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Abstract. This paper presents the authors’ perspectives on some of the open questions and opportunities in
Process Systems Engineering (PSE) focusing on process synthesis. A general overview of process synthesis is
given, and the difference between Conceptual Design (CD) and Process Design (PD) is presented using an
original ternary diagram. Then, a bibliometric analysis is performed to place major research team activities
in the latter. An analysis of ongoing work is conducted and some perspectives are provided based on the anal-
ysis. This analysis includes symbolic knowledge representation concepts and inference techniques, i.e., ontol-
ogy, that is believed to become useful in the future. Future research challenges that process synthesis will
have to face, such as biomass transformation, shale production, response to spaceflight demand, modular plant
design, and intermittent production of energy, are also discussed.

Abbreviations

CD Conceptual Design
GWP Global Warming Potential
ICAS Integrated Computer-Aided System
LCA Life Cycle Analysis
MA Memetic Algorithm
MILP Mixed Integer Linear Programming
MINLP Mixed Integer Non Linear Programming
MP2 Multi Physics Multi Purpose
NLP Non Linear Programming
PD Process Design

1 Introduction

Process synthesis is a dynamic research domain widely
explored by the Process Systems Engineering (PSE) com-
munity. This topic was first put forth 60 years ago as
mentioned by Stephanopoulos and Reklaitis (2011) in their
paper on the historical development of PSE. Westerberg
(2004), in his retrospective on design and process synthesis,
has defined process synthesis as the part of engineering
“where one invents the structure and operating levels for

a new chemical manufacturing process.” Process synthesis
applies to both the design of a completely new process
flowsheet and the retrofit and optimization of an existing
process. Furthermore, process synthesis is the assembly
and interconnection of unit operations into a process net-
work involving different physical and chemical phenomena
to transform a material into desired products for given
energy inputs with the goal of optimizing either economic,
environmental, and/or social objectives (Chen and
Grossmann, 2017). As already stated in the review by
Cremaschi (2015) and completed by a recent search in
journal articles and progressing databases (as discussed in
Sect. 2), there is an exponential increase in the total number
of publications on process synthesis over the past decades.
This trend will be further increased due to the future
research challenges that process synthesis will face, e.g., bio-
mass transformation, shale production, response to space-
flight demands, modular plant design, and intermittent
production of energy. These challenges will be further dis-
cussed in the last section of this article.

According to previous reviews on this research field
(Cremaschi, 2015; Westerberg, 2004), the process synthesis
community is mainly focused on four major topics: reactor
networks, separation sequences, heat exchanger networks,
and flowsheet synthesis. The present review does not intend
to be exhaustive, as it focuses more specifically on flowsheet
synthesis. For other topics, readers can refer to the excellent
reviews and perspectives mentioned above. Chronologically,
the two main categories of approaches developed to address* Corresponding author: ludovic.montastruc@ensiacet.fr
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the process synthesis issues are hierarchical decomposition
based on heuristics and mathematical programming attrib-
uted to huge advances in optimization methods. The
current methods are mostly based on the mathematical pro-
gramming approach to (1) incorporate the interactions
between different design levels, (2) find the optimal design
with respect to one or several objectives, and (3) avoid elim-
ination of new promising process alternatives because
heuristics are based on previous observation process flow-
sheets. Generally, such approaches are broken down into
three stages: creation of a superstructure that gathers all
process alternatives, translation of these alternatives into
a relevant optimization model, and development of an opti-
mization algorithm to solve the model. Concerning the last
two stages, Chen and Grossmann (2017) recently discussed
the progress to date and the future progress in mathemati-
cal programming concerning global and robust optimization
methods. They reviewed key concepts in optimization-
based conceptual design, namely superstructure representa-
tions, multilevel models, optimization methods, and
modeling environments. A brief review of the synthesis of
major subsystems and flowsheets is also presented. There-
fore, the present article does not deal with those stages.

The purpose of this paper is to analyze and discuss the
novel and powerful design methods developed by the PSE
community and to provide some perspectives and opportu-
nities in process synthesis focusing on flowsheet synthesis.
The selection of flowsheet synthesis is motivated by the
potential of this area, and by the future challenges and
opportunities of this research domain owing to environmen-
tal concerns, industrial and economic context, raw material
and product diversification, energy saving, and technologi-
cal innovation. As aforementioned, the latest reviews are
more focused on the other process synthesis topics and on
mathematical optimization. Consequently, the present
contribution is a complement to the previous articles.

This article is divided into four parts. Section 2 provides
a general overview of process synthesis and presents the
difference between Conceptual Design (CD) and Process
Design (PD) using an original ternary diagram. A biblio-
metric analysis is performed to place major research team
activities in this ternary diagram. In Section 3, a description
of main identified methodologies is presented. Section 4 is
dedicated to an analysis of ongoing works and some
perspectives are proposed.

2 Perspective of the problem

2.1 General overview

The development of an industrial process is a succession of
steps that focus on a wide range of scales keeping in mind
that the smaller the scale, the more detailed and complex
the description of the process (Li and Kraslawski, 2004).
The considered scales depend on the objectives and scope
of the study and the hypothesis or available information.
For example, in their approach, Zondervan et al. (2011)
focused on three successive scales, i.e., the unit operation
scale, unit scale, and plant scale, because their objective

was to find the optimal processing route within a set of
alternatives as exhaustively as possible.

Those scales can be expanded in both directions. When
considering large scales, there is a new trend to go beyond
the process scale, expand the vision of process synthesis,
and better integrate the process into its ecosystem. For
example, Kuznetsova et al. (2016) and Ramos et al.
(2016) have dealt with a problem on the synthesis of an
eco-industrial park, and Eks�ioğlu et al. (2009) and Tay
et al. (2013) with the scale of the supply chain. In contrast,
when considering small scales, after having integrated the
molecular scale (Belletante et al., 2016; Marrero and Gani,
2001) to integrate the thermodynamic calculations and
evaluate the feasibility of each processing route, some recent
studies went even further by considering the particle scale
to determine more precisely the process feasibility and
efficiency (Barone et al., 2017; Xia, 2017).

In the present study dedicated to process synthesis, four
successive levels are considered as of major interest for the
process engineer: plant design level, conceptual design level,
process design level, and equipment design level. These
levels are illustrated in Figure 1 for the specific case of a
chemical plant. On the left side, the plant design level
corresponds to the chemical plant at a larger scale. A unit
cluster or a specific unit of the plant design level is detailed
in the next square, which illustrates the conceptual design
level. Supplementary details are further considered at the
following level, which is the process design level. Finally,
on the right side, the sketch illustrates typical information
considered at the equipment design level. It consists of
sizing equipment via engineering design rules. In the con-
ception of a process, the plant design and equipment design
levels are the two extreme limits: the first one is mainly used
for economic analysis while the latter concerns mainly
front-end chemical engineering works. Usually process stud-
ies focusing on the development or optimization of new pro-
cesses are limited to the conceptual design and process
design levels.

