microstructural information to understand the petroacoustic signature of carbonate rocks. 

This approach is implemented on samples representative of two different carbonate formations. 

The obtained results demonstrate the applicability of Biot-Gassmann's equation for the two 

studied carbonate families and show the interrelation of mineralogy and porosity distribution in 

their acoustic response. 

INTRODUCTION 

Evaluating carbonate formations is of paramount importance as they hold a large part of 

the world's hydrocarbon reserves (Dennis et al., 2003) and some key groundwater resources 

(Green et al., 2014). They are moreover considered as potential hosts for CO2 storage (Brosse et 
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al., 2010; Bemer et al., 2016). Carbonate rocks are characterized by multiscale heterogeneities 

which control their flow and acoustic responses. Understanding the distribution of 

heterogeneities in carbonate sedimentary systems represents a major challenge for the 

characterization and modeling of carbonate formations. Addressing this key issue notably 

requires taking into account both initial sedimentary processes and further diagenetic 

modifications. Another key step is to correlate geological data with petrophysical and 

petroacoustic properties that can be used to define models populated with geologically consistent 

rock types thus improving the reliability of flow modeling and 4D seismic monitoring. 

At the laboratory scale, carbonate rocks already do not show a strong correlation between 

P- and S-wave velocities and porosity (Anselmetti and Eberli, 1993; Kenter et al., 1997a; Assefa 

et al., 2003; Verwer et al., 2008; Weger et al., 2009; Fabricius et al., 2010), which prevents a 

straight interpretation of acoustic data in terms of reservoir petrophysical characteristics. In 

addition to porosity and mineralogy, the main controlling factors are related to the pore types. 

Carbonates dominated by pores with high aspect ratios usually show higher velocities than 

carbonates dominated by pores with low aspects ratios (Assefa et al., 2003; Baechle et al., 2005). 

Better velocity trends as a function of porosity have been obtained by Baechle et al. (2008) when 

considering microporosity instead of total porosity. Based on their extensive dataset, Weger et al. 

(2009) have concluded that microporous samples with small pores and high specific surface 

show lower velocity than samples with large pores and low specific surface. Those two end 

members could however be affected by specific measurement artifacts which were not 

considered by the authors. Carbonates with high specific surface could be susceptible to water 

weakening leading to lower velocities for water-saturated samples (Baechle et al., 2005; Adam et 
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al., 2006; Verwer et al., 2010), while large pores could induce acoustic scattering leading to 

overestimated velocities (Cadoret et al., 1995; Rasolofosaon and Zinszner, 2012). 

The velocity disparities between carbonates of similar mineralogy and porosity can more 

generally be related to different microstructures resulting from the combination of their 

sedimentary facies and subsequent diagenetic transformations (Kenter et al., 1997b; Eberli et al., 

2003; Verwer et al., 2008). The understanding of the petroacoustic signature of carbonate rocks 

will thus require an insight into the impact of diagenesis on acoustic velocities (Brigaud, 2010; 

Regnet et al., 2015; Matonti et al., 2015). 

The still discussed applicability of Biot-Gassmann’s equation for fluid substitution in 

carbonate rocks remains another key issue (Adam and Batzle, 2008; Raoslofosaon et al., 2008; 

Fabricius et al., 2010; Rasolofosaon and Zinszner, 2012). In addition to the abovementioned 

scattering and weakening effects, the reported deviations are linked to dispersion and more 

prosaically the assessment of the input parameters (Han and Batzle, 2004; Yan and Han, 2016). 

The objective of our work is to derive an integrated experimental workflow designed to 

allow a consistent checking of the applicability of Biot-Gassmann’s equation and provide key 

geological and microstructural information for an effective medium modeling approach 

presented in a companion paper (Adelinet et al., 2018). We first present the specific test 

sequence which includes petrographic analysis, petrophysical and petroacoustic testing and 

microstructure analyses. Each experimental method is detailed with a specific focus on the key 

contribution of the petroacoustic methodology and on the different nature of the information 

provided by the microstructure analyses. The petrophysical properties and microstructure 

characteristics of two sets of carbonate samples are then presented. The petroacoustic results are 
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then carefully interpreted to demonstrate the applicability of Biot-Gassmann's equation for the 

two carbonate families without any assumptions on the input parameters. We finally discuss the 

limitations of Biot-Gassmann's equation for the modeling of the petroacoustic signature of 

carbonate rocks. 

METHODS 

Experimental characterization workflow 

A specific experimental workflow has been designed to provide a comprehensive dataset 

including both input and constraining data for effective medium modeling. The samples are first 

observed under CT-scanner to check their heterogeneity level and select the most homogeneous 

part for the characterization process. The workflow includes a non-destructive testing sequence 

performed on the main sample and a series of microstructure analyses performed on subsamples 

(Figure 1). The successive non-destructive characterization steps are: petroacoustic testing, 

porosity measurement, NMR analysis on the brine-saturated sample and brine permeability 

measurement. The main sample is then cut into several subsamples to obtain a vertical thin 

section, powder for XRD analysis and small parts for mercury injection and possibly 

microscanner imaging. This last analysis being costly, it is not performed on the whole sample 

set. 

