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This study develops a new Lagrangian particle method for modeling flow and transport phenomena in complex porous media with discontinuities. For instance, diffusion processes can be modeled by Lagrangian Random Walk algorithms. However, discontinuities and heterogeneities are difficult to treat, particularly discontinuous diffusion D (x) or porosity θ (x). In the literature on particle Random Walks, previous methods used to handle this discontinuity problem can be characterized into two main classes as follows: "Interpolation techniques", and "Partial reflection methods". One of the main drawbacks of these methods is the small time step required in order to converge to the expected solution, particularly in the presence of many interfaces. These restrictions on the time step, lead to inefficient algorithms. The Random Walk Particle Tracking (RWPT) algorithm proposed here is, like others in the literature, discrete in time and continuous in space (gridless). We propose a novel approach to partial reflection schemes without restrictions on time step size. The new RWPT algorithm is based on an adaptive "Stop&Go" time-stepping, combined with partial reflection/refraction schemes, and extended with a new concept of negative mass particles. To test the new RWPT scheme, we develop analytical and semi-analytical solutions for diffusion in the presence of multiple interfaces (discontinuous multi-layered medium). The results show that the proposed Stop&Go RWPT scheme (with adaptive negative mass particles) fits extremely well the semi-analytical solutions, even for very high contrasts and in the neighborhood of interfaces. The scheme provides a correct diffusive solution in only a few macro-time steps, with a precision that does not depend on their size.

Introduction

Particle methods have been much used to model the transport of mass, heat, and other quantities through solids, fluids, and fluid-filled porous media. The last two cases involve both diffusive and advective transport phenomena (due to the moving fluid). Hydrodynamic dispersion due to detailed spatial variations of the velocity field has also been modeled as a Fickian diffusion-type process, e.g. in fluid-filled porous structures (see [START_REF] Sahimi | Fractal and superdiffusive transport and hydrodynamic dispersion in heterogeneous porous media[END_REF]). Other purely diffuse processes include heat diffusion in materials (Fourier's law), and pressure diffusion (compressible Darcy flow in a fluid-filled porous medium).

Particle methods are based on a discrete representation of the transported quantity (solute concentration, fluid pressure, fluid saturation, heat or temperature) as discrete packets (the "particles"), each carrying a unit mass, or a unit heat, etc. The advantage of particle methods is that they avoid some of the problems of Eulerian methods based on Partial Differential Equations (PDE's), such as numerical instability, artificial diffusion, mass balance errors, and/or oscillations that could lead to negative concentrations or saturations. Various types of particle methods have been devised: non-Lagrangian Particle-in-Cell methods (PIC); implementing Markov processes in a PIC framework with stochastic times [START_REF] Spiller | Alternative approach to simulate transport based on the master equation[END_REF]; continuous-time particles on a grid [START_REF] Kang | Impact of velocity correlation and distribution on transport in fractured media: field evidence and theoretical model[END_REF]; the time-domain random walk (TDRW) [START_REF] Delay | Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in fracture networks[END_REF][START_REF] Bodin | From analytical solutions of solute transport equations to multidimensional time-domain random walk (TDRW) algorithms[END_REF]; and Lagrangian particles with discrete time-steps in continuous space (gridless). Such particle methods have been extensively used for modeling advective-diffusive solute transport in porous soils, aquifers, and reservoirs [START_REF] Noetinger | Random walk methods for modeling hydrodynamic transport in porous and fractured media from pore to reservoir scale[END_REF].

In "Lagrangian" methods, space is assumed continuous, and particle positions X(t) are real numbers (the method is then "gridless"). In the present work, we focus on Lagrangian particle tracking to solve diffusion processes by random walk (Wiener process), under the generic name RWPT (Random Walk Particle Tracking).

A specific study of the macroscopic behavior of Random Walk particles is necessary when dealing with a heterogeneous or discontinuous diffusion coefficient D(x). The case of discontinuous diffusion is particularly troublesome, and this is our main focus. Such discontinuities occur at "material interfaces", with sudden changes of microstructure (composite materials, layered porous media, etc.), and at discontinuities in phase, for example the interface between surface water and grounwater (an important ecological habitat in the hyporheic zone). For solute diffusion in a porous medium, an additional point of interest is the case of discontinuous porosity θ(x) (if the medium is water-saturated), or discontinuous volumetric water content θ(x) (if the medium is unsaturated).