Each proposed level can be associated to a step of the
development of a process. The first step concerns the plant
design. It allows determining a preliminary draft of the pro-
cess, i.e., the necessary units and their sequence, e.g., con-
version units, hydrotreatment, and reforming. This level is
for the moment addressed in the industry by linear pro-
gramming. A macroeconomic analysis can be performed
at this step to determine the preliminary selling price,
investment, and operating costs (Pham and El-Halwagi,
2012; Ponce-Ortega et al., 2012). A shortcut method for
the synthesis and screening of integrated biorefineries was
developed by Bao et al. (2011). Moreover, Morelos et al.
(2015) developed a hybrid methodology for the synthesis
of biofuel production processes based on a branch of avail-
able products and intermediates, the establishment of a
superstructure with technologies and chemical species
involved, mathematical optimization of production routes,
and in-depth assessment of the most promising alternatives.
The second step is the conceptual design step, which con-
sists of specifying the conversion and separation operations
and their sequence within the units (for example, extraction
column, distillation column, and reactors) to establish a
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mass balance of the process (Bertran et al., 2017a, b;
d’Anterroches and Gani, 2005). This step also includes
the determination of operating conditions (Bechara et al.,
2016a, b; Tula et al., 2017). Once the material balance
between conversion and separation units is established,
additional devices are introduced during the process design
step, such as heat exchangers or pressure-changing devices,
e.g., compressors, pumps, and pipes (Chen et al., 2011a, b).
At this stage, the optimization focuses on heat integration
and its interaction with the rest of the process (Ochoa-
Estopier et al., 2013). The purposes of the process design
are to obtain the final and detailed flowsheet of the process,
calculate precise heat and mass balances, and perform an
economic evaluation of the process. Finally, the last step
focuses on the sizing of each specific equipment (height,
width, material, reactor technology, and associated
internals). Note that the methodology is iterative. Even
when simultaneous design methods are applied, because
analysis of the results obtained at one-step may prompt
re-evaluation or decisions.

The conceptual and process design may be connected to
the cost estimate classification system developed by the
Association for the Advancement of Cost Engineering
(AACE International, 2005). The purpose of this classifica-
tion is to estimate the maturity of a project. According to
this system, conceptual design and process design corre-
spond to class 4 and class 3, respectively. Class 4 consists
of determining the process flow diagram for main process
systems, and class 3 involves establishing the preliminary
piping and instrument diagram.

To clearly differentiate conceptual design and process
design, a classification that distributes the decision vari-
ables between both steps is presented in Table 1. The vari-
ables are divided into two groups: synthesis variables and
design variables. The first group consists of binary variables
describing the existence of specific operations while the
second group is composed of operating conditions. As pre-
sented in Table 1, the objective of conceptual design is to
determine the preliminary configuration of a process
depending on yields and product qualities by focusing on
the main operations, i.e., the conversion and separation
operations. The main operating conditions are considered
in the calculation only if they affect the configuration. A pre-
liminary sizing of operations may be required to accurately

determine the costs and energy consumption. The concep-
tual design allows evaluating the raw materials and charac-
terizing the outlet flowrate. These values can be further
used for a first estimation of the environmental impact from
REACH EU regulation evaluation to Global Warming
Potential (GWP) estimation. It is important to note that
this first evaluation of GWP is overestimated because no
energy integration is performed at this step. In process
design, the environmental impact can be evaluated using
a Life Cycle Analysis (LCA) methodology. It should be
noted that the economic and environmental objectives are
usually antagonistic. At this step, an automated develop-
ment of chemical processes is required using a sophisticated
algorithm for a multiobjective optimization because a
single-objective optimization cannot identify the tradeoffs
between conflicting performance criteria.

Many fields of expertise need to be considered during
the process synthesis and design steps, and they could be
organized into three main fields: physical science, process
engineering, and applied mathematics. Figure 2 illustrates
the interactions between those fields in a ternary diagram.
On the left side, physical science is composed first of phy-
sics, which is the study of process streams and associated
physical properties through space and time considering
energy and force. Second is of chemistry, which is the study
of raw or intermediate material transformation into desired
products. Physics embodies the separation operations with
required data such as thermodynamics, while chemistry
represents the reaction operations with kinetic studies.
On the right side, process engineering is divided into
synthesis (combination of operations) and design (determi-
nation of operating conditions and sizing). Finally, the
bottom part represents the applied mathematics required
to solve the problem. It is split into the nonlinear system
(where output is not proportional to change of input) and
mixed system (presence of different types of variables such
as integer and real). The two-colored triangles illustrate the
mixes of the fields composing conceptual design and process
design. Conceptual design, which is based on chemistry,
involves many nonlinear variables and focuses mainly on
synthesis that includes a few mixed variables. Process
design is based on physics, involving few nonlinear variables
and focusing mainly on designs that include a large number
of mixed variables.

Fig. 1. Successive levels studied in process engineering.
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Process optimization has to be included in this work to
create and develop an optimal process, i.e., the process
achieving the best compromise between different criteria
(yields, products quality, operating costs, investment,
environmental impact, etc.).

To reinforce interest on the presentation used in
Figure 2, we situate on such a diagram studies dealing with
PSE. A study corresponding to point A would be character-
ized by large activities on mixed applied mathematics in the
border between conceptual design and process design.
There are many types of optimization problems: mixed inte-
ger programming, Mixed Integer Linear Programming
(MILP), Mixed Integer Non Linear Programming
(MINLP), mono-objective, multi-objective, etc.Many stud-
ies propose inventories of optimization methods and
describe application cases in science and engineering (Benki,
2014; Poe and Mokhatab, 2016; Roy et al., 2008). Others
review the optimization method used in a specific sector,
for example, Asadi and Sadjadi (2017) for the green energy
sector. Finally, some works focus on optimization methods
applied on process synthesis (Chen and Grossmann, 2017;

Grossmann and Daichendt, 1996). The selection of the opti-
mization method depends on the objectives, scale of the
model, industry, strategy of resolution, etc.

Point B in Figure 2 would denote a study on process
design using physics concepts to represent the problem.
At the process design level, Cremaschi (2015) made an
inventory of general optimal design methods but focused
particularly on the separation system. Process integration,
such as heat and water integration, is considered at this
level. Heat exchanger network synthesis is a very broad
theme based on the number of reviews (Grossmann, 1992;
Gundersen and Naess, 1990; Morar and Agachi, 2010).
Furman and Sahinidis (2002) proposed an annotated
bibliography referencing more than 460 papers, computer
programs, and commercial software dealing with heat
exchanger network synthesis. Papers dealing with water
network synthesis are increasing because of the growing
interest in environmental impact and costs (Bagajewicz,
2000; Foo, 2009). Some works consider that heat exchanger
network synthesis and water network synthesis affect each
other; thus, they proposed a simultaneous synthesis of both
networks (Ahmetović et al., 2015; Kermani et al., 2017).
Finally, the state-of-the-art at equipment level is specific
to each type of equipment. For example, Almeida-Rivera
et al. (2004) and Segovia-Hernández et al. (2015) focused
on the design of reactive distillation while Yildirim et al.
(2011) worked on the design of dividing wall columns.
Another example is the design of heat exchangers (Abou
Elmaaty et al., 2017; Omidi et al., 2017).

Some reviews are general, such as the review by Li and
Kraslawski (2004), which focused on the types of methods
used for the optimal design of processes depending on the
scale of study, or those by Chen and Grossmann (2017)
and Westerberg (2004), which explained the developments
and challenges in optimization-based process synthesis.
It includes the developments of optimization methods, some
conceptual and process design methods, and in-depth
studies of specific processes such as heat exchanger net-
works, distillation networks, reactor networks, and water
networks. To our knowledge, reviews at the conceptual
design level are scarce and there is no general review that
makes an inventory of methods and tools at that level. Note
however the work of Grossmann and Daichendt (1996),
which focused on specific mathematical approaches used
at this level, and that of Yuan et al. (2013), which proposed

Table 1. Variables and criteria in Conceptual Design (CD) and Process Design (PD).

Variables Criteria

Synthesis Design Yield Product
quality

Energy OPEX CAPEX GWP LCA

Operating
conditions

Sizing

Conversion CD CD PD CD CD CD
Separation CD CD PD CD CD CD
Energy balances PD PD PD PD PD PD PD
Pressure
balances

PD PD PD PD PD PD PD

Fig. 2. Comparison between conceptual design (light gray) and
process design (dark gray).
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a state-of-the-art review of methods and tools for the
optimal design of biorefinery processes.