Petrophysical and petroacoutic characterization 

Petrophysical measurements 
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The porosity of the samples has been estimated from the difference between their brine-

saturated and dry weights. These measurements are performed using 25 g/l NaCl brine. The 

brine-saturated state is obtained after saturation within the petroacoustic cell. The sample is then 

dried in an oven at 60°C to measure its dry weight. Knowing the bulk volume of the sample and 

the brine density, the porosity ������� is finally deduced. Another porosity estimation ��	
 has 

been deduced from the pore volume provided by the NMR analysis. 

Permeability measurements are performed in a Hassler cell using 25 g/l NaCl brine. After 

setting the brine-saturated sample inside the cell, several flow rates are applied at the inlet while 

the outlet is kept at a constant pressure. Each flow rate � is maintained until equilibration of the 

differential pressure Δ�. The intrinsic permeability � is then simply deduced from the slope of 

the �-	Δ� curve using Darcy’s law: 

� = ������ ℎ�
��
�Δ� (1) 

where ������ is the brine dynamic viscosity, ℎ the sample length and � its section. At least four 

flow rates are applied for each permeability measurement. 

Petroacoustic measurements 

The acoustic experimental device is designed to perform velocity measurements along 

the sample axis under controlled isotropic confining pressure (up to 70 MPa) and pore pressure 

(up to 10 MPa) using double P and S transducers (half-moon ceramic) with a central frequency 

of 500 kHz. The experiments are performed at a differential pressure (confining pressure minus 

pore pressure) representative of in situ conditions. 
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To probe the acoustic response of the samples to a fluid change we use the fluid 

substitution method proposed by Rasolofosaon and Zinszner (2003, 2012). This approach 

consists in subsequently measuring the acoustic velocities for various saturating liquids of 

different bulk modulus, the current saturating fluid being replaced with a miscible one to ensure 

successive fully saturated states. The key contribution of fluid substitution tests is to allow a 

direct checking of the validity of Biot-Gassmann’s equation without referring to less-controlled 

dry measurements (Rasolofosaon and Zinszner, 2003). The physical properties of the different 

fluids used are given in Table 1: the bulk modulus of each fluid has been measured using a pair 

of P-type piezoelectric ceramics set at a fixed distance and immersed into the fluid at the 

pressure applied during the petroacoustic tests (i.e. 1.5 MPa); the density and viscosity values 

correspond to standard fluid properties at 20°C. We have shown that this set of fluids covers a 

sufficiently large range of bulk modulus to allow a consistent checking of Biot-Gassmann's 

equation for an outcrop limestone (Bemer et al., 2016). The bulk moduli of methanol and ethanol 

are very close; the intermediate flushing by methanol is intended to ease the fully miscible 

replacement of the more viscous ethylene glycol and provide a control point. After the saturation 

with heptane, the sample is again flushed by ethanol then brine to take the sample out of the 

petroacoustic cell in a brine-saturated state allowing its direct analysis in the NMR device. The 

fluid sequence is then the following: brine (25 g/l NaCl), ethylene glycol, methanol, ethanol, 

heptane, ethanol, brine (25 g/l NaCl). 

The ultrasonic signals are analyzed using two different approaches: the first break 

picking, which gives the impetus velocity, and the phase spectral ratio method, which gives the 

phase velocity. This second method consists in applying a Fourier transform to the recorded 

signal and comparing it, in the frequency domain, with a reference signal recorded in a 
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homogeneous medium of perfectly known velocity (in this case an aluminum sample). Further 

details on this method can be found in Bemer et al. (2016). All the velocity computations have 

been performed using an in-house LabView software and considering one and a half signal 

period for the phase velocity. Each measurement of P and S velocities has been repeated three 

times with deviations below 1% and 0.5% respectively for first break and phase velocities. The 

first break velocity is directly impacted by the transmitted wave form which can complicate the 

picking of the arrival time especially for the S wave due to the noise associated with the 

preceding weak P signal. An additional 1% error has been considered for the first break 

velocities to account for the picking uncertainty. Two specific uncertainty sources have been 

considered for phase velocities: the impact of the signal window used for the computation and 

the possible influence of the reference signal. Reference samples of different lengths have 

notably been used with an induced deviation below 1%. The maximum errors on both first break 

and phase velocity measurements are finally considered as less than 2%. 

Carbonate heterogeneity is known to induce scattering effects usually referred to as "path 

dispersion" (Cadoret et al., 1995). Contrary to the first break picking which may measure the 

travel time corresponding to fastest paths taken by part of the acoustic energy and thus lead to 

overestimated acoustic velocities, the computation of the phase velocity minimizes the effect of 

heterogeneity. The measured phase velocities are then more representative of the sample 

macroscopic behavior (Cadoret et al., 1995; Rasolofosaon and Zinszner, 2012; Bemer et al., 

2016). 

Microstructure characterization 
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Effective medium modeling relies on the definition of representative microstructure 

models and thus on a comprehensive characterization of the microstructure of the studied 

samples. Table 2 lists the various methods combined to gather microstructure information. The 

emphasis is notably laid on the nature of the information and the limitations associated with each 

approach. The petrographic analysis and the derived paragenesis are described in our companion 

paper (Adelinet et al., 2018). 