In the literature on particle Random Walks, the displacement schemes used for handling the discontinuity can be characterized into two classes: (1) Interface coarsening, interpolation, and drift velocity scheme (e.g. [START_REF] Labolle | Random-walk simulation of transport in heterogeneous porous media: local mass-conservation problem and implementation methods[END_REF][START_REF] Spiller | Mass Transport with Heterogeneous Diffusion: Interpolation Schemes for Random Walks[END_REF]); (2) Partial reflection schemes (e.g. [START_REF] Uffink | A random-walk method for the simulation of macrodispersion in a stratified aquifer[END_REF]). The first class ("interpolation techniques") smooth out the discontinuity [START_REF] Bagtzoglou | Projection functions for particle grid methods[END_REF]: the interface is coarsened and the parameters (diffusion, porosity) are considered continuous through the coarsened interface. The second class ("partial reflection methods"), introduced by Uffink [START_REF] Uffink | A random-walk method for the simulation of macrodispersion in a stratified aquifer[END_REF], implements a probabilistic reflection/transmission of the particles across the discontinuous interface: probabilities are assigned for particle reflection and transmission across the interface. Other similar partial reflection/transmission schemes were investigated by [START_REF] Labolle | Diffusion theory for transport in porous media: transition-probability densities of diffusion processes corresponding to advection-dispersion equations[END_REF][START_REF] Ackerer | Propagation d'un fluide en aquifère poreux saturé en eau. Prise en compte et localisation des hétérogénéités par outils théoriques et expérimentaux[END_REF][START_REF] Cordes | A new very efficient algorithm for particle tracking in layered aquifers[END_REF][START_REF] Semra | Three dimensional groundwater quality modeling in heterogeneous media[END_REF][START_REF] Hoteit | Three-dimensional modeling of mass transfer in porous media using the mixed hybrid finite elements and the random-walk methods[END_REF][START_REF] Lim | Numerical study of nuclide migration in a nonuniform horizontal flow field of a high-level radioactive waste repository with multiple canisters[END_REF][START_REF] Bechtold | Efficient random walk particle tracking algorithm for advective-dispersive transport in media with discontinuous dispersion coefficients and water contents[END_REF].

Lejay & Pichot [START_REF] Lejay | Simulating diffusion processes in discontinuous media: a numerical scheme with constant time steps[END_REF] proposed a "two-step algorithm" (their Algo.2), equivalent to a Stop&Go procedure: the particle is stopped at the interface, and then undergoes a "Skewed Brownian Motion" (SBM) for the next step, which may lead the particle to cross the interface. Their two-step algorithm was presented for a 1D finite domain with zero flux boundary conditions. On the other hand, they also presented a "one-step algorithm" (their Algo.3) where, it seems, they use a type of acceptance-rejection method to obtain the displacement in the neighborhood of the interface (this method is different from ours). More recently, Lejay & Pichot [START_REF] Lejay | Simulating diffusion processes in discontinuous media: benchmark tests[END_REF] tested their approaches [START_REF] Lejay | Simulating diffusion processes in discontinuous media: a numerical scheme with constant time steps[END_REF] by implementing 1D benchmark tests, involving comparisons between their SBM and two Random Walks approaches in the literature [START_REF] Uffink | A random-walk method for the simulation of macrodispersion in a stratified aquifer[END_REF][START_REF] Hoteit | Three-dimensional modeling of mass transfer in porous media using the mixed hybrid finite elements and the random-walk methods[END_REF].

One of the drawbacks of these approaches is that a small time step is required in order to converge to the correct solution of the discontinuous PDE, even if the number of particles is very large. This is particularly limiting in the presence of many interfaces. This limitation becomes even more drastic for very large diffusion contrasts, e.g., two orders of magnitude or more. Thus, [START_REF] Ackerer | Diffusion theory for transport in porous media: Transition-probability densities of diffusion processes corresponding to advection-dispersion equations[END_REF][START_REF] Bechtold | Efficient random walk particle tracking algorithm for advective-dispersive transport in media with discontinuous dispersion coefficients and water contents[END_REF] showed that the above methods are only valid for infinitesimal time steps. A small time step must be used in order to avoid the overshoot of heterogeneous and discontinuous subregions of space by the particles.

In this study, we propose a novel approach in the framework of "partial reflection methods" but without restrictions on time step size. The new RWPT algorithm is discrete in time and continuous in space (gridless), and the novel aspects have to do with the treatment of discontinuities. The new algorithm is based on adaptive "Stop&Go" time-stepping, combined with partial reflection/transmission schemes similar to [START_REF] Hoteit | Three-dimensional modeling of mass transfer in porous media using the mixed hybrid finite elements and the random-walk methods[END_REF][START_REF] Lim | Numerical study of nuclide migration in a nonuniform horizontal flow field of a high-level radioactive waste repository with multiple canisters[END_REF][START_REF] Bechtold | Efficient random walk particle tracking algorithm for advective-dispersive transport in media with discontinuous dispersion coefficients and water contents[END_REF][START_REF] Lejay | Simulating diffusion processes in discontinuous media: a numerical scheme with constant time steps[END_REF], and extended with the concept of negative mass particles.

This paper is organized as follows. The next section, 2, presents the theory behind Random Walk Particle Tracking methods (RWPT), and the corresponding macroscopic diffusion PDE. Section 3 presents a novel particle-based method for solving heterogeneous and discontinuous transport problems using RWPT with "negative mass particles". Section 4 compares analytical solutions to our RWPT results. Section 5 recapitulates the method and discusses extensions of this work.