2.2 Bibliometric analysis

The objective of this section is to determine how key
challenges and requirements for flowsheet synthesis and
optimization have been addressed by the PSE scientific
community in recent research. Therefore, a systematic
literature review method composed of a search strategy
and an analysis of the collected documents are performed.
The purpose is to identify the main methods and
approaches developed in the literature and to examine
them thoroughly. It aims at identifying clusters of key-
words and authors that correspond to the main thematic
groups of the domain. The PSE research groups several
topics or subjects: continue or batch, simulation or
optimization, Linear Programming or Non Linear Program-
ming with or without integer variables, mono- or multi-
objective, etc. The main objective is to determine the
relations between the methodology and the systemic
problem approach.

The first step of our search strategy starts with the def-
inition of relevant keywords, i.e., “process synthesis” and
“conceptual design,” in performing the search in scientific
journals databases. With this research, a first list of papers
was extracted. To complete this first list, we submitted
queries to databases to retrieve papers referencing each of
the first seed papers. Finally, more than 2500 articles
published in different scientific journals were identified.
In recent years, several reviews have been published on
conceptual and process design, demonstrating the growing
interest in the area (Barbosa-Povoa, 2017; Cremaschi,
2015; Westerberg, 2004). As a result, we focus our analysis
on recent studies, i.e., list of articles published during the
period between 2011 and 2016, and on research subarea
not addressed by the previous recent reviewers. For exam-
ple, the synthesis and design of batch processes, are

mentioned but not further detailed in this paper due to
the recent state of the art proposed by Pinto-Varela and
Carvalho (2018).

After the application of the first steps of the method, in
the remaining papers, the keywords specified in the corre-
sponding section of the papers and in the title were
extracted. The corresponding word cloud, which gives
greater prominence to keywords that appear more fre-
quently in the source papers, is illustrated with the wordle
in Figure 3. This figure clearly highlights that the thematic
subgroup “mono- or multi-objective optimization” is major
with the economic dimension and environmental concerns,
which are also frequently considered in recent papers. More-
over, in Figure 3, the topic around batch process, batch
plant appeared with the keywords scheduling and supply
chains. Energy is another major subgroup with research
subjects dealing with pinch analysis, heat integration, heat
efficiency, waste energy, and heat exchanger networks. As
previously identified, distillation sequence also appears in
the wordle, but it is less prominent than other themes
related to process synthesis. Another comment is that the
keyword reactor network synthesis does not appear. In fact,
it is embedded in the research aspect related to biomass
because in the period under examination, most of the
research in this field is directed toward biomass conversion.
The new applications of process synthesis are also visible,
e.g., supply chain, biomass, and biofuels.

The major drawback of this wordle is the cumbersome
number of keywords related to each research theme. To
go further, a common approach to identifying the major
thematic subgroups is to apply cluster analysis techniques.
The available clustering methods can be classified into two
categories: methods for which each element can only reside
in a single leaf node in the tree and methods that are a con-
sequence of a single cluster. In contrast to previous meth-
ods, in the second category, overlapping may occur and
data elements can potentially belong to multiple clusters.
Thus, we retain the latter type of methods. To summarize

Fig. 3. “Wordle” of keywords in process synthesis research area (period 2011–2016).
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the content of clusters, cluster labeling is automatically
performed: terms that are more indicative receive a higher
score leading to a ranking in the list of keywords belonging
to the cluster under analysis. In addition to the cluster anal-
ysis, we also identify the most influential research teams
and papers that played major roles. In the considered per-
iod, 1288 articles were published, and 95% of them were
written by 17 research teams only (classified in alphabetical
order):

� Prof. Barbosa-Povoa, Instituto Superior Tècnino
Lisbon

� Prof. Barton, Massachusetts Institute of Technology
� Prof. Biegler, Carnegie Mellon University
� Prof. El-Halwagi, Texas A&M University
� Prof. Engell, Technischen Universität Dortmund
� Prof. Floudas, Texas A&M University
� Prof. Gani, Technical University of Denmark
� Prof. Grossmann, Carnegie Mellon University
� Prof. Klemes, Brno University of Technology
� Prof. Kravanja, University of Maribor
� Prof. Maravelias, University of Wisconsin
� Prof. Maréchal, EPFL
� Prof. Marquardt, RWTH Aachen University
� Prof. Ng, DKS Nottingham University Malaysia
Campus

� Prof. Puigjaner, Universitat Politècnica de Catalunya

� Prof. Srinivasan, Indian Institute of Technology
Gandhinagar

� Prof. You, Cornell University

Figure 4 depicts the coupling between the retained
researchers’ teams and the seven major clusters identified.
Six of the seven clusters are directly related to the first key-
words analysis illustrated in Figure 3. The only new cluster
concerns eco-industrial park. In fact, this cluster arises from
the keywords related to energy such as heat exchange, heat
networks, and energy waste. Indeed, these keywords refer to
both the process scale and an upper scale with the exchange
network between different entities, i.e., eco-industrial parks,
which could be associated to the plant design level as
discussed in section.

While these teams are all working on process and
conceptual design, from this figure, one can identify a first
category of authors who are more focused on optimization
methods, i.e., Barton, Biegler, Floudas, and Grossmann.
For these groups, process synthesis is one application of
the optimization methods that they develop in their
research teams because the conversion of process alterna-
tives into mathematical models often results in MINLPs
that are difficult to solve.

For other authors, mono- or multi-objective optimiza-
tion is often a tool that is included in their methodology.
One major observation from this figure is that the authors
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study the process synthesis under the domain of their scien-
tific backgrounds. Indeed, You, Puigjaner, and Srinivasan
are more focused on supply chain; Klemes, Kravanja,
El-Halwagi, and Maréchal on heat integration aspects,
whereas Maravelias tackles the problem with his vision as
a scheduling specialist. The synthesis design, planning and
scheduling of batch and semi continuous plants were still
ape due to new market environment that favors high values
low volume products an important research domain in PSE.
Due to its inherent flexibility, batch plants can be easily
reconfigured or adapted to permit production adaptation
to cover a wide range of operating conditions within the
same plant configured. In some cases, batch or semi contin-
uous processes present also economical and technical
advantages.

The design of batch processes was reviewed by Reklaitis
(1989), who defined the conceptual batch design process
using problem as decomposed into four decisions levels:
determination of the processing network, selection of the
best operating strategy, allocation of equipment items to
tasks and storage, and sizing the pieces of equipment. More
recently, Barbosa-Povoa (2017) proposed a critical review
of the design of batch plant where both the grassroots
and the retrofit design were analyzed. The multiproduct
and the multipurpose plants were considered. While a
number of breakthrough, she identified several research

streamlines for further developments: design with detailed
structural and operational aspects, incorporation of detailed
financial elements at the design level, multiobjective design
with environmental aspects, models improvement as well as
solution methods, taking account uncertainties, etc. In their
recent study (Pinto-Varela and Carvalho, 2018) underpin
the importance of batch process design reviewing the
methodology used in this research area with this review,
authors also propose a pioneer generic framework for
sustainable batch process design.

A majority of authors are more on the process design
area except for two of them who are more focused on
conceptual design, i.e., Gani and Engell. Finally, another
category of researchers, composed of Marquardt and Ng,
try to have a more comprehensive approach that seeks to
integrate all previous elements. To analyze the different
approaches developed by the previous authors in more
detail, the ternary diagram in Figure 2 is used to position
them relative to each other as illustrated in Figure 5.

