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This study develops a new Lagrangian particle method for modeling flow and transport
phenomena in complex porous media with discontinuities. For instance, diffusion processes
can be modeled by Lagrangian Random Walk algorithms. However, discontinuities and
heterogeneities are difficult to treat, particularly discontinuous diffusion D (x) or porosity
θ (x). In the literature on particle Random Walks, previous methods used to handle this
discontinuity problem can be characterized into two main classes as follows: “Interpolation
techniques”, and “Partial reflection methods”. One of the main drawbacks of these methods
is the small time step required in order to converge to the expected solution, particularly
in the presence of many interfaces. These restrictions on the time step, lead to inefficient
algorithms. The Random Walk Particle Tracking (RWPT) algorithm proposed here is, like
others in the literature, discrete in time and continuous in space (gridless). We propose
a novel approach to partial reflection schemes without restrictions on time step size.
The new RWPT algorithm is based on an adaptive “Stop&Go” time-stepping, combined
with partial reflection/refraction schemes, and extended with a new concept of negative
mass particles. To test the new RWPT scheme, we develop analytical and semi-analytical
solutions for diffusion in the presence of multiple interfaces (discontinuous multi-layered
medium). The results show that the proposed Stop&Go RWPT scheme (with adaptive
negative mass particles) fits extremely well the semi-analytical solutions, even for very
high contrasts and in the neighborhood of interfaces. The scheme provides a correct
diffusive solution in only a few macro-time steps, with a precision that does not depend
on their size.

1. Introduction

Particle methods have been much used to model the transport of mass, heat, and other quantities through solids, fluids, 
and fluid-filled porous media. The last two cases involve both diffusive and advective transport phenomena (due to the 
moving fluid). Hydrodynamic dispersion due to detailed spatial variations of the velocity field has also been modeled as 
a Fickian diffusion-type process, e.g. in fluid-filled porous structures (see [1]). Other purely diffuse processes include heat 
diffusion in materials (Fourier’s law), and pressure diffusion (compressible Darcy flow in a fluid-filled porous medium).
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Particle methods are based on a discrete representation of the transported quantity (solute concentration, fluid pressure, 
fluid saturation, heat or temperature) as discrete packets (the “particles”), each carrying a unit mass, or a unit heat, etc. The 
advantage of particle methods is that they avoid some of the problems of Eulerian methods based on Partial Differential 
Equations (PDE’s), such as numerical instability, artificial diffusion, mass balance errors, and/or oscillations that could lead to 
negative concentrations or saturations. Various types of particle methods have been devised: non-Lagrangian Particle-in-Cell 
methods (PIC); implementing Markov processes in a PIC framework with stochastic times [2]; continuous-time particles on 
a grid [3]; the time-domain random walk (TDRW) [4,5]; and Lagrangian particles with discrete time-steps in continuous 
space (gridless). Such particle methods have been extensively used for modeling advective-diffusive solute transport in 
porous soils, aquifers, and reservoirs [6].

In “Lagrangian” methods, space is assumed continuous, and particle positions X(t) are real numbers (the method is 
then “gridless”). In the present work, we focus on Lagrangian particle tracking to solve diffusion processes by random walk 
(Wiener process), under the generic name RWPT (Random Walk Particle Tracking).

A specific study of the macroscopic behavior of Random Walk particles is necessary when dealing with a heterogeneous 
or discontinuous diffusion coefficient D(x). The case of discontinuous diffusion is particularly troublesome, and this is our 
main focus. Such discontinuities occur at “material interfaces”, with sudden changes of microstructure (composite materials, 
layered porous media, etc.), and at discontinuities in phase, for example the interface between surface water and grounwater 
(an important ecological habitat in the hyporheic zone). For solute diffusion in a porous medium, an additional point of 
interest is the case of discontinuous porosity θ(x) (if the medium is water-saturated), or discontinuous volumetric water 
content θ(x) (if the medium is unsaturated).

In the literature on particle Random Walks, the displacement schemes used for handling the discontinuity can be char-
acterized into two classes: (1) Interface coarsening, interpolation, and drift velocity scheme (e.g. [7,8]); (2) Partial reflection 
schemes (e.g. [9]). The first class (“interpolation techniques”) smooth out the discontinuity [10]: the interface is coarsened 
and the parameters (diffusion, porosity) are considered continuous through the coarsened interface. The second class (“par-
tial reflection methods”), introduced by Uffink [9], implements a probabilistic reflection/transmission of the particles across 
the discontinuous interface: probabilities are assigned for particle reflection and transmission across the interface. Other 
similar partial reflection/transmission schemes were investigated by [11–17].