Theory

This section presents the theory of advective-diffusive transport, namely, the concentration-based, macroscopic PDE's, and the related theory of Stochastic Differential Equations (SDE's) driven by white noise, governing particles at the microscopic scale.

Concentration based PDE's 2.1.1. The Gaussian function (PDF)

Let us define a Gaussian PDF, denoted G μ, σ 2 , x , where μ is the mean, σ 2 the variance, and x = X (t) the particle position at any fixed time t:

∀x R; G μ, σ 2 , x = 1 σ √ 2π exp - (x -μ) 2 2σ 2
(2.1)

A Gaussian random variable (RV) with mean μ and variance σ 2 is denoted N μ, σ 2 and has the Probability Density Function (PDF) G μ, σ 2 , x . Letting σ 2 = 2D 0 t, this Gaussian PDF represents the macroscopic concentration solution C (x, t) of the diffusion PDE with spatially constant diffusion coefficient D 0 , for an initial point source condition C (x, t) = M 0 δ (x -μ), with unit mass M 0 = 1, in an infinite domain.

The advection-diffusion transport PDE for concentration

The equation governing the transport of solute concentration (C ) in a heterogeneous medium with variable parameters D (diffusion coefficient), θ (porosity) and V (velocity) is (see for instance [START_REF] Labolle | Diffusion theory for transport in porous media: transition-probability densities of diffusion processes corresponding to advection-dispersion equations[END_REF]):

∂ (θ C ) ∂t = ∇•(-θ C V + D•∇ (θ C )) = -∇•{θ C (V + ∇•D + D•∇ (ln θ))} + 1 2 ∇•∇•(2θ C D) (2.2) 
Note that we do not distinguish between vectors and second rank tensors. The first equality corresponds to the conservative (divergence) form of the PDE, while the second equality corresponds to its decomposed form (from which apparent "drift velocity" terms emerge due to spatially variable diffusion and porosity coefficients).

For a 1D problem with scalar diffusion D, the transport PDE for an initial source at x = x 0 in a homogeneous medium with constant parameters D, θ and V is:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∀t > 0; ∀x R; ∂C ∂t (x, t) = -V ∂C ∂x (x, t) + D ∂ 2 C ∂x 2 (x, t) ∀t > 0; lim x→±∞ C (x, t) = 0 ∀x R; C (x, 0) = M 0 θ δ (x -x 0 ) (2.
3)

The last equation represents an initial point source located at x = x 0 with mass M 0 , and δ (x) represents the Dirac pseudo-function (δ distribution) (e.g. Schwartz [START_REF] Schwartz | Théorie des distributions, 2 volumes[END_REF]). This PDE will be later formulated for purely diffusive discontinuous diffusion and porosity coefficients in section 2.2. The analytical solution of Eq. (2.3) is:

∀t > 0; ∀x R; C (x, t) = M 0 θ G (x 0 + V t, 2Dt, x) (2.4)
where G is the Gaussian PDF defined in Eq. (2.1).

From concentration to particle positions

Let us consider now a particle based method to solve Eq. (2.3). The concentration can be expressed as follows [START_REF] Risken | The Fokker-Planck Equation[END_REF][START_REF] Dentz | Diffusion and trapping in heterogeneous media: an inhomogeneous continuous time random walk approach[END_REF]:

C (x, t) = R C (X t , t) δ (X t -x) d X t = R δ (X t -x) dm t (2.5)
where X t and dm t represent, respectively, the position and mass of an infinitesimal concentration packet (to be discretized as a "particle").

The PDF of particles positions at any fixed time t should follow the distribution G (x 0 + V t, 2Dt, x). Thus, the corresponding particle positions can be generated using a Gaussian RV:

X t = N (x 0 + V t, 2Dt) = x 0 + V t + √ 2 D t N (0, 1) (2.6)
where N (0, 1) designates a normalized Gaussian RV (zero mean and unit variance). For V = 0, (X t ) is the Wiener process.

As can be seen, the PDF of (X t ) is identical to the concentration solution in Eq. (2.4) divided by M 0 .

In the case of spatially variable but differentiable coefficients D (x) and θ (x), the corresponding SDE becomes [22,11,24]:

X t+dt = X t + 2D (X t ) dt N (0, 1) + {V (X t ) + ∇ (D (X t )) + D (X t ) ∇ (ln θ (X t ))} dt (2.7)
which governs the Gaussian Markovian process (X t ). After "explicit" "discretization", dt is replaced with the finite t step However, if D (x) or θ (x) is discontinuous, the SDE Eq. (2.7) does not hold.

Prototype problem: 1D diffusion with a single source and a single discontinuity

In this section, we define a purely diffusive problem, with an initial Dirac source, in an infinite porous medium comprising two subdomains 1 and 2 separated by a single discontinuity, or "material interface". The interface is located at x 1-2 = 0, and the initial point source is located at X Source = x 0 < 0. The subdomains 1 and 2 have different diffusion coefficients D 1 and D 2 , and different porosities θ 1 and θ 2 . Such discontinuities can be found in soils, fractured rocks, and many other porous materials. For instance, [START_REF] Spiller | Mass Transport with Heterogeneous Diffusion: Interpolation Schemes for Random Walks[END_REF] studied oxygen diffusion through a discontinuous grains/joints system in a submicron layer of Nickel Oxide.

