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1. SAXS scattered intensity

1.1. General equations

The principle of the technique is to irradiate the sample with a monochromatic

X-ray beam and measure the intensity of elastically scattered X-ray in function of

the scattering vector q = 2π (k − k0), where k0 and k are the X-ray wave vectors

respectively before and after scattering. The polar angle of diffusion 2θ and q are

related by:

|q| = 4π sin θ

λ
(1)

with λ the X-ray wavelength. The intensity at a scattering vector q is related to the

electron density ρ by (Guinier et al., 1955):

I (q) = Ie (q)

∫∫
ρ (r) ρ

(
r′
)
e−iq.(r−r

′) dV dV ′ (2)

where Ie (q) is the intensity scattered by a single electron (Guinier et al., 1955):

Ie (q) = I0
r2

e

a2

1 + cos2 (2θ)

2
(3)
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with I0 the intensity of incident X-ray, re the classical electron radius and a the

distance between the electron and the detector. If electron density is constant, there

is no scattering except for q = 0, that is to say in the forward direction. Let 〈f (r)〉

be the mathematical expectation of f (r) on the volume V :

〈f (r)〉 =
1

V

∫
V
f (r) dV (4)

Equation 2 reads for q 6= 0:

I (q) = Ie (q)

∫∫
∆ρ (r) ∆ρ

(
r′
)
e−iq.(r−r

′) dV dV ′ (5)

where ∆ρ (r) = ρ (r)− 〈ρ (r)〉. The Debye correlation function or normalized covari-

ance is defined by (Gommes, 2018):

γ (r) =
〈∆ρ (x) ∆ρ (x + r)〉

〈∆ρ2 (x)〉
(6)

Then equation 2 writes:

I (q) = Ie (q)V
〈

∆ρ2 (x)
〉 ∫

V
γ (r) e−iq.r dV (7)

The SAXS intensity is proportional to the Fourier transform of the normalized covari-

ance.

1.2. Statistically isotropic porous medium

If we assume a porous system of volume fraction p and electron density ρ in the

solid phase, we have: 〈
∆ρ2 (x)

〉
= p (1− p) ρ2 (8)

Assuming a statistically isotropic medium, the intensity depends only on q = |q| and

the normalized covariance only on r = |r|. We can calculate equation 7 by integration
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in polar coordinates with the z axis in forward scattering direction, setting u = cos θ:

I (q) = Ie (q)V p (1− p)
∫ ∞

0

∫ π

0

∫ 2π

0
γ (r) e−iqr cos θr2 sin θ dφ dθ dr

= Ie (q)V p (1− p)
∫ ∞

0

(
2πr2γ (r)

∫ 1

−1
e−iqrudu

)
dr

= Ie (q)V p (1− p)
∫ ∞

0
4πr2γ (r)

sin (qr)

qr
dr (9)

For small q, the sinc (qr) term in equation 9 tends to 1 and intensity for q = 0 is equal

to:

I (0) = Ie (0)V p (1− p) ρ2A3 (10)

where A3 is the integral range (Lantuejoul, 1991) of the covariance defined by:

A3 =

∫ ∞
0

4πr2γ (r) dr (11)

If γ (r) is known, A3 can be calculated by numerical integration as for ordinary sys-

tems, γ has either a finite support or is rapidly decreasing when r increases.

2. Computation of SAXS intensity

For the remainder of the document, microstructures are considered as defined by the

electron density, a function ρb : R3 → R with points representing matter defined by

the set X =
{
x ∈ R3 | ρb (x) > 0

}
; X is a bounded set. Let ∂γ the convex hull of

X with γ a bounded set of R3, defined as the smallest convex set such as X ⊂ γ.

Finally let ρ be a 3D image representing the microstructure, defined by ρb and γ by

ρ : γ → R;x 7→ ρb (x), otherwise said ρ is a restriction of ρb to γ.