Lejay & Pichot [18] proposed a “two-step algorithm” (their Algo.2), equivalent to a Stop&Go procedure: the particle is 
stopped at the interface, and then undergoes a “Skewed Brownian Motion” (SBM) for the next step, which may lead the 
particle to cross the interface. Their two-step algorithm was presented for a 1D finite domain with zero flux boundary 
conditions. On the other hand, they also presented a “one-step algorithm” (their Algo.3) where, it seems, they use a type 
of acceptance-rejection method to obtain the displacement in the neighborhood of the interface (this method is different 
from ours). More recently, Lejay & Pichot [19] tested their approaches [18] by implementing 1D benchmark tests, involving 
comparisons between their SBM and two Random Walks approaches in the literature [9,15].

One of the drawbacks of these approaches is that a small time step is required in order to converge to the correct solution 
of the discontinuous PDE, even if the number of particles is very large. This is particularly limiting in the presence of many 
interfaces. This limitation becomes even more drastic for very large diffusion contrasts, e.g., two orders of magnitude or 
more. Thus, [20,17] showed that the above methods are only valid for infinitesimal time steps. A small time step must be 
used in order to avoid the overshoot of heterogeneous and discontinuous subregions of space by the particles.

In this study, we propose a novel approach in the framework of “partial reflection methods” but without restrictions on 
time step size. The new RWPT algorithm is discrete in time and continuous in space (gridless), and the novel aspects have 
to do with the treatment of discontinuities. The new algorithm is based on adaptive “Stop&Go” time-stepping, combined 
with partial reflection/transmission schemes similar to [15–18], and extended with the concept of negative mass particles.

This paper is organized as follows. The next section, 2, presents the theory behind Random Walk Particle Tracking 
methods (RWPT), and the corresponding macroscopic diffusion PDE. Section 3 presents a novel particle-based method for 
solving heterogeneous and discontinuous transport problems using RWPT with “negative mass particles”. Section 4 compares 
analytical solutions to our RWPT results. Section 5 recapitulates the method and discusses extensions of this work.

2. Theory

This section presents the theory of advective-diffusive transport, namely, the concentration-based, macroscopic PDE’s, and
the related theory of Stochastic Differential Equations (SDE’s) driven by white noise, governing particles at the microscopic 
scale.

2.1. Concentration based PDE’s

2.1.1. The Gaussian function (PDF)
Let us define a Gaussian PDF, denoted G 

(
μ,σ 2, x

)
, where μ is the mean, σ 2 the variance, and x = X (t) the particle 

position at any fixed time t:

∀xεR; G
(
μ,σ 2, x

)
= 1

σ
√

2π
exp

(
− (x − μ)2

2σ 2

)
(2.1)



A Gaussian random variable (RV) with mean μ and variance σ 2 is denoted N
(
μ,σ 2

)
and has the Probability Den-

sity Function (PDF) G
(
μ,σ 2, x

)
. Letting σ 2 = 2D0t , this Gaussian PDF represents the macroscopic concentration solu-

tion C (x, t) of the diffusion PDE with spatially constant diffusion coefficient D0, for an initial point source condition 
C (x, t) = M0δ (x − μ), with unit mass M0 = 1, in an infinite domain.

2.1.2. The advection-diffusion transport PDE for concentration
The equation governing the transport of solute concentration (C ) in a heterogeneous medium with variable parameters 

D (diffusion coefficient), θ (porosity) and V (velocity) is (see for instance [11]):

∂ (θC)

∂t
= ∇·(−θCV + D·∇ (θC))

= −∇·{θC (V + ∇·D + D·∇ (ln θ))} + 1

2
∇·∇·(2θCD) (2.2)

Note that we do not distinguish between vectors and second rank tensors. The first equality corresponds to the conservative 
(divergence) form of the PDE, while the second equality corresponds to its decomposed form (from which apparent “drift 
velocity” terms emerge due to spatially variable diffusion and porosity coefficients).

For a 1D problem with scalar diffusion D , the transport PDE for an initial source at x = x0 in a homogeneous medium 
with constant parameters D , θ and V is:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∀t > 0; ∀xεR; ∂C

∂t
(x, t) = −V

∂C

∂x
(x, t) + D

∂2C

∂x2 (x, t)

∀t > 0; lim
x→±∞ C (x, t) = 0

∀xεR; C (x,0) = M0

θ
δ (x − x0)

(2.3)

The last equation represents an initial point source located at x = x0 with mass M0, and δ (x) represents the Dirac 
pseudo-function (δ distribution) (e.g. Schwartz [21]).