Microscanner imaging 

Sub-samples are cored from the portion remaining after cutting off the vertical thin 

section. The 8-mm diameter of the sub-samples results from a compromise between the 

representativeness with regard to the original sample and the resolution of the acquisition. The 

sub-samples are dried for 48 h at 60°C to remove residual water and then imaged using the 

phoenix nanotom® computed tomography system. In a second step, the samples are vacuumed 

and fully saturated with 40 g/l KI brine within a cell pressurized at 10 MPa for 24h to dissolve 

any residual gas. The sub-samples are then sealed to avoid subsequent drying and imaged using 

the same acquisition conditions than for the dry state. The sample areas invaded by the brine are 

then be derived from the difference between the brine-saturated image and the dry one (Figure 

2). 

For all the samples, the phoenix nanotom® computed tomography system has been set to 

work at 90 keV and 170 µA. The magnification is 12.5× resulting in a voxel size of 4 µm. A 

sub-volume of 900 × 900 × 800 voxels is then reconstructed with a voxel binning of two and a 

16-bit grey level depth. This results in a 3D image with a voxel size of 8 µm and a diameter of 

7.2 mm. 
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The noise inherent to computed micro-tomography reconstruction can complicate the 

direct identification of the grey level associated to each phase. To enhance the local contrast 

between the different constituents of the images while keeping a sufficiently large grey level 

histogram, a mean filtering is applied to the 16-bit images. It consists in affecting to a given 

voxel the mean grey level value of a kernel of 5
3
 neighboring voxels. This procedure notably 

limits blurring effects at the interface between the different phases of the studied volume. 

The differences in grey levels between the KI-saturated and dry samples are only due to 

the invasion of the porosity by the KI brine, the grey levels of the solid phases remaining 

unchanged. The grey levels being proportional to the density, the total porosity ��� is deduced 

from the mean grey level of the 3D images obtained for the dry and KI-saturated samples, G��� 

and G� �: 

��� =
!� � − !���
#$% − #&'��  (2) 

where #&'�� is the grey level of the void phase and #$% the grey level of the KI-brine. The grey 

values characterizing the voids and the KI brine have been determined from the sample showing 

the larger macropores (F1-13) and then used for all samples. 

The microporosity of the samples is simply deduced from the difference between the 

obtained total porosity and the resolved macroporosity. However it is not possible to determine 

the mineral composition of the microporous phase through grey level histogram partitioning. 

X-Ray Diffraction (XRD) 
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The sample pieces intended for XRD analysis are ground to an appropriate size (around 

20-30 µm) and mixed with alumina (20% of the analyzed mass) for proper mineral 

quantification. The data are then interpreted to compute volume fractions from the weight 

contents classically provided by the XRD analysis. 

The method is the following: identification of the minerals from the diffraction lines; 

numerical simulation of the diffraction profiles using the Rietvield method (Rietvield, 1969); 

computation of the specific density of the identified minerals using the information on crystal 

structures provided by the simulation process; computation of volume fractions from weight 

contents and specific densities. The computed specific densities are systematically compared to 

the values expected for the identified minerals as a quality check. 

Nuclear Magnetic Resonance (NMR) 

NMR analysis is performed on the brine-saturated samples. In addition to the pore 

volume, NMR experiments measure a magnetization decay curve ()*+ at a regular time interval 

(e.g. 100 µs). This curve is then usually analyzed as a sum of exponential decays: 

()*+ =,-� 	exp 1− *
23�4�

 (3) 

The distribution of relaxation times is a plot of the amplitudes -� as a function of 23�. The 

magnetization ()*+ cannot be measured at * = 0 but at a time depending on the instrument 

capabilities. This time defines the detection limit which was equal to 0.1 ms for the studied 38-

mm diameter samples. In the fast diffusion regime, each 23 component is linked to the volume to 

surface ratio of a pore according to: 
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1
23 =

1
23� + 83

��'��
9�'��  (4) 

where 23� is the bulk relaxation time of the saturating fluid, 83 is the surface relaxivity, ��'�� is 

the pore surface and 9�'�� the pore volume. 23� defines the upper limit of relaxation time 

distributions. Hence, the 23 distribution, which is often called pore size distribution, actually 

reflects a distribution of 9�'�� ��'��⁄  and thus includes a shape factor as well as the surface 

rugosity. 

For samples showing large pores having relaxation times approaching 23�, one should 

subtract 23�which is no longer negligible (Vincent et al., 2011). This is performed in the time 

domain according to: 

()*+ exp 1− *
23�4; =,-��exp 1− *

23�4�
 (5) 

All the distributions presented in this paper have been computed according to equation (5) with 

23� = 2700	ms. 

A key assumption in the computation of the NMR pore size distribution is that there is no 

pore coupling effect, which means that the molecules from a given compartment are not mixed 

through diffusion process with other molecules from nearby compartments (Fleury et al., 2009). 

When no pore coupling is observed, a comparative study between NMR and MICP data obtained 

on carefully selected carbonate samples of various origins has shown that a cut-off of 200 ms in 

the NMR 23 distribution is suitable for separating the microporosity from the macroporosity, in 
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accordance with a pore throat diameter cut-off of 2 µm for MICP distributions (Vincent et al., 

2011). 

Mercury Injection Capillary Pressure (MICP) 

MICP experiments measure the volume of mercury penetrating the rock sample for a 

given pressure increment. The pore throat diameter �@� associated to a given mercury invasion 

pressure @� is deduced from Laplace's law. The invasion pressure is increased up to 400 MPa, 

corresponding to throat diameters down to 3.6 nm. The sample pore volume is deduced from the 

cumulative injected volume and used to compute the mercury saturation �@�. 