The diagram in Figure 5 shows what could be consid-
ered as an approximate position of the research teams
identified. It is important to note that different works are
located around a point representing each group activity
and should be considered as a gravity point only, the scope
of work of each team being more of a zone than a single
point. To determine the different zones for each researcher,

Fig. 5. Ternary diagram presentation on Process System Eng. domain.
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one approach could be by using a statistical study to know
the interaction between the three domains; however, this is
not performed here.

Mainly, three research groups can be identified. The first
group called the mathematical approach group is focused on
mathematical methods and comprises the research works of
Grossmann, Floudas, Barton, and Biegler. The second
group called the process integration group can be identified
around the activities of Kravanja, El-Halwagi, Maravelias,
Puigjaner Srinivasan, and Klemes. Finally, the last group
called the Multi Physics Multi Purpose (MP2) group could
be composed of the works Maréchal, Marquardt, and Engell
including the activities of Gani’s team. With regard to the
work by You, its intermediate positioning is due to his
numerous activities on the supply chain. Ng takes a typical
place due to a few number of keywords in the mathematics
domain.

To qualify the mathematical approach group, the top 10
keywords (published during the period from 2011 to 2016)
are as follows: optimization with 124 repetitions, integer
programming (69), protein (51), global optimization (47),
nonlinear programming (46), algorithms (43), process con-
trol (27), natural gas (26), amino acid sequence (25), supply
chain management (24), and scheduling (21). A strong
activity on applied mathematics can be highlighted with
some applications at different scales.

For the process integration group, the main keywords
are optimization (161), heat exchanger network (109),
multiobjective optimization (51), mathematical program-
ming (40), biomass (36), integer programming (36), supply
chain (35), environmental objectives (28), integration (28),
design (24), decision making (23), biorefineries (22), and
eco-industrial park (22). Those keywords represent various
levels of scale with a very physical approach both in the
concepts and in the areas of applications; keywords such
as supply chain or eco-industrial park appear. This second
group is more process design-oriented, such as the work of
Maravelias (Wu et al., 2016), which offers an effective
representation of the superstructure based on scheduling

concepts. Moreover, regarding Figure 4, this group is char-
acterized by a few papers published for conceptual design.
These activities are more focused on supply chain, schedul-
ing, and eco-industrial parks. For these two groups, many
reviews have been written particularly the recent works of
Cremaschi (2015) and Chen and Grossmann (2017). Some
literature reviews are dedicated to the mathematical
approach group and process integration group (Chen and
Grossmann, 2017; Cremaschi, 2015); therefore, we consider
to study the objectives and the methodology developed by
the MP2 group.

To focus on this last group composed of Gani, Engell,
Marquardt, and Maréchal, the top 10 keywords reported
in their respective works published between 2011 and
2016 are synthetized in Table 2.

These authors deal with both conceptual design and
process design problems with several levels of mathematics
and different applications. Therefore, it is appropriate to
summarize these activities to assess the complementarity
between various approaches to be able to solve future
challenges. From the analysis of the keywords of this table,
it can be observed that all fields between the conceptual
design and process design are studied.

Moreover, this keyword list provides more details on the
activity of each author to represent the bubble around the
gravity points reported in Figure 5. Gani’s activity is more
focused on conceptual design. In contrast, Maréchal is more
focused on optimization, particularly on multiobjective
optimization to increase energy efficiency. Marquardt’s
activities deal with both conceptual design and process
design, with a part on the control applied to distillation
columns. Engell’s activities mostly correspond to the middle
of the group using different optimization methods such as
stochastic methods.

To understand and imagine some methodologies for
answering the challenges of the future, we propose to orga-
nize the present review by authors’ activities within the
MP2 group. First, Gani’s activities in conceptual design
are summarized; second, Engell’s work on optimization is

Table 2. Top 10 keywords published by Gani, Engell, Marquardt and Maréchal.

Gani Rep. Marquardt Rep. Engell Rep. Maréchal Rep.

Design 11 Optimization 23 Optimization 12 Multiobjective
optimization

57

Product design 10 Conceptual design 12 Evolutionary
algorithms

7 Optimization 28

Optimization 8 Distillation 12 Scheduling 6 Carbon dioxide 25
Process synthesis 8 Design 9 Uncertainty analysis 6 Energy efficiency 23
Crystallization 7 Process design 9 Chemical process 5 Process integration 21
Group contributions 7 Biofuels 7 Uncertainty analysis 5 Process design 20
Liquids 7 Algorithms 6 Conceptual design 4 Waste heat 12
Phase equilibria 7 Distillation columns 6 Controllers 4 Design 12
Solubility 7 Parameter estimation 6 Emulsion polymerization 4 Biomass 11
Systematic methodology 7 Model predictive

control
5 Integer programming 4 Pinch analysis 9
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presented. Process design is then outlined by Maréchal’s
activities. Finally, Marquardt’s activity, which is character-
ized by a wide spectrum of studies, will conclude the next
section to take into consideration both conceptual design
and process design.

3 Review

3.1 Conceptual design from molecular scale
to process scale

With the idea of integrating process controllability, envi-
ronmental impact, and energy requirements in the early
stages of process design, Gani et al. (1997) developed the
so-called Integrated Computer-Aided System (ICAS). Its
aim is to assist and speed up the synthesis of processes. This
platform is composed of computer-aided tools for modeling,
simulation, property prediction, synthesis, design, control,
and analysis of systems. ICAS is an equation-oriented pro-
cess simulation framework with various toolboxes organized
in such a way that it is a fully integrated computer environ-
ment. Such a platform is very effective because the loss of
information between toolboxes is limited. ICAS is composed
of four main sections, namely model generator, problem def-
inition, toolboxes, and simulator (Gani et al., 1997), as illus-
trated in Appendix A.

The model generation involves describing the represen-
tation of a process (name, conservation principles,
constraints, boundary values, etc.) through equations.
Various forms of models can be generated depending on
the needs of a specific design problem. All the information
required by the simulator such as flowsheet, thermody-
namic background, reaction kinetics, control strategy,
simulation mode, numerical solution method, and initializa-
tion strategy are described in the problem definition section.
The simulator is divided into four subsections. First, the
equation subsection contains the model library unit opera-
tion models and properties prediction. Second, the adapta-
tion subsection includes rigorous model reduction and
simplification if required. This subsection is essential if the
model has to be simplified, for example, for control studies.
The third subsection is the analysis, which evaluates the set
of equations to determine the additional information
required for the resolution. The last subsection, i.e., the
solver subsection, allows solving the problem depending
on its type (MILP, MINLP, linear programming, etc.).
Finally, the toolboxes are specific computational tools that
interact with each other. In practice, the user chooses
active toolboxes as a function of the problem to be solved
(Fedorova, 2015). Over time, ICAS has been continuously
improved by creating more than 20 toolboxes for a large
portfolio of situations.

Because of the drawbacks of heuristic-based approaches
mentioned in the introduction and the limitation of
mathematical programming to moderate-size MINLP prob-
lems (due to integer variables and nonlinear equations),
Tula et al. (2015) proposed a hybrid approach. Indeed,
physical insights from knowledge-based methods are used
to narrow the search space of alternatives; then, smaller size

mathematical problems are solved. A process synthesis
approach is developed through a process group contribution
method. Process flowsheet alternatives are generated in a
similar manner to the combination of atoms or groups of
atoms to form molecules in computer aided molecular
design. This method considers a function of structurally
dependent parameters for each property of a compound,
and the parameters are determined based on the frequency
of the group occurring in the molecules (Gani et al., 1991).
In the case of a process group approach, a group represents
a unit operation or a set of unit operations and the property
is the performance of the operations in the flowsheet
(d’Anterroches and Gani, 2005). First, process alternatives
are generated by the use of building blocks, i.e., a functional
process group, representing process operations. The
flowsheet connectivity rules to join building blocks allow
generating feasible alternatives. The most promising alter-
natives according to performance criteria are selected for
further analysis through mathematical models to reach an
optimal solution. The proposed methodology, as shown in
Appendix B, is composed of seven main steps. Each step
relies on methods and toolboxes necessary for calcula-
tions (most of them were developed in the ICAS frame-
work). The methodology starts with the definition of
the synthesis problem: inputs, outputs, and reaction data.
It ends with a process selection based on a multicriteria
analysis (economic, environmental, process safety, and
energy efficiency). Once the process is selected, a rigorous
simulation is performed to verify its feasibility and calculate
accurate results.