2.1. From analytical covariance

Defining the Fourier transform F (g) of g by:

F (g) (q) =

∫ +∞

−∞
g (r) e−iqr dr (12)
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We can rewrite equation 9:

I (q) = Ie (q)V p (1− p) ρ2 2π

q
2

∫ ∞
0

rγ (r) sin (qr) dr (13)

As γ (r) is an even function, the function rγ (r) sin (qr) is also even, hence:

I (q) = Ie (q)V p (1− p) ρ2 2π

q

∫ ∞
−∞

rγ (r) sin (qr) dr (14)

As sin (qr) = −=
(
e−iqr

)
, where = (z) is the imaginary part of z and replacing r by

i (−ir) we obtain:

I (q) = Ie (q)V p (1− p) ρ2−2π

q
=
[∫ ∞
−∞

iγ (r) (−ir) e−iqr dr

]
(15)

Noticing that = (iz) = < (z) where < (z) is the real part of z and that (−ir) e−iqr =

∂
∂q

[
e−iqr

]
, we obtain:

I (q) = Ie (q)V p (1− p) ρ2−2π

q
<
[∫ ∞
−∞

γ (r)
∂

∂q

(
e−iqr

)
dr

]
= Ie (q)V p (1− p) ρ2−2π

q

∂

∂q

[
<
[∫ ∞
−∞

γ (r) e−iqr dr

]]
(16)

Identifying the Fourier transform of γ (r) we obtain similarly to Levitz & Tchoubar

(1992):

I (q) = Ie (q)V p (1− p) ρ2−2π

q

∂

∂q
[< [F (γ) (q)]] (17)

Equation 17 may be helpful to compute SAXS intensity from a know covariance. It

implies a one-dimensional Fourier Transform transform and a numerical differentia-

tion. Equation 17 can be evaluated numerically by an efficient Fast Fourier Transform

algorithm (FFT).

2.2. From numerical evaluation of the covariance

For random sets that do not yield to an analytical expression for the covariance, it

is still possible to evaluate the covariance numerically on realizations of random sets.
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For statistically isotropic porous random sets, the two-point correlation function of

the solid phase C (r) is related with γ (r) by:

C (r) = 〈χ (x)χ (x+ r)〉 = p (1− p) γ (r) + p2 (18)

where χ is the indicator function of the microstructure. For periodic microstructures,

the covariance may be evaluated by Fast Fourier Transform (FFT) (Koch et al., 2003;

Schmidt-Rohr, 2007):

C (r) = F−1
(
|F (χ (r))|2

)
(19)

Combining equations 17 and 19, the scattered intensity writes:

I (q) = Ie (q)V ρ2−2π

q

∂

∂q

[
|F (χ (r))|2

]
(20)

The SAXS intensity may be computed from a three-dimensional Fourier transform

and a numerical differentiation.

2.3. From projection of the microstructure

Brisard et al. (2012) invoking the Fourier slice theorem (Kak & Slaney, 1988) indi-

cate that the SAXS intensity is proportional to the square of the modulus of the

Fourier transform of the linear projection of the microstructure. In the tomography

literature (Kak & Slaney, 1988), the parallel linear projection of a function with finite

support f (r) is defined as the integral path of the function along a particular direc-

tion. For example the linear projection Pz [f ] of f (r) along the z axis in Cartesian

coordinates is defined by:

Pz [f ] (x, y) =

∫ ∞
−∞

f (x, y, z) dz (21)

Let’s evaluate the intensity in the qz = 0 plane. Setting qz = 0 in equation 2 leads

to:

I (qx, qy)

Ie (qx, qy)
=

∫∫
ρ (r) ρ

(
r′
)
e−i[qx(x−x′)+qy(y−y′)] dV dV ′ (22)
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As the exponential term in the integral does not depend neither on z nor on z′ we can

perform first the integration on z and z′:

I (qx, qy)

Ie (qx, qy)
=

∫∫
Pz [ρ] (x, y)Pz [ρ]

(
x′, y′

)
×e−i[qx(x−x′)+qy(y−y′)] dxdx′dydy′ (23)

Let F (f) (qx, qy) be the two-dimensional Fourier transform of f (x, y). We can

rewrite equation 23 using the definition of the Fourier transform:

I (qx, qy)

Ie (qx, qy)
= F (Pz [ρ] (x, y))

∫
Pz [ρ]

(
x′, y′

)
ei[qxx

′+qyy′] dx′dy′

= F (Pz [ρ] (x, y))F∗ (Pz [ρ] (x, y))

= |F (Pz [ρ] (x, y))|2 (24)

The SAXS intensity in the qz = 0 plane is proportional to the square modulus of the

Fourier transform of the projection of the electron density along the z axis. The result

is effectively obtained after applying twice the Fourier slice theorem. If we assume an

isotropic medium, the scattered intensity depends only on q and may be evaluated in

any direction, for example in the qz = 0 plane. Notice that equation 24 may be used

to evaluate the SAXS intensities of an object with continuous variation of the electron

density.