Here, to illustrate our RWPT method (as in Labolle's analysis [START_REF] Labolle | Diffusion theory for transport in porous media: transition-probability densities of diffusion processes corresponding to advection-dispersion equations[END_REF]), we focus on 1D solute diffusion in a porous medium with a single interface, where both D(x) and θ(x) are discontinuous. The PDE system for the discontinuous problem is, for the domain = 1 ∪ 2 :

∀t > 0; ∀x i ; ∂ (θ i C i ) ∂t = ∂ ∂x θ i D i ∂C i ∂x (2.8a) ∀t ≥ 0; lim x→±∞ C i (x, t) = 0 (2.8b) ⎧ ⎨ ⎩ ∀t ≥ 0; C 1 (x 1-2 , t) = C 2 (x 1-2 , t) ∀t ≥ 0; -θ 1 D 1 ∂C 1 ∂x (x 1-2 , t) = -θ 2 D 2 ∂C 2 ∂x (x 1-2 , t) (2.8c) ∀x i ; C i (x, 0) = M 0 θ i δ (x -x 0 ) (2.8d)
In Eq. (2.8a), each PDE represents a mass conservation equation for the solute in each subdomain. In the case at hand, porosities θ 1 and θ 2 are constant in each subdomain and can be factored out from each PDE. The system (2.8c) enforces the continuity of solute concentration (mass per volume of solvent) and of areal solute flux density. In all these equations, Fick's law is used for the diffusive flux.

The analytical solution of problem 2.8 is given by C 1 and C 2 (∀t ≥ 0):

( 1 ) : ∀x ≤ x 1-2 ; C 1 (x, t) = C S 1 (x, t) + C R 1 (x, t) (2.9a) C S 1 (x, t) = M 0 θ 1 G (x 1-2 + (x 0 -x 1-2 ) , 2D 1 t, x) (2.9b) C R 1 (x, t) = M 0 θ 1 R 1-2 G (x 1-2 -(x 0 -x 1-2 ) , 2D 1 t, x) (2.9c) ( 2 ) : ∀x ≥ x 1-2 ; C 2 (x, t) = M 0 θ 2 (1 -R 1-2 ) × G (x 1-2 + β 1-2 (x 0 -x 1-2 ) , 2D 2 t, x) (2.9d) R 1-2 = θ 1 √ D 1 -θ 2 √ D 2 θ 1 √ D 1 + θ 2 √ D 2 and β 1-2 = √ D 2 √ D 1 (2.9e) • C S
1 ("S" for "Source") is the solution of this diffusion problem without interface (no discontinuities).

• C R 1 is the symmetric of C S 1 relative to the interface x = x 1-2 , multiplied by coefficient R 1-2 (R for Reflection). • C 2 is the solution of a diffusion problem with initial mass M 0 (1 -R 1-2 ) located at x 1-2 + β 1-2 (x 0 -x 1-2 ).
Eqs. (2.9) extend previous analytical solutions given by [START_REF] Carslaw | Conduction of Heat in Solids[END_REF][START_REF] Labolle | Random-walk simulation of transport in heterogeneous porous media: local mass-conservation problem and implementation methods[END_REF][START_REF] Delay | Simulating solute transport in porous or fractured formations using random walk particle tracking a review[END_REF].

Methods and algorithms

In this section, we start by explaining the need for a new algorithm to deal with discontinuities. Then we discuss previous methods proposed in the literature. Finally, we present our new method and discuss its advantages compared to the previous ones.

Discontinuity problem for Random Walk

The most straightforward test of an algorithm for diffusion with discontinuous D (x) is the "uniform concentration test", where the exact solution of the diffusion PDE is constant concentration C (x, t) = C 0 at all times (t) and all positions (x). This is obtained by imposing constant initial concentration C (x, 0) = C 0 , and imposing either zero flux conditions ∂C/∂x = 0, or else Dirichlet conditions C = C 0 , at both boundaries.

The random walk equation can be written as follows for 1D diffusion with variable D (x):

X (p) (t n + t n ) = X (p) (t n ) + t n ∂ D ∂x X (p) (t n ) + 2D X (p) (t n ) t n Z (p) (t n ) (3.1)
However, this equation is limited to the case of continuously variable diffusion coefficient. Let us now focus on the case of discontinuous D (x). If we naïvely insert the discontinuous D (x) in the above equation, a deficit of concentration appears near the interface of discontinuity, where D 1 < D 2 . We can deal with this deficit of concentration using two different schemes (reflection, smoothing). For this purpose, a Stop&Go algorithm is necessary; it is described in the following section.