This PDE will be later formulated for purely diffusive discontinuous diffusion and porosity coefficients in section 2.2.
The analytical solution of Eq. (2.3) is:

∀t > 0; ∀xεR; C (x, t) = M0

θ
G (x0 + V t,2Dt, x) (2.4)

where G is the Gaussian PDF defined in Eq. (2.1).

2.1.3. From concentration to particle positions
Let us consider now a particle based method to solve Eq. (2.3). The concentration can be expressed as follows [22,23]:

C (x, t) =
∫
R

C (Xt, t) δ (Xt − x)dXt =
∫
R

δ (Xt − x)dmt (2.5)

where Xt and dmt represent, respectively, the position and mass of an infinitesimal concentration packet (to be discretized 
as a “particle”).

The PDF of particles positions at any fixed time t should follow the distribution G (x0 + V t,2Dt, x). Thus, the correspond-
ing particle positions can be generated using a Gaussian RV:

Xt = N (x0 + V t,2Dt) = x0 + V t + √
2 D t N (0,1) (2.6)

where N (0,1) designates a normalized Gaussian RV (zero mean and unit variance). For V = 0, (Xt) is the Wiener process. 
As can be seen, the PDF of (Xt) is identical to the concentration solution in Eq. (2.4) divided by M0.

In the case of spatially variable but differentiable coefficients D (x) and θ (x), the corresponding SDE becomes [22,11,24]:

Xt+dt = Xt + √
2D (Xt)dt N (0,1) + {V (Xt) + ∇ (D (Xt)) + D (Xt)∇ (ln θ (Xt))}dt (2.7)

which governs the Gaussian Markovian process (Xt). After “explicit” “discretization”, dt is replaced with the finite �t step 
[7–9,12,25,13–17].

However, if D (x) or θ (x) is discontinuous, the SDE Eq. (2.7) does not hold.



2.2. Prototype problem: 1D diffusion with a single source and a single discontinuity

In this section, we define a purely diffusive problem, with an initial Dirac source, in an infinite porous medium com-
prising two subdomains 	1 and 	2 separated by a single discontinuity, or “material interface”. The interface is located at 
x1−2 = 0, and the initial point source is located at X Source = x0 < 0. The subdomains 	1 and 	2 have different diffusion 
coefficients D1 and D2, and different porosities θ1 and θ2. Such discontinuities can be found in soils, fractured rocks, and 
many other porous materials. For instance, [8] studied oxygen diffusion through a discontinuous grains/joints system in a 
submicron layer of Nickel Oxide.

Here, to illustrate our RWPT method (as in Labolle’s analysis [11]), we focus on 1D solute diffusion in a porous medium 
with a single interface, where both D(x) and θ(x) are discontinuous. The PDE system for the discontinuous problem is, for 
the domain 	 = 	1 ∪ 	2:

∀t > 0; ∀xε	i; ∂ (θi Ci)

∂t
= ∂

∂x

(
θi Di

∂Ci

∂x

)
(2.8a)

∀t ≥ 0; lim
x→±∞ Ci (x, t) = 0 (2.8b)⎧⎨

⎩
∀t ≥ 0; C1 (x1−2, t) = C2 (x1−2, t)

∀t ≥ 0; −θ1 D1
∂C1

∂x
(x1−2, t) = −θ2 D2

∂C2

∂x
(x1−2, t)

(2.8c)

∀xε	i; Ci (x,0) = M0

θi
δ (x − x0) (2.8d)

In Eq. (2.8a), each PDE represents a mass conservation equation for the solute in each subdomain. In the case at hand, 
porosities θ1 and θ2 are constant in each subdomain and can be factored out from each PDE. The system (2.8c) enforces 
the continuity of solute concentration (mass per volume of solvent) and of areal solute flux density. In all these equations, 
Fick’s law is used for the diffusive flux.