As recommended by Lenormand (2003) and Vincent et al. (2011), the pore size 

distribution is deduced from the following dimensionless equation: 

#A�@�B = @�
��@�
�@� (6) 

The MICP derived pore size distribution only reflects the volume accessible through the pore 

throats at a given pressure. The microporosity fraction determined through a 2 µm cut-off can 

then be overestimated if the connectivity of the porous structure is such that large pores are 

accessible only through small pores with small throats. 

PETROPHYSICAL PROPERTIES AND MICROSTRUCTURE CHARACTERISTICS 

Two sets of carbonate samples, designated hereafter as Family 1 (F1) and Family 2 (F2), 

have been studied. Table 3 gives the measured petrophysical properties. Sample set 1 includes 5 

samples with porosity values ranging from 13 to 22% and permeability values between 100 and 

Page 12 of 42GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Geophysics   13

400 mD. Sample set 2 includes 6 samples with porosity values ranging from 6 to 22% and 

permeability values between 0.1 and 6 mD. The higher ��	
 values are due to brine remaining 

within the samples after drying. This systematic deviation remains below one porosity unit (1%) 

for all the samples except for sample F1-13 which showed a deviation above two porosity units 

(2%). A second NMR analysis performed on this specific samples after drying has confirmed the 

presence of residual brine accounting for the deviation between ��	
 than �������. 

Discrepancies between ��	
 and ������� and the porosity values deduced from microscanner 

and MICP analysis could be related to the smaller volumes investigated by these methods. 

The main phases identified from the XRD analysis are consistent with thin section 

analysis (Adelinet et al., 2018) and consist in calcite, dolomite and silicate, this last phase 

grouping quartz and a small fraction of feldspars. Other scarce phases such as clay minerals are 

neglected. The volume fractions provided in Table 4 are normalized to ensure a sum of 1 

mandatory for effective medium modeling. 

With the exception of sample F2-2, the two rock families show similar porosity ranges 

and differ mainly by their permeability levels and their mineral contents. The samples from 

Family 2 are characterized by significantly higher dolomite contents and lower permeability 

values. Sample F2-2 has been selected to extend the porosity range of Family 2. However, this 

sample shows a calcite content of more than 40%, whereas the other F2 samples are 

characterized by calcite contents below 10%. 

F2 samples are expected to display higher microporosity fractions due to their lower 

permeability. This is confirmed by NMR, MICP and microscanner analyses (Table 5). As stated 

above, these three methods explore different physical parameters: NMR 23 distributions are 

Page 13 of 42 GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Geophysics   14

related to the pore volume over surface ratios; MICP distributions give information on the pore 

throat sizes and microscanner imaging allows the identification of the volume fraction occupied 

by pores larger than 8 × 8 × 8 µm
3
. The information provided by microscanner imaging is the 

more physically consistent for effective medium modeling. It is however not available for all the 

samples and has been obtained on a volume smaller than the one investigated by NMR analysis. 

Figure 3 compares the NMR and MICP distributions for F1 and F2 samples. All 

distributions have been normalized to facilitate comparison. Some discrepancies in the shape of 

the NMR and MICP distributions are observed for F1 samples. The more porous samples, F1-15, 

F1-17 and F1-21, show similar main modes for both sets of distributions (around 350 ms for the 

NMR 23 mode and 2 µm for the MICP pore-throat size mode). The microporosity fractions 

associated to 23 below 200 ms and pore-throat diameter below 2 µm are consistent with each 

other and with the additional estimation provided by microscanner analysis for sample F1-21 

(Table 5). The MICP distributions of samples F1-12 and F1-13 show a dominant contribution of 

macropores and thus give lower microporosity fractions. The NMR microporosity fraction of 

sample F1-12 is consistent with the value deduced from microscanner analysis and thus 

considered as more reliable than the MICP estimation. In the case of sample F1-13, a strong 

coupling effect is suspected due to the low value of the NMR 23mode (below 200 ms). The 

microporosity fraction deduced from microscanner imaging should then be the most 

representative estimation. 

The shape of the NMR and MICP distributions for F2 samples are consistent. The 

microporosity fractions derived from MICP analysis are however systematically lower than the 

NMR microporosity fractions which are closer to the microscanner data and thus deemed more 
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reliable. A closer analysis of the initial CT-scanner image of the original sample shows that 

subsample F2-3 has unfortunately been taken from an area showing few macropores which 

explains the computed high microporosity fraction and illustrates the specific issue of 

heterogeneity for carbonate rocks. 

Finally, except for sample F1-13, the representative microporosity fractions correspond to 

the NMR information. 

PETROACOUSTIC SIGNATURE OF FLUID SUBSTITUTION: VALIDITY OF BIOT-

GASSMANN'S EQUATION 

Biot-Gassmann's equation is widely used to model fluid effects on acoustic properties 

(Mavko et al., 1998). The poromechanical framework underlying this equation is detailed in 

Bemer et al. (20016). The key assumptions are: a) quasistatic perturbations; b) homogeneous 

porous medium with a solid frame exhibiting an isotropic linear elastic behavior; c) 

homogeneous solid matrix exhibiting an isotropic linear elastic behavior; d) considered 

representative elementary volume in undrained conditions; e) homogeneous pore pressure within 

the porous space which amounts to consider no dispersion induced by squirt and/or inertial flow 

(Dvorkin et al., 1995) and f) no chemical interaction between the fluid and the rock frame. 