As claimed by the author, the main advantage of this
framework is the systematic approach for process synthe-
sis, which also facilitates the proposition of innovative
solutions. Its main difference compared to the conventional
approach is that it is neither iterative nor based solely on
mathematical optimization. However, as a result, it does
not guarantee a rigorous optimality. Moreover, this
approach inherits the major drawback of contribution
methods, i.e., its strongly combinatorial problems due to
enumeration techniques. Indeed, the connectivity rules are
heuristics, which do not prejudge the feasibility but looks
at whether a connection between a functional block is coher-
ent with the purpose of the process. In this step, the goal is
more of generating alternatives rather than discriminating
them. Moreover, the last steps of the methodology are built
to carry out this selection process. As a result, the applica-
tion cases presented in the literature are basic. The pre-
sented method has, for instance, been applied to the
production of benzene from toluene and hydrogen, and
more specifically on the separation section (Tula et al.,
2015). In that specific case, the authors found 47 different
process groups that induced 74 046 potential combina-
tions. However, many combinations were structurally infea-
sible, and the superstructure was reduced to 272 feasible
combinations. Nevertheless, this quantity is extremely large
for a precise study; thus, a reduction algorithm was applied
to reduce the superstructure further. Finally, only 32 alter-
natives finally remained. The reduction algorithm was
based on logical rules and knowledge of experts. In other
examples, d’Anterroches and Gani (2005) focused only on
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the separation of five components and Babi et al. (2015),
Tula et al. (2015), and Tula et al. (2017) considered pro-
cesses composed of one reaction block and purification
blocks (limited to between two and four unit operations).

The process group contribution method and the ICAS
methodology are further integrated into a larger simulation
tool to perform process synthesis intensification as well (to
include the recent breakthroughs in process intensification
in the set of possible process alternatives) (Tula et al.,
2017). The framework consists of three stages:

� Stage 1 – Process synthesis: definition of the problem,
objective, constraints, and performance criteria.

� Stage 2 – Design and analysis: a base case with
conventional unit operations satisfying process
constraints is established and analyzed using a rigor-
ous simulation and the specified performance criteria.
The goal is to identify process bottlenecks on
sustainability and to translate them into new design
targets for the generation of more intensified
alternatives.

� Stage 3 – Innovation design: process integration is
performed at different scales.

In conclusion, ICAS and ProCAFD are able to propose
automatically a large number of alternatives and to filter
them with respect to feasibility and performance criteria.
The alternatives can be industrially well-known solutions
or innovative solutions. The main advantage of this hybrid
method is that it allows enumerating and analyzing a vast
set of alternatives. However, the determination of the opti-
mal process is performed with a succession of selections
performed by the user based both on the results obtained
and on knowledge in process engineering. While the final
process may respect the criteria of selection, it may not
guarantee to obtain the optimal process among all alterna-
tives generated. Moreover, as enumeration is a process
based on human knowledge, some promising process struc-
tures remain undisclosed. Indeed, the connectivity rules and
the rules used for innovation design, i.e., stage 3, are not
precise and exhaustive enough to generate all process alter-
natives. On the other side, to eliminate this drawback, an
increase numbers of rules (to be more precise and exhaus-
tive) is required but it would lead to an ineffective tool
for process design because it is impossible to manage and
maintain all these rules (often contradictory) in PSE.

3.2 Optimization at process level

In practice, to deal with the chemical process synthesis
issue, a global optimization-based approach that comprises
the mathematical models of the superstructure, unit opera-
tions, constraints, and objectives would be the ideal
approach. Unfortunately, as previously discussed, the
resulting optimization model cannot currently be solved
systematically in reasonable computation time, especially
if it gathers a fine and detailed modeling of the phenomena
that occur in each unit operation. In that case, even conver-
gence to a local optimum may not be achieved. Further-
more, an increase in the number of alternatives that

seems promising and which should be considered leads to
an exponential increase in the size of the solution domain
(because of the discrete variables). To overcome these prob-
lems, different approaches have been proposed in the
literature. Besides the hybrid method presented in the
previous section, some mathematical approaches reduce
the complexity of the optimization model by reducing the
number of design variables or alternatives, proposing new
modeling, applying iterative procedures, or including
decomposition techniques as detailed by Urselmann and
Engell (2015). However, these approaches exhibit some
drawbacks: exclusion of the globally optimal solution for
the approach based on the reduction of the complexity
and convergence to local optima (for large-scale problems)
of the MINLP, which depends on initialization. In addition
to the previous drawbacks, achieving the required accurate
and relevant model is a time-consuming task, which
requires tremendous modeling effort for the formulation of
equations for (1) the mathematical model of all design alter-
natives, (2) process constraints, and (3) process models.

To overcome some previous weaknesses and intensify
and shorten the process synthesis task, Urselmann and
Engell (2015) introduced a Memetic Algorithm (MA).
MAs are population-based evolutionary algorithms, which
are combined with local optimization strategies. Their
approach separates the degrees of freedoms, i.e., the design
variables that define the discrete and continuous structural
design decisions from the determination of the corresponding
state variables. Therefore, the MA couples an evolutionary
strategy that performs a search in the space of discrete and
design decision with local optimization (derivative-free opti-
mization method in their tool) of the continuous parameters
to improve the design proposed by the previous step. In this
method, each individual is a process alternative. First, the
individuals are evaluated, and the discrete variables for the
selection of the possible elements in the superstructure and
the continuous design variables are chosen. The search space
must contain all the relevant and feasible process alterna-
tives including the global optimal solution. Once the super-
structure is set, the determination of the corresponding
state variables is performed through an optimization using
a mathematical programming method, i.e., by solving a
nonlinear and constrained continuous problem. The state
variables are determined by rigorous and realistic models
for superstructure elements, e.g., unit operations.

In a recent development (Janus et al., 2017; Urselmann
et al., 2016), at each iteration of the derivative-free
optimization method, the MA uses process simulation soft-
ware to simulate the design alternatives. The process model
is defined by discrete variables, i.e., definition of the model
elements and their connections in the MA. However, as they
are evaluated after simulation, the objective function(s) and
constraints that gather state variables become implicit.
As a result, constraints are handled by the MA at different
levels: constraints on the design variables are treated by the
evolutionary strategy while model equations are checked
after simulation. There is no global treatment of all con-
straints. Furthermore, the design alternative under study
is evaluated only if the simulation converges. This method-
ology has been used to solve the superstructure of a reactive
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distillation column with an optional external reactor
(Urselmann and Engell, 2015). To represent all suitable
design alternatives, the superstructure comprises the
following:

� an optional external reactor, which can have a volume
of zero, to represent design alternatives without
CSTR;

� a maximal number of stages, of column, which can be
deactivated to represent columns with a smaller
number of stages;

� all possible feed streams for all raw materials and all
possible exchange streams between the reactor and
the stages of column in both directions, which can
be zero if the stream does not exist in the actual design
under study; and

� the amount of catalyst on each stage of column, which
can be zero, to represent stages with a purely separat-
ing functionality.

They succeeded in proposing different alternatives in
process flow scheme while maintaining the same profitabil-
ity chosen as objective function.