The analytical solution of problem 2.8 is given by C1 and C2 (∀t ≥ 0):

(	1) : ∀x ≤ x1−2; C1 (x, t) = C S
1 (x, t) + C R

1 (x, t) (2.9a)

C S
1 (x, t) = M0

θ1
G (x1−2 + (x0 − x1−2) ,2D1t, x) (2.9b)

C R
1 (x, t) = M0

θ1
R1−2G (x1−2 − (x0 − x1−2) ,2D1t, x) (2.9c)

(	2) : ∀x ≥ x1−2; C2 (x, t) = M0

θ2
(1 − R1−2) × G (x1−2 + β1−2 (x0 − x1−2) ,2D2t, x) (2.9d)

R1−2 = θ1
√

D1 − θ2
√

D2

θ1
√

D1 + θ2
√

D2
and β1−2 =

√
D2√
D1

(2.9e)

• C S
1 (“S” for “Source”) is the solution of this diffusion problem without interface (no discontinuities).

• C R
1 is the symmetric of C S

1 relative to the interface x = x1−2, multiplied by coefficient R1−2 (R for Reflection).
• C2 is the solution of a diffusion problem with initial mass M0 (1 − R1−2) located at x1−2 + β1−2 (x0 − x1−2).

Eqs. (2.9) extend previous analytical solutions given by [26,7,27].

3. Methods and algorithms

In this section, we start by explaining the need for a new algorithm to deal with discontinuities. Then we discuss
previous methods proposed in the literature. Finally, we present our new method and discuss its advantages compared to 
the previous ones.

3.1. Discontinuity problem for Random Walk

The most straightforward test of an algorithm for diffusion with discontinuous D (x) is the “uniform concentration test”, 
where the exact solution of the diffusion PDE is constant concentration C(x, t) = C0 at all times (t) and all positions (x). This 
is obtained by imposing constant initial concentration C(x, 0) = C0, and imposing either zero flux conditions ∂C/∂x = 0, or 
else Dirichlet conditions C = C0, at both boundaries.

The random walk equation can be written as follows for 1D diffusion with variable D (x):

X (p) (tn + �tn) = X (p) (tn) + �tn
∂ D (

X (p) (tn)
)

+
√

2D
(

X (p) (tn)
)
�tn Z (p) (tn) (3.1)
∂x



However, this equation is limited to the case of continuously variable diffusion coefficient. Let us now focus on the case 
of discontinuous D (x). If we naïvely insert the discontinuous D (x) in the above equation, a deficit of concentration appears 
near the interface of discontinuity, where D1 < D2. We can deal with this deficit of concentration using two different 
schemes (reflection, smoothing). For this purpose, a Stop&Go algorithm is necessary; it is described in the following section.

3.2. Partial reflection and extensions (algorithm)

3.2.1. Partial reflection scheme for the case R1−2 ≥ 0
The general principle of this partial reflection scheme, so far, is similar to the one previously used in literature [15–17]. 

The fractions |R1−2| and (1 − |R1−2|) are interpreted as probabilities. The issue of “negative probabilities” will be tackled 
later below and in section 3.2.2. Here, we focus on R1−2 ≥ 0.

Thus, the displacement algorithm for X (t) becomes:⎧⎪⎪⎨
⎪⎪⎩

� R1−2 � = 1; X (t) = x1−2 − N (x0 − x1−2,2D1t) :
{

X Rl reflected
}

� R1−2 � = 0; X (t) = x1−2 +
√

D2

D1
N (x0 − x1−2,2D1t) :

{
X Rr refracted

} (3.2)

where � R1−2 � designates a Bernoulli RV that is equal to 1 with probability |R1−2| and equal to 0 with probability 
(1 − |R1−2|), x0 is the initial particle position X (0), and x1−2 is the interface position.

However, until now we have considered only the absolute value of R1−2. Thus, the previous algorithm is sufficient only
in cases where R1−2 is positive.

3.2.2. Partial reflection scheme for the case R1−2 < 0
Negative partial reflection probability R1−2 corresponds to a subtraction in the analytical solution (C (x, t)). However, 

it is difficult to “substract” particles at a specific location (position) with RWPT compared to adding particles. The reason 
is that, when attempting to substract a particle at a specified location, one has to act indirectly by searching for particles 
in a neighborhood of the desired location, while adding a particle at a specific location is always possible directly. This 
subsection discusses a new method to deal with negative R1−2 for a single interface (we have also extended the method to 
multiple interfaces in the next subsection).

Fig. 3.1. Partial reflection scheme with negative mass particles, for a domain with discontinuous diffusion and porosity (e.g., here, D2 < D1). Each given
particle arriving at the interface with negative R1−2 is transmitted with probability 1. In addition, two particles with opposite masses pop up with |R1−2|
probability.