Under these assumptions, Biot-Gassmann's equation relates the bulk modulus measured 

in undrained condition DE to the drained bulk modulus D�, the solid matrix bulk modulus D�, the 

fluid bulk modulus DFG and the porosity �', while the shear modulus ! is independent of 

saturating fluid: 
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DE = D�
H
I
I
J
1 +

K1 − D�D�L
3

)1 − �'+D�D� − KD�D�L
3
+ �' D�DFGM

N
N
O
 (7) 

Figure 4 plots the P and S-wave phase velocities measured on the brine-saturated samples 

as a function of porosity. The measurements have been performed at a differential pressure of 

25 MPa for F1 samples and 20 MPa for F2 samples. Both P- and S-wave velocities follow an 

overall decreasing trend with higher velocity values recorded for F2 samples. This different 

behavior is most likely related to their higher dolomite content and cannot be explained only by 

their microporosity level (Figure 5) as proposed by Eberli et al. (2003). 

First break velocities are systematically larger than phase velocities as illustrated in 

Figure 6 for brine-saturated measurements. This deviation can be related to the intrinsic 

heterogeneity of the studied sample (Dubos-Sallée et al., 2016). The higher deviations observed 

for F1 samples (up to 11% for P-wave velocities and 6% for S-wave velocities) are consistent 

with their larger pores and grains approaching the centimeter-scale wavelength (Figure 7). The 

difference is particularly noticeable when the measurements are reported in a 9� 9�⁄  versus P-

wave impedance (PQ = 89Q) cross-plot commonly used as a rock physics template (RPT) to 

analyze acoustic velocity behavior (Avseth et al., 2005; Xu and Payne, 2009; Zhao et al., 2013). 

Phase velocity measurements are all the more recommended as they reveal a behavior closer to 

the one observed at low frequency (Cadoret et al., 1995). 

The very low permeability of samples F2-2 and F2-4 has complicated the fluid 

substitution process. The whole fluid sequence could be achieved for sample F2-2 with the 

drawback of longer test duration and higher dispersion of the measured saturated bulk moduli 
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which nonetheless remain within the measurement error. The flushing of ethylene-glycol with 

methanol has proven impossible for sample F2-4 and the test was stopped. 

The saturated bulk modulus K� � and the shear modulus G� � are computed from the P-

wave velocity 9Q and S-wave velocity 9S measured for the different saturating fluids: 

K� � = 8 19Q3 − 4
39S

34 (8) 

G� � = 89S3 (9) 

where 8 is the fluid-saturated rock density. Both phase and first break measurements are used to 

derive two sets of elastic moduli denoted hereafter with the suffixes PH and FB. Taking into 

account the 2% error associated to velocity measurements, equations (8) and (9) lead to errors on 

K� � and G� � respectively below 9% and 5%. As fluids have no time to escape from the pores at 

ultrasonic frequencies, the saturated elastic moduli obtained for the five liquids used in the fluid 

substitution process are considered as undrained moduli. 

Figure 9 compares the evolution of the measured saturated bulk and shear moduli as a 

function of the bulk modulus of the saturating fluid for two representative samples of similar 

porosity level. The points at nearly zero fluid bulk modulus correspond to the bulk and shear 

moduli measured on the dry samples before the brine saturation. Measurements performed at 

room dry conditions could be biased by capillary effects (Rasolofosaon and Zinszner, 2003). The 

deviation between ��	
 than ������� shows that our samples present a few percent residual 

saturation after drying sufficient to minimize capillary effects. The elastic moduli deduced from 

the first break velocity measurements are more scattered and systematically higher than the 
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elastic moduli deduced from the phase velocity measurement. The deviation is particularly 

significant for the bulk modulus of F1 samples. 

The measured shear moduli do not vary with the saturating fluid thus indicating no 

significant shear weakening or strengthening upon brine saturation (Adam et al., 2006; Verwer et 

al., 2010). The shear modulus of each studied sample is finally given by the mean value obtained 

for the five saturating liquids. 

The saturated bulk modulus increases with the fluid bulk modulus as expected from Biot-

Gassmann's equation. The five sets of ADFG, D� �B measurements associated to each saturating 

liquid are used to fit the two unknowns of Equation (7), namely the drained bulk modulus D� and 

the solid matrix bulk modulus D�. As at least part of the residual brine observed after drying is 

likely to have remained in place during the miscible fluid replacement, the porosity value 

considered in the calculations is �������. The inverse analysis of D� and D� has been performed 

using the least squares method and Excel solver. The errors on the computed drained bulk 

modulus and solid matrix bulk modulus are estimated at around respectively 9% and 20% 

(Bemer et al., 2016). 

Table 6 gives the drained bulk modulus, shear modulus and solid matrix bulk modulus 

determined for each sample from the phase and first break velocity measurements. First break 

velocities lead to drained elastic moduli significantly higher than the ones derived from phase 

velocities: drained bulk moduli are overestimated by 31% on average for F1 samples and 12% 

for F2 samples, while shear moduli are overestimated by 8% on average for F1 samples and 4% 

for F2 samples. Figure 10 and Figure 11 illustrate how well Biot-Gassmann's equation 

reproduces the evolution of the measured saturated bulk as a function of the fluid bulk modulus 
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for the phase velocity measurements. The points marked in white correspond to measurements 

performed during the reverse flushing by ethanol then brine after heptane-saturated 

measurements. Except for sample F2-2 which shows some scattering, the obtained results 

confirmed the perfect reversibility of the fluid substitution process. 