Assuming a biphasic porous medium, ρ (r) = ρχ (r) with χ (r) the indicator func-

tion of the medium, equation 24 reads:

I (qx, qy)

Ie (qx, qy)
= ρ2 |F (Pz [χ] (x, y))|2 (25)

Thus, the SAXS intensity of an isotropic medium is easily calculable from the pro-

jection of the microstructure along an arbitrary direction. Only a two dimensional

Fourier transform is needed.

A second projection may be performed to obtain a one-dimensional Fourier trans-
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form:

I (qx)

Ie (qx)
= ρ2 |F (Py [Pz [χ]] (x))|2 (26)

Projecting twice is equivalent to make an average of intensities along horizontal and

vertical axis for a single projection. Any type of complex yet isotropic multi-scale

microstructures can be used with this approach. At last, it is not necessary to recon-

struct the complete microstructure but only a linear projection of it along an arbitrary

direction.

3. Validation of codes on isolated spheres

For an isolated sphere of radius R, the scattered intensity is given by (Guinier et al.,

1955):

IS (q) = Ie (q)V 2
S ρ

2

(
3

sin (qR)− qR cos (qR)

(qR)3

)2

(27)

where VS is the volume of the sphere.

The normalized covariance of an isolated sphere is equal to KS (R, h) /VS, where KS

is the geometrical covariogram:

γS (R, h) =

(
1− 3h

4R
+

h3

16R3

)
Θ (2R− h) (28)

where Θ (x) is the Heaviside’s function.
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Fig. 1. Comparison of calculated SAXS intensity from analytical covariance (equation
17, symbol) with equation 27 (line) for an isolated sphere. (a) log-log plot (b) semi-
log plot

Figure 1 shows the comparison of the theoretical SAXS intensity (equation 27 with

the intensity computed from the covariance of an isolated sphere (equation 3). Simu-

lation domain is 218 wide and the radius of the sphere is sampled with 27 points. A

very good agreement is found for a large range of q.
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Fig. 2. Comparison of calculated SAXS intensity from projection (equation 25, symbol)
with equation 27 (line) for an isolated sphere. (a) log-log plot (b) semi-log plot

Figure 2 shows the comparison of the theoretical SAXS intensity (equation 27 with

the intensity computed from the projection of an isolated sphere. The size of the

simulation domain and radius of the sphere is detailed in the legend of the figure. A

good agreement is found for a more restricted range of q.

4. Analytical expression of covariograms for distribution in size

As a preliminary remark, the covariogram does not need to be defined in 0 as we can

simply set γ (0) = 1.

4.1. Union of models with continuous radius distribution

The Choquet’s capacity T (K) is the probability that a compact set K is included

in the random set. For a Boolean model of grain G and Poisson point intensity θ, it
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is given by (Matheron, 1975):

T (K) = 1−Q (K) = 1− e−θE[V (G⊕K̆)] (29)

where ⊕ denotes the Minkowski addition (A⊕B = {a + b | a ∈ A, b ∈ B}), K̆ is the

symmetrical set of K with respect to the origin (K̆ = {−x | x ∈ K}) and E is the

expectation. Taking K = {x} as a single point, we obtain the porosity ε:

ε = Q ({x}) = e−θE[V (G)] (30)

Taking K = {x,x + h} as a bi-point, we obtain the expression of the pore-pore two-

points correlation function C00 (h):

C00 (h) = Q ({x,x+ h}) = e−θ(2E[V (G)]−E[V (G∩Gh)]) (31)

where Gh is G translated by a vector h. The quantity E [V (G ∩Gh)] is called the geo-

metrical covariogram of the grain. For a sphere of radius R, the covariogram KS (R, h)

is given by:

KS (R, h) =
4π

3

(
R3 − 3

4
hR2 +

1

16
h3
)