For the case of negative R , we propose the following algorithm. First, the particle is always refracted. Secondly, with 
probability |R1−2|, two new particles are created: one is refracted and has the same mass as the original particle, and 
the other is reflected with a mass of opposite sign (Fig. 3.1). This algorithm allows us to model the exact solution to the 
discontinuous diffusion problem. Thus, the displacement algorithm for each particle Xk (t) becomes:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Xk (t) = x1−2 +
√

D2

D1
N (x0 − x1−2,2D1t) {refracted}

� R1−2 � = 1; X pos
k (t) = x1−2 +

√
D2

D1
N (x0 − x1−2,2D1t) {refracted}

� R1−2 � = 1; Xneg
k (t) = x1−2 − N (x0 − x1−2,2D1t) {reflected}

(3.3)

with the particle X pos has the same mass as Xk and the particle Xneg has the mass of Xk multiplied by (−1).
k k



3.3. Multiple interfaces

After crossing one interface, a particle could eventually cross a second interface. The algorithm should be able to deal 
with any number of interfaces crossed by a given particle, in a single time step.

3.3.1. Semi-analytical solution for a diffusion problem with N ≥ 2 interfaces
To obtain the RWPT algorithm that deals with multiple interfaces, let us first generalize the solution Eq. (2.9) of Eq. (2.8)

for N-interfaces and (N + 1) layers. The generalization of Eq. (2.8) for iε �1; N + 1� is:

∀t > 0; ∀xε	i; ∂ (θi Ci)

∂t
= ∂

∂x

(
θi Di

∂Ci

∂x

)
(3.4a)⎧⎨

⎩
∀t ≥ 0; lim

x→−∞ C1 (x, t) = 0

∀t ≥ 0; lim
x→+∞ CN+1 (x, t) = 0

(3.4b)

⎧⎨
⎩

∀t ≥ 0; ∀iε �1; N � Ci
(
xi,i+1, t

) = Ci+1
(
xi,i+1, t

)
∀t ≥ 0; ∀iε �1; N � −θi Di

∂Ci

∂x

(
xi,i+1, t

) = −θi+1 Di+1
∂Ci+1

∂x

(
xi,i+1, t

) (3.4c)

∀xε	i; Ci (x,0) = M0

θi
δ (x − x0) (3.4d)

The solution Eq. (2.9) is composed of three gaussians, one of which (C S
1 (x, t)) is the solution of a pure diffusive problem, 

and the other two depend on C S
1 and on the interface position. Let us define two linear operators Li j and L∗

i j :

Li j (G (x0,2Dit, x)) = Rij G
(
2xi− j − x0,2Dit, x

)
(3.5)

L∗
i j (G (x0,2Dit, x)) = (

1 − Rij
)

G

(
xij +

√
D j

Di

(
x0 − xi− j

)
,2D jt, x

)
(3.6)

Thus the solution Eq. (2.9) could be written as follows:⎧⎨
⎩

∀t > 0; ∀x ≤ x1−2; C1 (x, t) = C S
1 (x, t) + L12

(
C S

1 (x, t)
)

∀t > 0; ∀x ≥ x1−2; C2 (x, t) = L∗
12

(
C S

1 (x, t)
) (3.7)

The decomposition (Eq. (3.7)) can be further generalized: for each individual interface, new gaussians are generated, with 
parameters chosen to fit the solution. Hence, each time a gaussian function g initially in a subdomain (i) encounters an 
interface at position xi− j , we add Li, j (g) to the solution in subdomain (i) and L∗

i, j (g) to the solution in subdomain ( j). See 
Algorithm 1.

Algorithm 1 Semi-analytical solution for diffusion with N ≥ 2 interfaces.
1. Ck concentration in subdomain k
2. Initialize Cik = C S with C S the solution of a diffusion problem with no discontinuity.
3. uk = ±1 the direction towards the interfaces limiting subdomain (k).
4. while (Ck) not converged do

(a) Ck = Ck + Lk,k+uk (Cik) and Ck+uk = Ck+uk + L∗
k,k+uk

(
C i

k

)
(b) uk+uk = uk and uk = −uk

(c) Cik = Lk,k+uk (Cik) and Cik+uk = Cik+uk + L∗
k,k+uk

(Cik)

5. end

For the two-interface problem (N = 2), the previous algorithm leads to an analytical solution for diffusion with an 
initial source, with discontinuous diffusion coefficients and porosities having three different values (three layers). Thus the 
analytical solution for a source located at the position x0 in subdomain (i = 1), ∀t ≥ 0:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀x ≤ x1;2; θ1

M0
C1 (x, t) = id + L12 +

+∞∑
i=0

L∗
21 (L23L21)

i L23L∗
12

∀x1;2 ≤ x ≤ x2;3; θ2

M0
C2 (x, t) =

+∞∑
i=0

(id + L23) (L21L23)
i L∗

12

∀x ≥ x2;3; θ3

M0
C3 (x, t) = L∗

23

+∞∑
i=0

(L21L23)
i L∗

12

(3.8)

with the right side of Eq. (3.8) is applied to G (x0,2D1t, x).