Several quality checks of the obtained results can be made. First, the derived phase and 

first break drained bulk modulus and shear modulus are mostly consistent with the corresponding 

dry measurements, which confirms the absence of both significant capillary effects and chemical 

interaction of the saturating fluids and the rock frame. Dry measurements being unaffected by 

dispersion effects associated to squirt and/or inertial flows, the consistency of dry and drained 

elastic moduli indicates that the saturated elastic moduli corresponds actually to undrained 

moduli and not unrelaxed moduli (Pimienta et al., 2015). As no cracks have been observed on 

thin sections and microscanner images, no squirt-flow effects are expected (Adelinet et al., 

2011). The results however confirmed that no specific dispersion was induced by diffusive 

coupling between the micropores and the macropores of the studied samples (Borgomano et al., 

2017). Sample F2-2 which is associated to lower petrophysical properties is the only sample to 

show a computed drained bulk modulus slightly higher than the measured dry modulus for both 

phase and first break velocity measurements. 

Second, the phase-derived solid matrix bulk moduli are consistent with the mineral 

forming the continuous skeleton of the samples: calcite for Family 1 and dolomite for Family 2, 

these minerals being characterized respectively by a bulk modulus of 76.8 GPa and 94.9 GPa 

(Mavko et al., 1998). The deviations are below 10%, except for sample F1-21 which shows a 

solid matrix bulk modulus closer to the bulk modulus of dolomite but remaining consistent with 
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calcite one if we take into account the measurement error of 20%. The first-break derived solid 

matrix bulk moduli of Family 2 are more scattered but still consistent with the phase-derived 

ones and the expected dolomite value. However, for Family 1, the first-break measurements lead 

to solid matrix bulk moduli more scattered and significantly higher than the phase-derived ones, 

thus losing the overall consistency with calcite bulk modulus. This result confirms the higher 

reliability of phase velocity measurements (Rasolofosaon and Zinszner, 2012). 

DISCUSSION: LIMITATIONS OF BIOT-GASSMANN'S EQUATION 

Our results show that Biot-Gassmann's equation is fully satisfied by the studied samples 

when velocity measurements are obtained through the phase spectral ratio method which 

minimizes scattering effects associated to carbonate heterogeneity. The fluid substitution method 

moreover allows the characterization of non-monomineralic samples without any assumption on 

the solid matrix bulk modulus which is a direct output of the experiment. Dry measurements are 

used as control points and do not impact the determination of the drained elastic moduli. 

If other samples show weakening upon brine saturation, another fluid substitution 

sequence could be used: heptane, ethanol, mixture of 60%w ethanol and 40%w ethylene glycol 

(DFG = 2.11 GPa), ethylene glycol, brine. This alternative fluid sequence covers the same range 

of fluid bulk moduli and keeps the saturation with brine required by the NMR analysis for the 

last step. The same approach could then be followed to check the applicability of Biot-

Gassmann’s equation on the first four liquids and derive consistent values for the drained elastic 

moduli and the solid matrix bulk modulus. 
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Dispersion phenomena remain the only issue. If present, they could be identified through 

the followed experimental methodology, but would prevent the use of Biot-Gassmann's equation 

to model the fluid substitution process. The saturated elastic moduli measured for different 

liquids could then nonetheless be useful to sustain an effective medium modeling approach able 

to take into account non-homogeneous pore pressures (Adelinet et al., 2011). 

The interpolation of the obtained experimental results to predict the petroacoustic 

response of new samples is however prevented by the absence of a direct relationship between 

the measured drained elastic moduli and the sample porosity (Figure 12). Drained elastic moduli 

of both F1 and F2 samples follow an overall decreasing trend as a function of porosity. 

Dolomitic samples from Family 2 are stiffer than samples from Family 1 showing the importance 

of taking the mineralogy into account to model the observed response. The scattering of the 

elastic moduli around the two mean trends could result from variations in both the mineral 

contents and microporosity fractions of the samples, thus preventing the simple definition of 

empirical laws. 

The upscaling of the obtained results at the log and the site scales would moreover 

require integrating the heterogeneity distribution resulting from the sedimentological and 

diagenetic history of the studied carbonate formations. An effective medium modeling approach 

based on a comprehensive petrographic characterization has thus been implemented and is 

presented in a companion paper (Adelinet et al., 2018). 

CONCLUSION 
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We have proposed an experimental approach allowing a consistent checking of the 

validity of Biot-Gassmann’s equation for a given carbonate formation without referring to less-

controlled dry measurements and without any assumption on the solid matrix bulk modulus. The 

obtained results moreover permit the direct identification of any weakening or dispersion effects. 

The key points of our approach lie in the fluid substitution process followed during the 

petroacoustic characterization and the use of phase rather than first break velocity measurements 

to reduce scattering effects. The results obtained on two different carbonate formations show that 

fluid substitution in the studied samples is well reproduced by Biot-Gassmann's equation and 

permit to derive consistent drained elastic moduli characterizing the rock frame. 