Another approach proposed by Corbetta et al. (2016)
couples an optimization method with commercial software
of flowsheeting. In their work, a new interface between
the commercial process simulator PRO/II and the opti-
mization environment of GAMS for the structural and
parameter optimization of this type of flowsheet with rigor-
ous and detailed models is proposed. The optimization
problem is formulated within the generalized disjunctive
programming framework and the solution of the reformu-
lated MINLP problem is approached using a decomposition
strategy based on the outer-approximation algorithm,
where Non Linear Programming (NLP) subproblems are
solved using the derivative-free optimizer belonging to the
BzzMath library, and MILP master problems are solved
using CPLEX/GAMS (the corresponding block flow dia-
gram methodology is shown in Appendix C. Several valida-
tion examples are discussed from an economic optimization
of two different distillation columns to a distillation
sequencing with simultaneous mixed-integer design of each
distillation column for a quaternary mixture in the presence
of azeotropes. This study opens some large perspectives in
the optimization process level. The purpose of a recent
study is to provide a superstructure MINLP optimization
within the commercial simulator ProSimPlus. The entire
optimization loop is directly managed by the simulator
and both continuous variables and discrete integer variables
are optimized simultaneously by an external metaheuristic
optimizer called Mixed Integer Distributed Ant Colony
Optimization (Zhao et al., 2018)

3.3 Process integration

Energy is the keystone of the optimisation multi-objectifs
de systèmes energétiques intégrés (OSMOSE) platform.
It is a platform of flowsheeting, process integration, and
costing tools for the study and design of complex integrated
energy systems (Maronese et al., 2015; Palazzi et al., 2010).

This platform combines thermodynamic computations,
power and energy integration, and economic and environ-
mental aspects. OSMOSE includes a set of analysis tools
such as Pareto curve analysis, sensitivity analysis, mono-
and multi-objective optimization (Maronese, 2014). The
optimization method of OSMOSE is a multiobjective
evolutionary algorithm (Bechara et al., 2016b, c; Bolliger
et al., 2005).

According to Maronese (2014) and Maronese et al.
(2015), OSMOSE has three main uses:

� post-analysis (for example, pinch analysis) of models
created with other types of software;

� simultaneous analysis of models developed with other
types of software such as optimization and sensitivity
analysis. This mode includes the conception of energy
system superstructures;

� division of complex energy systems into several units
and the possibility of performing analysis on them.

The platform is divided into different modules to
separate the models (unit operations, processes, etc.) from
analysis with the calculation of indicators (Bolliger, 2010).
This technique allows reducing calculations, structuring
the calculations easily, and simplifying connections with
external software. Appendix D illustrates the structure of
OSMOSE. Appendix E illustrates an example of a method-
ology using OSMOSE to synthesize a superstructure and
determine the optimal process (Bolliger, 2010). Three main
steps are considered. First, after defining the objectives of
the study, the model is developed. This involves identifying
the unit operations, pathways, processes, or modules to
generate the superstructure and to realize a pre-analysis
in order to find the best indicators for the optimization.
During the second step, the objective functions, the vari-
ables and the constraints of the optimization model are
defined and the model is solved. The results are finally eval-
uated with indicators, which makes possible the identifica-
tion of an optimal process that can then be considered for
further process design studies.

It is well known that energy systems and particularly
systems dealing with renewable energies depend a lot on

� time dependent factors, i.e., composition and nature
of raw materials; and

� time variant factors, i.e., energy requirements.

Thus, multiperiod aspects have also been included in
OSMOSE and this contributes to the originality of the tool.
The periods can be fixed by the user (Fazlollahi and
Maréchal, 2013) or determined through a method that min-
imizes the number of periods and maximizes their quality
simultaneously (Fazlollahi et al., 2014a, b, 2015). Celebi
et al. (2017) worked on the optimal design of second-genera-
tion biorefineries using wood as raw material for producing
high-value intermediates as much as possible. They consid-
ered several potential products, among them hydrous
ethanol, anhydrous ethanol, vanillin, formic acid, etc. The
superstructure comprises combinations of black boxes that
constitute the production processes of these products. The
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linear regressions for the black boxes are fitting using
rigorous simulations of each process. The purpose of the
optimization is to determine the best utilization of the
raw material, which can also be considered as the best
distribution of raw material between different processes.
A total of 150 alternatives with different product distribu-
tions have been evaluated. The multiobjective optimization
was based on two criteria: minimization of total costs and
minimization of environmental impact. The alternatives
were ranked according to the criteria, and only the 34 most
promising scenarios were selected for further evaluation.

3.4 Ontology

Knowledge on process design methods and design rules
constitutes one of the most valuable assets of an engineering
company. This knowledge is mostly known implicitly by
technical experts, relying on the personal experience and
background of each designer. In the same, due to data
and knowledge explosion, old practices in modeling knowl-
edge and using them for decision making become inade-
quate, as they are suboptimal. As process engineering
experiments, computational models, and conventional
experimentation continue to generate a large amount of
diverse data, engineers require methods and tools for stor-
ing, managing, sharing, and reusing these data effectively
(Venkatasubramanian, 2009). Therefore, we need new ways
of knowledge modeling and management, which require an
open, scalable, and flexible approach to knowledge model-
ing. Artificial intelligence could offer new opportunities to
realize this task with two main categories of approaches:
symbolic with the modeling and manipulation knowledge
through symbols, and numeric with the use of algorithms
for automatic learning from data. To this end, ontologies
for the symbolic approach and deep learning for the
numeric approach are expected to play a crucial part in
the future of PSE. The former is a particular technique of
machine learning. Conventional machine learning tech-
niques are limited in their ability to process data in their
raw form. They require a data pretreatment step that can
introduce some bias in the learning step. Deep learning
methods allow computational models that are composed
of multiple processing layers (in a neural network) to learn
some features of raw data with multiple levels of abstraction
(Le Cun et al., 2015). Currently, to determine all the
parameters of a neural network, the learning step of these
algorithms requires a large amount of data (several millions
to achieve results equivalent to those of a domain expert).
Data availability is the most important drawback of deep
algorithms, which limits their range of applicability; this
is particularly true for process simulation for which generic
data are relatively limited. Deep learning will have more
success in the future because of research advances in the
mathematical community to improve learning algorithms,
network architectures, and reduce computational time.
The recent overview on the recent progress on machine
learning (and more specifically on deep learning) proposed
by Lee et al. (2018), discusses also the implications of
these advances for a wide variety of application in the fields
of process and energy systems engineering. Currently,

ontology is more operational than the symbolic approach
and more particular than deep learning. The goal of this
section is to present this new challenging domain.

The widely accepted definition of ontology is “a formal,
explicit specification of a shared conceptualization”
(Gruber, 1993). To go deeper, Zhou et al. (2017) explained
that conceptualization refers to an abstract model of
some phenomenon, explicit means that the concepts used
and the constraints on their use are clearly defined, for-
mal is required because the ontology must be machine
readable, and shared introduces the notion that the ontol-
ogy gathers consensual knowledge, i.e., accepted by the
community.

First, ontology can be defined as a set of graphical
databases that are used to store information semantically.
In this graph, nodes represent individuals, and edges repre-
sent the connections between nodes, including relations
such as “isPartof” or “isConnectedTo.” A collection of nodes
can define the class, and a collection of edges represents
properties. Therefore, ontology denotes a conceptual data
scheme that represents the relevant domain entities and
their relationships by means of classes and relations.
Ontologies are flexible data structures that can be changed
and adapted at run time. They also allow representing
the semantics of design knowledge in a formal way that a
computer can interpret. These characteristics enable the
provisioning of advanced computer science methods
for managing, enriching, and searching knowledge (Brandt
et al., 2008). In their study, Morbach et al. (2009) describe
in more detail “what is” and “what is not” an ontology.