The analytical solution for a source located at the position x0 in subdomain (i = 2), ∀t ≥ 0:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀x ≤ x1;2; θ1

M0
C1 (x, t) = L∗

21

+∞∑
i=0

(L23L21)
i (id + L23)

∀x1;2 ≤ x ≤ x2;3; θ2

M0
C2 (x, t) =

+∞∑
i=0

(id + L21) (L23L21)
i (id + L23)

∀x ≥ x2;3; θ3

M0
C3 (x, t) = L∗

23

+∞∑
i=0

(L21L23)
i (id + L21)

(3.9)

with the right side of Eq. (3.8) is applied to G (x0,2D2t, x).
This solution is detailed in Appendix A, and it has been verified by substitution into the governing PDE’s.

3.3.2. Generalization of the RWPT algorithm for N ≥ 2 interfaces
The same idea of generalization of the analytical solution in subsection 3.3.1 (from one interface into a multi-interface) 

has been applied to the RWPT method for a problem with N interfaces. If a particle crosses an interface, then (step 1) its 
position is altered according to previous algorithms that deal with discontinuities (see subsection 3.2, Eq. (3.2) for R ≥ 0
and Eq. (3.3) for R < 0). After this (step 2), if the new particle position does not belong to its initial subdomain, nor to 
the adjacent subdomains, then go back to “step 1”. Thereafter, the particle continues undergoing this algorithm within 
a conditional loop, until the particle does not cross an interface (it then reaches its final position within the loop). See 
Algorithm 2.

Algorithm 2 RWPT algorithm for N ≥ 2 interfaces.
1. Consider particle (k) with mass mk and position Xk .
2. while particle (k) crosses interfaces do

(a) If R1,2 ≥ 0 then
i. If � R1,2 � = 0; then the particle (k) is refracted to the position X Rr

k as in Eq. (3.2) endif

ii. If � R1,2 � = 1; then the particle (k) is refracted to the position X Rl
k as in Eq. (3.2) endif

(b) Else (case R1,2 < 0)
i. The particle (k) is refracted to the position X Rr

k .
ii. If � R1,2 � = 1; then Create two particles “A” and “B”:

A. with mass mk and at the refracted position X Rr
k .

B. with mass −mk and at the refracted position X Rl
k .

iii. endif
(c) end

3. end

This algorithm will be tested in section 4, with the analytical solution defined in subsection 2.2. Then, it will be com-
pared with a generalized analytical solution for a pure diffusion problem with two interfaces and three different diffusion 
coefficients and water contents: the detailed analytical solution for this 3-layer case is presented in Eq. (3.8). And finally, it 
will be validated with an even more generalized semi-analytical solution which algorithm has been detailed in the previous 
subsection 3.3.1.

3.4. Post processing: from particles to concentrations

Post-processing in Random Walk method is essential since the primary objective of the simulation is to get the concen-
tration (temperature or pressure) field. A special attention should be given to Negative unit mass and Adaptive mass particle 
methods in particular, since they are very different from the classical Random Walk simulation. Here, mass conservation is 
still maintained, since each time we create a negative mass, we create also a positive one.

The macroscopic concentration is determined from the distribution of particle positions Xt weighted by their respective 
masses, dmt = C (Xt , t)dXt . This can be expressed formally as1:

C (x, t) =
∫
R

C (Xt, t) δ (Xt − x)dXt =
∫
R

δ (Xt − x)dmt (3.10)

1 More precisely, in a given domain 	, the local concentration C (x, t) is related to the PDF of particle positions f Xt (x; t) by C (x, t) = M	 (t) f Xt (x; t)
where M	 (t) is the total mass of the particles inside the domain 	 at time t .











The solution is described for two cases of “initial” point sources C(x, 0) = M0.δ (x − x0) located at x0 < x1:2 < x2:3 and 
C(x, 0) = M0.δ (x − x1) located at x1:2 < x1 < x2:3. In the first case, the source is in the left layer, but similar solutions are 
obtained for any source position. These solutions are used in the text in relation to the generalization of our Random Walk 
algorithm, and for comparison/validation of results (Section 4, Fig. 4.2).