Partial reflection and extensions (algorithm)

3.2.1. Partial reflection scheme for the case R 1-2 ≥ 0

The general principle of this partial reflection scheme, so far, is similar to the one previously used in literature [START_REF] Hoteit | Three-dimensional modeling of mass transfer in porous media using the mixed hybrid finite elements and the random-walk methods[END_REF][START_REF] Lim | Numerical study of nuclide migration in a nonuniform horizontal flow field of a high-level radioactive waste repository with multiple canisters[END_REF][START_REF] Bechtold | Efficient random walk particle tracking algorithm for advective-dispersive transport in media with discontinuous dispersion coefficients and water contents[END_REF].

The fractions |R 1-2 | and (1 -|R 1-2 |) are interpreted as probabilities. The issue of "negative probabilities" will be tackled later below and in section 3.2.2. Here, we focus on R 1-2 ≥ 0. Thus, the displacement algorithm for X (t) becomes:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ JR 1-2 K = 1; X (t) = x 1-2 -N (x 0 -x 1-2 , 2D 1 t) : X Rl reflected JR 1-2 K = 0; X (t) = x 1-2 + D 2 D 1 N (x 0 -x 1-2 , 2D 1 t) : X Rr refracted (3.2)
where JR 1-2 K designates a Bernoulli RV that is equal to 1 with probability |R 1-2 | and equal to 0 with probability (1 -|R 1-2 |), x 0 is the initial particle position X (0), and x 1-2 is the interface position.

However, until now we have considered only the absolute value of R 1-2 . Thus, the previous algorithm is sufficient only in cases where R 1-2 is positive.

Partial reflection scheme for the case R 1-2 < 0

Negative partial reflection probability R 1-2 corresponds to a subtraction in the analytical solution (C (x, t)). However, it is difficult to "substract" particles at a specific location (position) with RWPT compared to adding particles. The reason is that, when attempting to substract a particle at a specified location, one has to act indirectly by searching for particles in a neighborhood of the desired location, while adding a particle at a specific location is always possible directly. This subsection discusses a new method to deal with negative R 1-2 for a single interface (we have also extended the method to multiple interfaces in the next subsection). For the case of negative R, we propose the following algorithm. First, the particle is always refracted. Secondly, with probability |R 1-2 |, two new particles are created: one is refracted and has the same mass as the original particle, and the other is reflected with a mass of opposite sign (Fig. 3.1). This algorithm allows us to model the exact solution to the discontinuous diffusion problem. Thus, the displacement algorithm for each particle X k (t) becomes:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ X k (t) = x 1-2 + D 2 D 1 N (x 0 -x 1-2 , 2D 1 t) {refracted} JR 1-2 K = 1; X pos k (t) = x 1-2 + D 2 D 1 N (x 0 -x 1-2 , 2D 1 t) {refracted} JR 1-2 K = 1; X neg k (t) = x 1-2 -N (x 0 -x 1-2 , 2D 1 t) {reflected} (3.3)
with the particle X pos k has the same mass as X k and the particle X neg k has the mass of X k multiplied by (-1).

Multiple interfaces

After crossing one interface, a particle could eventually cross a second interface. The algorithm should be able to deal with any number of interfaces crossed by a given particle, in a single time step.

Semi-analytical solution for a diffusion problem with N ≥ 2 interfaces

To obtain the RWPT algorithm that deals with multiple interfaces, let us first generalize the solution Eq. (2.9) of Eq. (2.8)

for N-interfaces and (N + 1) layers. The generalization of Eq. (2.8) for i J1; N + 1K is:

∀t > 0; ∀x i ; ∂ (θ i C i ) ∂t = ∂ ∂x θ i D i ∂C i ∂x (3.4a) ⎧ ⎨ ⎩ ∀t ≥ 0; lim x→-∞ C 1 (x, t) = 0 ∀t ≥ 0; lim x→+∞ C N+1 (x, t) = 0 (3.4b) ⎧ ⎨ ⎩ ∀t ≥ 0; ∀i J1; NK C i x i,i+1 , t = C i+1 x i,i+1 , t ∀t ≥ 0; ∀i J1; NK -θ i D i ∂C i ∂x x i,i+1 , t = -θ i+1 D i+1 ∂C i+1 ∂x x i,i+1 , t (3.4c) ∀x i ; C i (x, 0) = M 0 θ i δ (x -x 0 ) (3.4d)
The solution Eq. (2.9) is composed of three gaussians, one of which (C S and the other two depend on C S 1 and on the interface position. Let us define two linear operators L ij and L * ij :

L ij (G (x 0 , 2D i t, x)) = R ij G 2x i-j -x 0 , 2D i t, x (3.5) L * ij (G (x 0 , 2D i t, x)) = 1 -R ij G x ij + D j D i x 0 -x i-j , 2D j t, x (3.6) 
Thus the solution Eq. (2.9) could be written as follows:

⎧ ⎨ ⎩ ∀t > 0; ∀x ≤ x 1-2 ; C 1 (x, t) = C S 1 (x, t) + L 12 C S 1 (x, t) ∀t > 0; ∀x ≥ x 1-2 ; C 2 (x, t) = L * 12 C S 1 (x, t) (3.7)
The decomposition (Eq. (3.7)) can be further generalized: for each individual interface, new gaussians are generated, with parameters chosen to fit the solution. Hence, each time a gaussian function g initially in a subdomain (i) encounters an interface at position x i-j , we add L i, j (g) to the solution in subdomain (i) and L * i, j (g) to the solution in subdomain ( j). See Algorithm 1.