In the domain of chemical and process engineering, the
number of available ontologies is increasing and demon-
strating the growing interest of the community. Among
them, one can mention the following to facilitate the iden-
tification of the best option for the optimization problem:

� process supervision of large scale chemical plants
(Natarajan et al., 2012);

� computer-aided process engineering (Morbach et al.,
2007, 2009);

� batch process (Muñoz et al., 2010);
� process integration and interoperability (Muñoz et al.,
2013);

� process simulation and optimization in the context of
eco-industrial parks (Zhou et al., 2017);

� pharmaceutical product development and manufac-
turing (Hailemariam and Venkatasubramanian,
2010; Venkatasubramanian et al., 2006);

� petrochemical processes (Ni et al., 2011), and
� biomass and biorefineries (Trokanas et al., 2016).

Indeed, ontologies are closely related to mathematical
sets, and this link can be exploited during decision making
in a stochastic search or in deterministic optimization
problems. In their study, deterministic optimization repre-
sents the formal part of the decision making, while ontol-
ogy represents the informal one (Zhou et al., 2017). The
linkage between the formal and informal parts allows
the identification of the most acceptable solution during
the optimization step.
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Among the reported ontologies for chemical process
engineering, OntoCAPE (Morbach et al., 2009) is the most
widely accepted tool. It is an ontology created for computer-
aided process engineering, which explicitly specifies a
conceptualization of the process engineering domain, con-
taining concepts of chemical processes and materials, strate-
gies for numerical solution, mathematical models, and
concepts related to modeling and design. It covers major
engineering activities including the design and operation
of chemical processes. Appendix F shows an overview of
the OntoCAPE structure. It is organized using three struc-
tural elements: layers, modules, and partial models. Layers
subdivide the ontology into different levels of abstraction
with the top layers being general and applicable to multiple
domains, while the other layers are specific to process
engineering applications. OntoCAPE is divided into meta,
upper, conceptual, application-oriented, and application-
specific layers as summarized in the rest of this section.

The meta layer contains fundamental modeling
concepts and provides the ontology design guidelines. This
layer introduces the concepts of hierarchy (mereology) and
connectivity (topology), such as the aforementioned rela-
tions “isPartOf ” and “isConnectedTo.” The upper layer
defines concepts from general systems theory with the
module system. OntoCAPE gathers different aspects of a
chemical process system: requirements, function, realiza-
tion, behavior, and performance. These decompose a com-
plex chemical process, into manageable parts. The
conceptual layer gathers a description. The PSE domain
is described by four models, namely chemical process sys-
tem, mathematical model, material, and supporting con-
cepts. The latter provides fundamental concepts such as
space, time, and physical dimensions. The material module
is for the description of materials and their properties. The
mathematical model represents all the concepts required for
describing and creating mathematical models. The chemical
process system represents all the concepts that are directly
related to chemical plant operations. It is further divided
into submodels to represent (1) the purpose of a chemical
process through the description of the physical, chemical,

or biological procedures, and (2) the process automation.
The application-oriented layer allows to detail further the
process, for example, the process unit partial model enables
the description of typical unit operations such as the mixing
unit, heat transfer unit, and distillation system. The plant
equipment and process control equipment are partial
models of the Chemical Process System realization from
the conceptual layer. The bottom layer, which is the
application-specific layer, provides classes and relations for
practical applications. Kokossis et al. (2016) presented an
approach to model, acquire, and beneficially reuse knowl-
edge in process synthesis. They propose a method that com-
bines optimization with ontological knowledge modeling in
order (i) to easily interpret optimization solutions, (ii) to
learn during the progress of optimization and to guide the
search toward the optimum solution within predefined
and on-the-fly created constraints, and (iii) to simplify
solutions dynamically and in agreement with the problem
formulation to accelerate the search (Kokossis et al.,
2016). The main idea of their approach is that optimization
(based on explicit knowledge) is the best way to generate
solutions while tacit knowledge is the best way to select
solutions. The knowledge, which is modeled with ontology,
is used to visualize design themes, guide the optimization
search, and dynamically adjust the superstructures.
Ontology allows systematizing solution features by their
performance and contribution.

In their method to manage the complexity involved in
the redesign of chemical processes, López-Arévalo et al.
(2007) included ontology to generate automatically alterna-
tive representations of an existing process at several levels of
abstraction, i.e., hierarchical sets of units and meta units
organized according to their functions inside the process.
The ontology is contained in a case-based reasoning system
to enable the retrieval and adaptation, from a library of
cases, of similar units or meta units. As an output, the
case-based reasoning system proposes a set of process alter-
natives while keeping the same functionality, e.g., a reactive
distillation column can replace a reactor and separation
units. Thus, the abstraction, owing to the ontology, can

Table 3. Critical analysis.

Criteria Synthesis Optimization

Molecular to
process scale

Ontology Process
level

Process
integration

Section 3.1 Section 3.4 Section 3.2 Section 3.3

Numerical Robustness of the method Difficult to
answers

Yes Yes and
No

Yes

Datas, assumptions and
uncertainties

Low Not applicable Low Strong

Relevance of results Easy Depends on the
system

Very good Rather good

Application
to new Fields

User ownership Easy Intermediate Easy Difficult
Possible application
to different systems

Yes Yes Yes/No Limited

Need input data No Yes No Yes
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� reduce the complexity of the representation of a prac-
tical process by reducing the number of features, rela-
tions, constraints, etc.;

� increase the flexibility of reuse, because abstract solu-
tions can be suitable for a large spectrum of practical
concrete problems. The higher the level of abstraction
of the reused solution, the more the newly refined
solution may differ from the solution contained in
the original case. This allows to not only increase the
number of process alternatives but also to propose.

4 Analyses and perspectives

In the present article, several approaches for process syn-
thesis are described to present a quick overview of
different strategies mostly used in the literature. These
different approaches naturally present advantages and
disadvantages.

To illustrate, the methodology presented by Urselmann
et al. (2016) and Corbetta et al. (2016) can solve a problem
very quickly in terms of “preparation.” In contrast, for
example, the ProCAFD toolbox does not consider the
energy integration during the synthesis of a superstructure,
and therefore, a supplementary study is required to design
the heat exchanger network of the optimal process and opti-
mize the consumption of utilities. This is a key step because
the energy efficiency strongly depends on the energy inte-
gration. The energy indicators used during the selection of
the optimal process may not be meaningful.

According to the studies performed using OSMOSE,
this software has been used for many purposes from the
optimization of operating conditions to the optimization
of raw material allocation. However, this tool does not pro-
vide innovative aspects in process conception. Conse-
quently, it is appropriate to determine and optimize a
process from a known superstructure. Typically, OSMOSE
includes the energy integration via pinch analysis as a crite-
rion for optimization. The other advantage of OSMOSE
compared to other tools is the parallelization of calcula-
tions, which reduces the resolution time as much as possi-
ble, and the possibility to address seasonality.

Ontologies are a tool for knowledge representation,
sharing, and reuse. Thus, the number of available ontologies
is increasing, but the concomitant reuse activities do not
follow correspondingly. This is particularly true in the
domain of PSE, where the ontology development has been
proven to be a challenging task and respective reusability is
less developed. Ontology reuse is expected to be a para-
mount activity for knowledge engineers, who in turn, are
expected to reduce the cost of development and promote
interoperability between applications. This is further inten-
sified by the fact that many existing ontologies cover
complementary and/or overlapping domains. Trokanas
et al. (2016) presented a framework in the form of a set of
metrics and a step-by-step procedure for evaluating com-
patibility of ontologies for ontology reuse, i.e., matching,
aligning, merging, and integrating. This research presents
an algorithm for the evaluation of ontologies for the purpose

of reusing. For this, the algorithm relies on the ontology
high-level information, which is readily available, easy to
extract, and does not require any special expertise in
ontology matching. This first attempt could be the founda-
tion for further work on ontology evaluation and reuse
leading to improved awareness in the community of process
engineering.