For a source located at left (x0 < x1:2) the initial condition for the diffusion problem of Eq. (A.1) is:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∀x ≤ x1:2; C1 (x,0) = M0

θ1
δ (x − x0)

∀x1:2 ≤ x ≤ x2:3; C2 (x,0) = 0

∀x ≥ x2:3; C3 (x,0) = 0

(A.2)

The solution of the discontinuous diffusion problem (Eq. (A.1)) with initial condition (A.2) is:

∀t ≥ 0; ∀x ≤ x1:2; θ1

M0
C1 (x, t) = G (x0,2D1t, x) + R1:2G (−x0 + 2x1:2,2D1t, x)

+
+∞∑
i=0

(1 − R1:2) R2:3 (R2:3 R2:1)i (1 − R2:1) × G

(
−x0 + 2x1:2 + 2 (i + 1)

√
D1√
D2

(x2:3 − x1:2) ,2D1t, x

)
(A.3a)

∀t ≥ 0; ∀x1:2 ≤ x ≤ x2:3; θ2

M0
C2 (x, t) =

+∞∑
i=0

(1 − R1:2) (R2:3 R2:1)i

×
(

G

(√
D2√
D1

(x0 − x1:2) − (2i + 1) (x2:3 − x1:2) + x2:3,2D2t, x

)
+ R2:3

× G

(
−

√
D2√
D1

(x0 − x1:2) + (2i + 1) (x2:3 − x1:2) + x2:3,2D2t, x

))
(A.3b)

∀t ≥ 0; ∀x ≥ x2:3; θ3

M0
C3 (x, t) =

+∞∑
i=0

(1 − R1:2) (R2:3 R2:1)i (1 − R2:3)

× G

(√
D3√
D1

(x0 − x1:2) + (2i + 1)

√
D3√
D2

(x1:2 − x2:3) + x2:3,2D3t, x

)
(A.3c)

And the solution of Eq. (A.1) with the initial condition⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∀x ≤ x1:2; C1 (x,0) = 0

∀x1:2 ≤ x ≤ x2:3; C2 (x,0) = M0

θ1
δ (x − x1)

∀x ≥ x2:3; C3 (x,0) = 0

(A.4)

is:

∀t ≥ 0; ∀x ≤ x1:2; θ1

M0
C1 (x, t) = (1 − R2:1)

+∞∑
i=0

(R2:3 R2:1)i

×
(

G

(
x1:2 +

√
D1

D2
(2i (x2:3 − x2:1) + x0 − x1:2) ,2D1t, x

)

+ R2:3G

(
x1:2 +

√
D1

D2
(2i (x2:3 − x2:1) + 2x2:3 − x0 − x1:2) ,2D1t, x

))
(A.5a)

∀t ≥ 0; ∀x1:2 ≤ x ≤ x2:3; θ2

M0
C2 (x, t) = −G (x0,2D2t, x) +

+∞∑
i=0

(R2:3 R2:1)i

× (G (2i (x2:3 − x1:2) + x0,2D2t, x) + G (2i (x1:2 − x2:3) + x0,2D2t, x)

+ R2:3G (2i (x2:3 − x1:2) + 2x2:3 − x0 − x1:2,2D2t, x)

+ R2:1 G (2i (x1:2 − x2:3) + 2x1:2 − x0 − x2:3,2D2t, x)) (A.5b)



∀t ≥ 0; ∀x ≥ x2:3; θ3

M0
C3 (x, t) = (1 − R2:3)

+∞∑
i=0

(R2:1 R2:3)i

×
(

G

(
x2:3 +

√
D3

D2
(2i (x1:2 − x2:3) + x0 − x2:3) ,2D3t, x

)

+ R2:1G

(
x2:3 +

√
D3

D2
(2i (x1:2 − x2:3) + 2x1:2 − x0 − x2:3) ,2D3t, x

))
(A.5c)

The above solutions have been checked by direct substitution in Eq. (A.1a) and the initial and boundary conditions 
Eq. (A.1b), Eq. (A.1c) and Eq. (A.2).

The infinite series obtained in this section for concentration C (x, t) have the form of a function h (x, t) defined as:

h (x, t) =
+∞∑
n=0

A√
t

zn exp

(
− (x + Cn + D)2

Bt

)
(A.6)

with B, t > 0; x, A, C, DεR and z = R2:1 R2:3 (product of partial reflection coefficients). Their convergence is studied in the 
next appendix (Appendix B).