Algorithm 1 Semi-analytical solution for diffusion with N ≥ 2 interfaces. 

(C k ) not converged do (a) C k = C k + L k,k+u k (Ci k ) and C k+u k = C k+u k + L * k,k+u k C i k (b) u k+u k = u k and u k = -u k (c) Ci k = L k,k+u k (Ci k ) and Ci k+u k = Ci k+u k + L * k,k+u k (Ci k ) 5. end
For the two-interface problem (N = 2), the previous algorithm leads to an analytical solution for diffusion with an initial source, with discontinuous diffusion coefficients and porosities having three different values (three layers). Thus the analytical solution for a source located at the position x 0 in subdomain (i = 1), ∀t ≥ 0:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∀x ≤ x 1;2 ; θ 1 M 0 C 1 (x, t) = id + L 12 + +∞ i=0 L * 21 (L 23 L 21 ) i L 23 L * 12 ∀x 1;2 ≤ x ≤ x 2;3 ; θ 2 M 0 C 2 (x, t) = +∞ i=0 (id + L 23 ) (L 21 L 23 ) i L * 12 ∀x ≥ x 2;3 ; θ 3 M 0 C 3 (x, t) = L * 23 +∞ i=0 (L 21 L 23 ) i L * 12 (3.8)
with the right side of Eq. (3.8) is applied to G (x 0 , 2D 1 t, x).

The analytical solution for a source located at the position x 0 in subdomain (i = 2), ∀t ≥ 0:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∀x ≤ x 1;2 ; θ 1 M 0 C 1 (x, t) = L * 21 +∞ i=0 (L 23 L 21 ) i (id + L 23 ) ∀x 1;2 ≤ x ≤ x 2;3 ; θ 2 M 0 C 2 (x, t) = +∞ i=0 (id + L 21 ) (L 23 L 21 ) i (id + L 23 ) ∀x ≥ x 2;3 ; θ 3 M 0 C 3 (x, t) = L * 23 +∞ i=0 (L 21 L 23 ) i (id + L 21 ) (3.9)
with the right side of Eq. (3.8) is applied to G (x 0 , 2D 2 t, x).

This solution is detailed in Appendix A, and it has been verified by substitution into the governing PDE's.

Generalization of the RWPT algorithm for N ≥ 2 interfaces

The same idea of generalization of the analytical solution in subsection 3.3.1 (from one interface into a multi-interface) has been applied to the RWPT method for a problem with N interfaces. If a particle crosses an interface, then (step 1) its position is altered according to previous algorithms that deal with discontinuities (see subsection 3.2, Eq. (3.2) for R ≥ 0 and Eq. (3.3) for R < 0). After this (step 2), if the new particle position does not belong to its initial subdomain, nor to the adjacent subdomains, then go back to "step 1". Thereafter, the particle continues undergoing this algorithm within a conditional loop, until the particle does not cross an interface (it then reaches its final position within the loop). See Algorithm 2.

Algorithm 2 RWPT algorithm for N ≥ 2 interfaces.

1. Consider particle (k) with mass m k and position X k . 2. while particle (k

) crosses interfaces do (a) If R 1,2 ≥ 0 then i. If JR 1,2 K = 0; then the particle (k) is refracted to the position X Rr k as in Eq. (3.2) endif ii. If JR 1,2 K = 1; then the particle (k) is refracted to the position X Rl k as in Eq. (3.2) endif (b) Else (case R 1,2 < 0) i. The particle (k) is refracted to the position X Rr k .
ii. If JR 1,2 K = 1; then Create two particles "A" and "B":

A. with mass m k and at the refracted position X Rr k .

B. with mass -m k and at the refracted position X Rl k . iii. endif (c) end 3. end This algorithm will be tested in section 4, with the analytical solution defined in subsection 2.2. Then, it will be compared with a generalized analytical solution for a pure diffusion problem with two interfaces and three different diffusion coefficients and water contents: the detailed analytical solution for this 3-layer case is presented in Eq. (3.8). And finally, it will be validated with an even more generalized semi-analytical solution which algorithm has been detailed in the previous subsection 3.3.1.

Post processing: from particles to concentrations

Post-processing in Random Walk method is essential since the primary objective of the simulation is to get the concentration (temperature or pressure) field. A special attention should be given to Negative unit mass and Adaptive mass particle methods in particular, since they are very different from the classical Random Walk simulation. Here, mass conservation is still maintained, since each time we create a negative mass, we create also a positive one.