As Remolona et al. (2017) highlighted, one of the most
limiting factors for ontologies is that “properly populated”
ontologies are scarce in most application domains. The
other is that ontologies contain numerous concepts with
enough connections, but they also rely on an extensive
knowledge base. Creating this type of ontology requires
tremendous investment of time, effort, and knowledge engi-
neering for expert knowledge elicitation. To overcome this
challenge, Remolona et al. (2017) presented a first attempt
for an automation tool that can assist ontology engineers to
quickly develop and organize domain specific ontologies.
Their conceptual framework integrates machine learning
and natural processing tasks: document sectioning, named
entity recognition, concept detection, relation clustering,
formula extraction, etc. While the results are encouraging,
the experimental part of the study concludes that much
more work must be performed to develop an automated
ontology-based management system.

To qualify the different methods discussed in this
perspective on process synthesis, we consider several criteria
as presented in Table 3. The first criterion is the robustness
of the method. Through this indicator, one can know if
convergence can be obtained. It is difficult to decide when
a problem is between the process and the molecular scale.
For other cases, one can consider that if the problem is
linear, due to the realized assumptions, one should obtain
convergence with a reasonable computation time provided
that the problem does not contain too many integer vari-
ables. For the method developed by Urselmann and Engell
(2015), which is stochastic, one should obtain a result with-
out being certain that the “slave” program converges at each
iteration due to initialization problems, which should be
different according to the envisaged conditions. The second
criterion relates to the assumptions and uncertainties of the
level considered. There are two main classes: those that
“simplify” the problem and those that keep all the knowledge
of the problem. Thus, the higher the level of the approach,
the more important are the assumptions. The third criterion
is the relevance of the results, which is strongly linked to the
second criterion on hypotheses. If the assumptions are weak
and convergence is obtained, the results can be considered
relevant. The fourth criterion is the user ownership of the
method. This criterion is generally easy or intermediate for
researchers of the four methods. The fifth criterion is the
possible application to different systems that could be
proposed. For three of the four methods, the methodology
is transferable to other studies with the same complexity.
It is important to remember that this study should provide
answers to future challenges of process engineering. The
future challenges mentioned previously are

� biomass transformation as a chemical and energy
feedstock replacing fossil fuels;
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� shale oil and gas as raw material for plastic production
and associated future reorganization of the petro-
chemical industry;

� modular and distributed manufacturing using process
intensification with flexibility approach; and

� response to spaceflight demands for Moon “cities” or
the Mars exploration, in particular, the robustness
and compactness of the process.

For the biorefinery concept, the paradigm changes from
the conventional hydrocarbon-based refinery due to several
bottlenecks. Among them, we can cite the complex thermo-
dynamics of mixtures, high water content, and variety of
organic molecules produced by bacteria. To compensate
for the low efficiency of the fermentation step, the down-
stream process must be optimal and in the upstream, the
supply chain must be considered. Therefore, in the biorefin-
ery concept, all levels must be considered as much as possi-
ble. All six different scales, i.e., those described in Figure 1
and the supply chain and the molecular scales, must be inte-
grated in the process design; interoperability will be an
important challenge in the future.

Concerning shale oil and gas, the problem is different
because most processes are already known; however, they
must be adapted, and better integration both within the
plant and in its immediate environment should be
proposed.

In the present industrial context, with shorter product
lifecycles, smaller production volumes, short time to market
objectives, diversification, and increasing specialization of
products due to more consumer-oriented product, develop-
ment times and reconfiguration of production process times
are becoming increasingly shorter. These trends will be
enhanced further with the industry 4.0 evolution. Modular
plants can be one promising response to address these chal-
lenges and aims, as they can increase flexibility in terms of
capacity, product variation, and plant location. These new
challenges will impact the synthesis and design of such
plants. An efficient synthesis and design process can be
performed by reusing data, information, and knowledge
accumulated throughout all the project phases: construc-
tion, operation, dismantling, and module reuse. The main
difference between classical and modular plant design is
that the equipment and associated characteristics are
known in early design stages for the latter. Thus, a key
design task will involve adapting the individual process
parameters for each unit operation and process equipment.
The key is to propose new robust design methods and
optimization strategies and to include flexibility as a main
constraint for unit operation and plant design, while keep-
ing process efficiency as high as possible. Process synthesis
approaches will require new decision-making methods and
tools for a structured equipment reconfigurability and
flexibility evaluation, equipment comparison, and selection
to cover the best possible operating conditions. Obviously,
this will also have impacts on costs, and new ways of real-
izing quick and precise cost estimation will be required.

Spaceflight demands open new opportunities for process
design (Chen and Grossmann, 2017) such as asteroid min-
ing for precious compounds (some processing activities
must be performed in space due to transportation costs),

local processing for local human settlements, design of
macro or nanoprocesses due to weight limitations in rocket
technologies. Process modularity and flexibility for multi-
purpose processes will also require attention. “Infinite”
recycling, i.e., a real circular use with zero waste of raw
materials and resources to sustain habitable conditions
and ensure viability is another challenge for process synthe-
sis. Furthermore, the absence of gravity and especially its
influence on the physical phenomena that occur in unit
operations (intensified or conventional) will lead our com-
munity to review the operation of these units and invent
new ones so that the physical and chemical phenomena
can always be carried out efficiently. Therefore, the key
parameter is innovation; the methodology will be concen-
trated on the process level with integration, and the PSE
community must continue to develop computer-aided
innovation software tools.

In addition to these future challenges, theoretical
advances are also required. Obviously, the development of
optimization methods and algorithms must continue to
provide solutions to the global optimization problem. Either
conventional or intensified unit operations require more
detailed models to introduce small-scale phenomena, which
influence the performance of unit operations. Such an
approach leads to the introduction of multiscale informa-
tion in the design process. Belletante et al. (2016) empha-
sized that multiscale approaches introduce more variables,
equations, and constraints, and thus, result to more tremen-
dous computational efforts. The development of methods to
handle uncertainties is also a crucial challenge. During the
process design stages via optimization approaches, hybrid
approaches, or through metamodeling (multiparametric
approach, “surrogate model,” etc.), the introduction of inac-
curacies and/or uncertainties on data is performed by local
sensitivity studies or calculation of flexibility indices. In
recent years, new methods of global sensitivity (e.g., Sobol
method and chaos polynomials) have emerged, allowing the
effective modeling and propagation of uncertainties in
numerical simulation. Similarly, machine-learning methods
have expanded considerably, for example, in the treatment
of partitioning or discrimination problems. Furthermore,
the modeling of poorly known data remains a major asset
of the fuzzy logic. A possible strategy of renewing the
methods for design processes could be the use of these three
techniques, separated or combined, in order to reach more
robust solutions that can allow inaccuracies/uncertainties
inherent to the design stage, but at the same time, deal with
hazards during process operation.
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Fig. A1. Main structure of ICAS (inspired by Gani et al., 1997).

Fig. B1. Methodology using ICAS (adapted from Tula et al., 2015).
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Fig. C1. Optimization algorithm block diagram (adapted from Corbetta et al., 2016).
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Fig. D1. Structure of OSMOSE platform (adapted from Bolliger, 2010).
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Fig. E1. Example of methodology using OSMOSE platform (adapted from Bolliger, 2010).

Fig. F1. Structure of OntoCAPE (adapted from Morbach et al., 2009).
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