Appendix B. Study of the convergence and continuity of the series h

In this appendix, we study the convergence of the infinite series h (x, t) (A.6) which has the form of the solution found in 
Appendix A. This solution (concentration C (x, t)) was used in Fig. 4.2 to validate the Random Walk Particle Tracking model 
proposed in this paper for discontinuous diffusion.

B.1. Pointwise convergence using d’Alembert criteria

Theorem 1 (d’Alembert Ratio test [29]). Let 
(
an,nεN

)
be a sequence of complex numbers such that L = limn→+∞ |an+1|

|an | exists.

If L < 1, then the series 
∑+∞

n=0 an converges absolutely. Thus, 
∑+∞

n=0 an is pointwise convergent.
If L > 1, then the series 

∑+∞
n=0 an is divergent.

If L = 1, then the case is undecided.

Using Theorem 1, we now show that our series h (x, t) is pointwise convergent. This series is of the form h (x, t) =∑+∞
n=0 Un (x, t), where:

Un = A√
t

zn exp

(
− (x + Cn + D)2

Bt

)
(B.1)

|Un+1|
|Un| = |z|exp

(
− (x + C (n + 1) + D)2 − (x + Cn + D)2

Bt

)
(B.2)

|Un+1|
|Un| = |z|exp

(
−2xC + C2 + 2DC

Bt

)
exp

(−2C2n

Bt

)
(B.3)

If C = 0, then the series converges for |z| < 1 and B, t > 0; x, A, DεR, h (t, x) = A√
t

1
1−z exp

(
− (x+D)2

Bt

)
. This case occurs if 

the distance between two interfaces (|x1:2 − x2:3|) goes to zero (we may dismiss this case here).
Otherwise, if C �= 0, then |Un+1|

|Un| →n→+∞ 0. By the d’Alembert Ratio test, the series h converges ∀zεC; ∀B > 0, ∀t > 0;
∀x, A, C, DεR.

In conclusion, the series h (x, t) and the analytical concentrations solutions (Eqs. (3.8) and (3.9)) converge pointwise in 
all cases of interest.

B.2. Uniform convergence

Theorem 2 ([29]). Assume ( fn) is a sequence of functions defined on E, and assume | fn (x)| ≤ Mn (xεE,n = 1,2,3, . . .). Then
∑

fn
converges uniformly on E if 

∑
Mn converges.

The infinite series h (x, t) is of the form:

h (x, t) =
+∞∑

Azn exp

(
− Bt ln (t) + 2 (x + Cn + D)2

2Bt

)
(B.4)
n=0



Let us define gn (x, t) as:

gn (x, t) = − Bt ln (t) + 2 (x + Cn + D)2

2Bt
(B.5)

For t ≥ 1 we have gn ≤ 0. Thus,∣∣∣∣∣Azn exp

(
− Bt ln (t) + 2 (x + Cn + D)2

2Bt

)∣∣∣∣∣ ≤ |A| |z|n (B.6)

Since the series 
∑+∞

n=0 |A| |z|n converges for |z| < 1, h is uniformly convergent on R × [1;+∞[.
For 0 < t ≤ 1 we have −B

e ≤ Bt ln (t) ≤ 0.

• First, if C > 0 and for a fixed x0εR; ∃n1/∀n ≥ n1; ∀x ≥ x0; Bt ln (t) + 2 (x + Cn + D)2 ≥ Bt ln (t) + 2 (x0 + Cn + D)2 ≥ 0.
Hence, the series h converges uniformly on [x0;+∞[ × ]0;1].

• Secondly, if C < 0 and for a fixed x0εR;∃n2/∀n ≥ n2; ∀x ≤ x0; Bt ln (t)+2 (−x − Cn − D)2 ≥ Bt ln (t)+2 (−x0 − Cn − D)2

≥ 0. The series h converges uniformly on ]0;1] × ]−∞; x0].

Theorem 3 ([29]). If ( fn) is a sequence of continuous functions on E, and if fn → f uniformly on E, then f is continuous on E.

Consequence For zεC such that |z| < 1, h is continuous with respect to (x, t) on R × ]0;+∞[.

Conclusion In all cases of interest, the analytical infinite series concentration solutions (Eqs. (3.8) and (3.9)) are pointwise 
convergent and continuous with respect to (x, t) on R × ]0;+∞[.
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