The macroscopic concentration is determined from the distribution of particle positions X t weighted by their respective masses, dm t = C (X t , t) d X t . This can be expressed formally as1 :

C (x, t) = R C (X t , t) δ (X t -x) d X t = R δ (X t -x) dm t (3.10)
The solution is described for two cases of "initial" point sources C (x, 0) = M 0 .δ (xx 0 ) located at x 0 < x 1:2 < x 2:3 and C (x, 0) = M 0 .δ (xx 1 ) located at x 1:2 < x 1 < x 2:3 . In the first case, the source is in the left layer, but similar solutions are obtained for any source position. These solutions are used in the text in relation to the generalization of our Random Walk algorithm, and for comparison/validation of results (Section 4, Fig. 4.2).

For a source located at left (x 0 < x 1:2 ) the initial condition for the diffusion problem of Eq. (A.1) is:

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ∀x ≤ x 1:2 ; C 1 (x, 0) = M 0 θ 1 δ (x -x 0 ) ∀x 1:2 ≤ x ≤ x 2:3 ; C 2 (x, 0) = 0 ∀x ≥ x 2:3 ; C 3 (x, 0) = 0 (A.2)
The solution of the discontinuous diffusion problem (Eq. (A.1)) with initial condition (A.2) is:

∀t ≥ 0; ∀x ≤ x 1:2 ; θ 1 M 0 C 1 (x, t) = G (x 0 , 2D 1 t, x) + R 1:2 G (-x 0 + 2x 1:2 , 2D 1 t, x) + +∞ i=0 (1 -R 1:2 ) R 2:3 (R 2:3 R 2:1 ) i (1 -R 2:1 ) × G -x 0 + 2x 1:2 + 2 (i + 1) √ D 1 √ D 2 (x 2:3 -x 1:2 ) , 2D 1 t, x (A.3a) ∀t ≥ 0; ∀x 1:2 ≤ x ≤ x 2:3 ; θ 2 M 0 C 2 (x, t) = +∞ i=0 (1 -R 1:2 ) (R 2:3 R 2:1 ) i × G √ D 2 √ D 1 (x 0 -x 1:2 ) -(2i + 1) (x 2:3 -x 1:2 ) + x 2:3 , 2D 2 t, x + R 2:3 × G - √ D 2 √ D 1 (x 0 -x 1:2 ) + (2i + 1) (x 2:3 -x 1:2 ) + x 2:3 , 2D 2 t, x (A.3b) ∀t ≥ 0; ∀x ≥ x 2:3 ; θ 3 M 0 C 3 (x, t) = +∞ i=0 (1 -R 1:2 ) (R 2:3 R 2:1 ) i (1 -R 2:3 ) × G √ D 3 √ D 1 (x 0 -x 1:2 ) + (2i + 1) √ D 3 √ D 2 (x 1:2 -x 2:3 ) + x 2:3 , 2D 3 t, x (A.3c)
And the solution of Eq. (A.1) with the initial condition

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ∀x ≤ x 1:2 ; C 1 (x, 0) = 0 ∀x 1:2 ≤ x ≤ x 2:3 ; C 2 (x, 0) = M 0 θ 1 δ (x -x 1 ) ∀x ≥ x 2:3 ; C 3 (x, 0) = 0 (A.4) is: ∀t ≥ 0; ∀x ≤ x 1:2 ; θ 1 M 0 C 1 (x, t) = (1 -R 2:1 ) +∞ i=0 (R 2:3 R 2:1 ) i × G x 1:2 + D 1 D 2 (2i (x 2:3 -x 2:1 ) + x 0 -x 1:2 ) , 2D 1 t, x + R 2:3 G x 1:2 + D 1 D 2 (2i (x 2:3 -x 2:1 ) + 2x 2:3 -x 0 -x 1:2 ) , 2D 1 t, x (A.5a) ∀t ≥ 0; ∀x 1:2 ≤ x ≤ x 2:3 ; θ 2 M 0 C 2 (x, t) = -G (x 0 , 2D 2 t, x) + +∞ i=0 (R 2:3 R 2:1 ) i × (G (2i (x 2:3 -x 1:2 ) + x 0 , 2D 2 t, x) + G (2i (x 1:2 -x 2:3 ) + x 0 , 2D 2 t, x) + R 2:3 G (2i (x 2:3 -x 1:2 ) + 2x 2:3 -x 0 -x 1:2 , 2D 2 t, x) + R 2:1 G (2i (x 1:2 -x 2:3 ) + 2x 1:2 -x 0 -x 2:3 , 2D 2 t, x)) (A.5b) ∀t ≥ 0; ∀x ≥ x 2:3 ; θ 3 M 0 C 3 (x, t) = (1 -R 2:3 ) +∞ i=0 (R 2:1 R 2:3 ) i × G x 2:3 + D 3 D 2 (2i (x 1:2 -x 2:3 ) + x 0 -x 2:3 ) , 2D 3 t, x + R 2:1 G x 2:3 + D 3 D 2 (2i (x 1:2 -x 2:3 ) + 2x 1:2 -x 0 -x 2:3 ) , 2D 3 t, x (A.5c)
The above solutions have been checked by direct substitution in Eq. (A.1a) and the initial and boundary conditions Eq. (A.1b), Eq. (A.1c) and Eq. (A.2).