However, the relationship between the derived drained elastic moduli and the porosity is 

still not direct and involves other microstructure parameters. This issue could be tackle through 

an effective medium modeling approach. The implemented experimental workflow provides the 

consistent elastic properties and microstructural information required to constrain the definition 

of representative microstructure models able to reproduce the petroacoustic signature of 

carbonate rocks. 
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Figure 1. Experimental characterization workflow. 

 

     

Figure 2. Illustration of image subtraction. From left to right: 2D slice of dry sample F1-13; 

corresponding KI-saturated 2D slice; subtraction result showing the macropores in yellow, the 

microporous phase in purple and the solid phase in black. 

 

Selection of the 

sample most 

homogeneous part 
through CT-scanner 

observation 

Non-destructive testing 

sequence: 

• Petroacoustic testing 

• Porosity measurement 

• NMR analysis 

• Permeability measurement 

Microstructure characterization: 

• Vertical thin section (hatched 

area) 

• XRD analysis 

• Mercury Injection Capillary 

Pressure (MICP) 

• Microscanner imaging 

Page 30 of 42GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Geophysics   31

  

  

Figure 3. Normalized NMR and MICP pore size distributions. The vertical thick lines indicate 

the positions of the 200 ms and 2 µm cut-offs. 
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Figure 4. P-wave (9Q) and S-wave (9S) phase velocities measured on the brine-saturated samples 

versus porosity (�������). 

 

 

Figure 5. P-wave (9Q) and S-wave (9S) phase velocities measured on the brine-saturated samples 

versus microporosity. 
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Figure 6. Comparison of first break and phase velocities measured on the brine-saturated 

samples. 

 

   

Figure 7. Transmitted light plane-polarized photomicrographs of A) Family F1 sample showing 

macropores (Φ), calcite mesoclots (Mc.) and dolomite cement (Do.) and B) Family F2 sample 

showing dolomitized matrix, syntaxial cement (white arrow) and fabric-preserving replacement 

of aragonitic allochems (black arrow). 
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Figure 8. Illustration of the potential impact on rock typing of the deviation between first break 

(FB) and phase (PH) velocities. 

 

 

Figure 9. Saturated elastic moduli versus fluid bulk modulus. 
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Figure 10. Petroacoustic signature of fluid substitution for F1 samples. 
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Figure 11. Petroacoustic signature of fluid substitution for F2 samples. Same captions as in 

Figure 10. 

 

0

10

20

30

40

50

60

70

0 0.5 1 1.5 2 2.5 3 3.5 4

S
a

tu
ra

te
d

 m
o

d
u

li
 (

G
P

a
)

Kfl (GPa)

F2-2 

0

10

20

30

40

50

0 0.5 1 1.5 2 2.5 3 3.5 4

S
a

tu
ra

te
d

 m
o

d
u

li
 (

G
P

a
)

Kfl (GPa)

F2-3 

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3 3.5 4

S
a

tu
ra

te
d

 m
o

d
u

li
 (

G
P

a
)

Kfl (GPa)

F2-4 

0

10

20

30

40

50

0 0.5 1 1.5 2 2.5 3 3.5 4

S
a

tu
ra

te
d

 m
o

d
u

li
 (

G
P

a
)

Kfl (GPa)

F2-5 

0

10

20

30

40

50

0 0.5 1 1.5 2 2.5 3 3.5 4

S
a

tu
ra

te
d

 m
o

d
u

li
 (

G
P

a
)

Kfl (GPa)

F2-6 

0

10

20

30

40

50

0 0.5 1 1.5 2 2.5 3 3.5 4

S
a

tu
ra

te
d

 m
o

d
u

li
 (

G
P

a
)

Kfl (GPa)

F2-7 

Page 36 of 42GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Geophysics   37

 

Figure 12. Drained elastic moduli as a function of porosity. 

  

0

5

10

15

20

25

30

35

40

45

50

5% 10% 15% 20% 25%

D
ra

in
e

d
 e

la
st

ic
 m

o
d

u
li

 (
G

P
a

)

φφφφWeight

F1 Kd

F1 G

F2 Kd

F2 G

Page 37 of 42 GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Geophysics   38

LIST OF TABLES 

Table 1. Physical properties of the fluids used in the substitution process, listed according 

to their miscibility with the previous fluid. ............................................................................................. 38 

Table 2. Different classes of microstructure information. ................................................................. 38 

Table 3. Porosity and permeability. ............................................................................................................ 39 

Table 4. Mineral content deduced from XRD analysis. ........................................................................ 40 

Table 5. Microporosity and macroporosity fractions deduced from NMR, MICP and 

microscanner imaging. ..................................................................................................................................... 40 

Table 6. Petroacoustic properties deduced from first break and phase velocity 

measurements. .................................................................................................................................................... 42 

 

Table 1. Physical properties of the fluids used in the substitution process, listed according to their 

miscibility with the previous fluid. 

Fluid 
Bulk modulus 

(GPa) 

Density 

(g/cm
3
) 

Viscosity 

(cP) 

Brine (NaCl 25 g/l) 2.30 1.019 1 

Ethylene glycol 3.23 1.1135 19 

Methanol 1.05 0.791 0.6 

Ethanol 1.12 0.789 1.2 

Heptane 0.88 0.684 0.4 

 

Table 2. Different classes of microstructure information. 