The infinite series obtained in this section for concentration C (x, t) have the form of a function h (x, t) defined as:

h (x, t) = +∞ n=0 A √ t z n exp - (x + Cn + D) 2 Bt (A.6)
with B, t > 0; x, A, C , D R and z = R 2:1 R 2:3 (product of partial reflection coefficients). Their convergence is studied in the next appendix (Appendix B).

Appendix B. Study of the convergence and continuity of the series h

In this appendix, we study the convergence of the infinite series h (x, t) (A.6) which has the form of the solution found in Appendix A. This solution (concentration C (x, t)) was used in Fig. 4.2 to validate the Random Walk Particle Tracking model proposed in this paper for discontinuous diffusion.

B.1. Pointwise convergence using d'Alembert criteria

Theorem 1 (d'Alembert Ratio test [START_REF] Rudin | Principles of Mathematical Analysis[END_REF]). Let a n , n N be a sequence of complex numbers such that L = lim n→+∞ If L = 1, then the case is undecided.

Using Theorem 1, we now show that our series h (x, t) is pointwise convergent. This series is of the form h (x, t) = +∞ n=0 U n (x, t), where: In conclusion, the series h (x, t) and the analytical concentrations solutions (Eqs. (3.8) and (3.9)) converge pointwise in all cases of interest.

B.2. Uniform convergence

Theorem 2 ([29]). Assume ( f n ) is a sequence of functions defined on E, and assume | f n (x)| ≤ M n (x 
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 31 Fig. 3.1. Partial reflection scheme with negative mass particles, for a domain with discontinuous diffusion and porosity (e.g., here, D 2 < D 1 ). Each given particle arriving at the interface with negative R 1-2 is transmitted with probability 1. In addition, two particles with opposite masses pop up with |R 1-2 | probability.

  |a n+1 | |a n | exists. If L < 1, then the series +∞ n=0 a n converges absolutely. Thus, +∞ n=0 a n is pointwise convergent. If L > 1, then the series +∞ n=0 a n is divergent.

2 Bt (B. 1 ) 2 Bt (B. 2 ) 1 1-z exp -(x+D) 2 Bt.

 212212 -(x + Cn + D) |U n+1 | |U n | = |z| exp -(x + C (n + 1) + D) 2 -(x + Cn + D) |U n+1 | |U n | = |z| exp -2xC + C 2 + 2DC Bt exp -2C 2 n Bt (B.3) If C = 0,then the series converges for |z| < 1 and B, t > 0; x, A, D R, h (t, x) = A √ t This case occurs if the distance between two interfaces (|x 1:2x 2:3 |) goes to zero (we may dismiss this case here). Otherwise, if C = 0, then |U n+1 | |U n | → n→+∞ 0. By the d'Alembert Ratio test, the series h converges ∀z C; ∀B > 0, ∀t > 0; ∀x, A, C , D R.

  Let us define g n (x, t) as:g n (x, t) = -Bt ln (t) + 2 (x + Cn + D) 2 2Bt (B.5)For t ≥ 1 we have g n ≤ 0. Thus,Az n exp -Bt ln (t) + 2 (x + Cn + D) 2 +∞ n=0 |A| |z| n converges for |z| < 1, h is uniformly convergent on R × [1; +∞[. For 0 < t ≤ 1 we have -B e ≤ Bt ln (t) ≤ 0.• First, if C > 0 and for a fixedx 0 R; ∃n 1 /∀n ≥ n 1 ; ∀x ≥ x 0 ; Bt ln (t) + 2 (x + Cn + D) 2 ≥ Bt ln (t) + 2 (x 0 + Cn + D) 2 ≥ 0.Hence, the series h converges uniformly on [x 0 ; +∞[ × ]0; 1]. • Secondly, if C < 0 and for a fixed x 0 R;∃n 2 /∀n ≥ n 2 ; ∀x ≤ x 0 ; Bt ln (t) + 2 (-x -Cn -D) 2 ≥ Bt ln (t) + 2 (-x 0 -Cn -D)2 ≥ 0. The series h converges uniformly on ]0; 1] × ]-∞; x 0 ].Theorem 3 ([29]). If ( f n ) is a sequence of continuous functions on E, and if f n → f uniformly on E, then f is continuous on E.Consequence For z C such that |z| < 1, h is continuous with respect to (x, t) on R × ]0; +∞[. In all cases of interest, the analytical infinite series concentration solutions (Eqs. (3.8) and (3.9)) are pointwise convergent and continuous with respect to (x, t) on R × ]0; +∞[.
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The infinite series h (x, t) is of the form:

h (x, t) = +∞ n=0 Az n exp -Bt ln (t) + 2 (x + Cn + D) 2 2Bt (B.4)

(x, t)) is the solution of a pure diffusive problem,

More precisely, in a given domain , the local concentration C (x, t) is related to the PDF of particle positions f Xt (x; t) by C (x, t) = M (t) f Xt (x; t) where M (t) is the total mass of the particles inside the domain at time t.