Method 
Analyzed 

material 
Provided information Limitations 

Petrographic 

analysis 

Thin 

section 

2D structural information 

• Mineral content and 

distribution between grain 

and cement phases 

• Macroporosity 

• Location of microporosity 

Resolution around 25-

30 µm 

Microscanner 8-mm 3D structural information • Resolution of 8 µm 
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imaging diameter 

sub-sample 

• Porosity deduced from the 

density difference between 

KI-saturated and dry samples 

• Macroporosity 

• Microporous phase fraction 

• Mineral composition of non-

microporous phases 

• Imaging artifacts 

• Mineralogy of the 

microporous phase 

unknown 

Assumptions on the grey-

level thresholds between 

the various mineral phases 

XRD  Powder 

Mineral content 

Higher precision than thin 

section analysis 

No link with the structural 

repartition of the 

identified mineral phases 

NMR 
Main 

sample 

Petrophysical information 

• Porosity deduced from the 

measured brine-saturated 

pore volume 

• Pore size distribution in 

terms of pore volume over 

surface ratio 

• Proportion of microporosity 

and macroporosity (200 ms 

T2 threshold) 

No link with the 

structural repartition of 

the micropores and T2 

distribution possibly 

impacted by diffusive 

coupling between 

micropores and 

macropores 

MICP 

(mercury 

injection 

capillary 

pressure) 

Small chip 

Petrophysical information 

• Porosity deduced from the 

volume of mercury injected  

• Pore throat size distribution 

• Proportion of microporosity 

and macroporosity (2 µm 

pore throat threshold) 

No link with the 

structural repartition of 

the micropores and 

macropores possibly 

wrongly attributed to the 

microporous volume if 

they are accessible only 

through small pore 

throats 

 

Table 3. Porosity and permeability. 

Sample ^_`abcd ^efg ^fhij ^ik k (mD) 

F1-12 13.1% 14.1% 11.9% 12.3% 174 

F1-13 13.1% 15.3% 11.1% 11.4% 380 
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F1-15 14.4% 15.1% 14.6%  175 

F1-17 18.0% 18.9% 18.2%  103 

F1-21 21.6% 21.7% 16.9% 19.9% 398 

F2-2 6.4% 6.7% 8.2%  0.1 

F2-3 19.6% 20.3% 15.2% 18.2% 5.7 

F2-4 14.5% 15.3% 14.4%  0.2 

F2-5 18.6% 19.5% 14.8% 26.6% 4.2 

F2-6 22.0% 22.8% 21.2% 29.0% 1.2 

F2-7 20.3% 21.4% 16.0%  3.4 

 

Table 4. Mineral content deduced from XRD analysis. 

Sample Sample Calcite Dolomite Silicate 

F1-12 12 52.1% 36.1% 11.8% 

F1-13 13 78.3% 19.3% 2.4% 

F1-15 15 67.6% 25.0% 7.4% 

F1-17 17 81.0% 12.7% 6.3% 

F1-21 21 82.4% 13.5% 4.1% 

F2-2 2 41.5% 56.2% 2.3% 

F2-3 3 8.4% 88.3% 3.4% 

F2-4 4 0.1% 96.5% 3.4% 

F2-5 5 2.5% 93.6% 3.9% 

F2-6 6 0.1% 95.6% 4.3% 

F2-7 7 0.1% 95.9% 4.0% 

 

Table 5. Microporosity and macroporosity fractions deduced from NMR, MICP and 

microscanner imaging. 
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NMR analysis 

(200 ms threshold) 

MICP analysis 

(2 µm threshold) 

Microscanner imaging 

(8 µm resolution) 

Sample lm�n�'�	
  l	 n�'�	
  lm�n�'	%�Q  l	 n�'	%�Q  lm�n�'��  l	 n�'��  

F1-12 39% 61% 18% 82% 40% 60% 

F1-13 53% 47% 21% 79% 27% 73% 

F1-15 32% 69% 31% 69%   

F1-17 35% 65% 24% 76%   

F1-21 27% 73% 36% 64% 35% 65% 

F2-2 77% 23% 48% 52%   

F2-3 54% 47% 21% 79% 77% 23% 

F2-4 53% 47% 43% 57%   

F2-5 78% 22% 26% 74% 70% 30% 

F2-6 58% 42% 26% 74% 59% 41% 

F2-7 56% 44% 50% 50%   
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Table 6. Petroacoustic properties deduced from first break and phase velocity measurements. 

 Phase velocity measurements First break velocity measurements 

Sample opjq (GPa) rjq (GPa) osjq (GPa) optu (GPa) rtu (GPa) ostu (GPa) 

F1-12 33.8 17.0 74.2 46.7 18.3 96.5 

F1-13 32.2 15.4 73.0 39.9 16.4 88.6 

F1-15 27.3 15.1 78.6 35.7 16.8 90.2 

F1-17 23.9 15.8 76.1 30.8 16.7 102.2 

F1-21 22.8 11.3 92.6 30.5 12.4 128.5 

F2-2 42.0 24.1 97.5 44.9 24.1 97.8 

F2-3 28.3 17.7 104.3 30.8 18.5 103.2 

F2-4       

F2-5 28.0 17.4 103.7 32.6 17.8 94.4 

F2-6 24.8 16.2 104.1 28.4 17.0 85.6 

F2-7 26.1 17.5 100.2 29.9 18.6 107.5 
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