Θ (2R− h) (32)

and the pore-pore two-points correlation function C00 (h) reads:

C00 (h) = ε2eθKS(R,h) (33)

For spherical grains G (R) of radius R distributed from a radius distribution P (R) we

have:

E [V (G ∩Gh)] =

∫ ∞
0

E [V (G (R) ∩Gh (R))]P (R) dR

=

∫ ∞
0

P (R)KS (R, h) dR (34)

The Boolean model of spheres with a radius distribution P (R) behaves as a simple

Boolean model with the modified covariogram:

K (h) =

∫ ∞
0

P (R)KS (R, h) dR (35)
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Inserting equation 32, this covariogram reads:

K (h) =
4π

3

[
S3
P

(
h

2

)
− 3

4
hS2

P

(
h

2

)
+

1

16
h3S0

P

(
h

2

)]
(36)

where SnP (x) is the uncentered partial moment of P defined by:

SnP (x) =

∫ ∞
x

RnP (R) dR (37)

4.2. Constant radius

For constant radius we have P (r) = δ (r −R) where δ is the Dirac distribution.

Then:

Snδ (x) =

∫ ∞
x

rnδ (r −R) dr

= Rn [1−Θ (x−R)]

= RnΘ (R− x) (38)

And the covariogram reads:

K (r,R) =
4π

3

(
R3 − 3

4
rR2 +

1

16
r3
)

Θ

(
R− r

2

)
(39)

which is identical to equation 32.

4.3. Log-normal distribution

Let Lµ,σ (r) be the log-normal law of parameters µ ∈ R and σ > 0.

Lµ,σ (r) =
1

rσ
√

2π
e−

1
2( ln r−µ

σ )
2

(40)

For r > 0, setting y = ln r we have:

SnL (x) =
1

σ
√

2π

∫ ∞
lnx

e−
y2

2σ2
+
(
n+ µ

σ2

)
y− µ2

2σ2 dy (41)

After setting z = 1
σ
√

2

(
y − µ− nσ2

)
and x̃n = 1

σ
√

2

(
lnx− µ− nσ2

)
we obtain:

SnL (x) =
1√
π
eµn+n2σ2

2

∫ ∞
x̃n

e−z
2

dz

=
1

2
eµn+n2σ2

2 erfc (x̃n) (42)
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Regrouping the different terms, we obtain after setting r̃n = 1
σ
√

2

(
ln r

2 − µ− nσ
2
)
:

K (r) =
2π

3

[
e3µ+ 9σ2

2 erfc (r̃3)− 3

4
re2µ+2σ2

erfc (r̃2)

+
r3

16
erfc (r̃0)

]
(43)

K (r) given above is not defined in r = 0 but does not need to be as γ (0) = 1. The

mean volume-averaged radius is given by:

RV =
S4
L (0)

S3
L (0)

=
e4µ+ 16σ2

2

e3µ+ 9σ2

2

= eµ+ 7
2
σ2

(44)

The variance V [X] of a random variable X reads:

V [X] = E
[
X2
]
− E [X]2 (45)

where E [X] is the expected value of X. Then the variance V of the volume-average

radius reads:

V =
S5
L (0)

S3
L (0)

−R2
V = e2µ+7σ2

(
eσ

2 − 1
)

(46)

And the relative standard deviation RSD of the volume-averaged radius reads:

RSD =

√
V

RV
=

√
eσ2 − 1 (47)

The log-normal distribution allows to obtain an arbitrary large (or small) RSD for

the volume-averaged radius.

4.4. Gamma distribution

Let Gb,c (r) be the gamma distribution with scale parameter b > 0 and shape

parameter c > 0:

Gb,c (r) =

(
r

b

)c−1 e−
r
b

bΓ (c)
(48)

where Γ (c) is the gamma function with argument c. Setting z = r/b we have:

SnG (x) =
bn

Γ (c)

∫ ∞
x
b

zn+c−1e−z dz

=
bn

Γ (c)
Γ

(
n+ c,

x

b

)
(49)
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where Γ (a, x) is the incomplete gamma function of arguments a and x. The covari-

ogram reads:

K (r) =
4π

3Γ (c)

[
b3Γ

(
c+ 3,

r

2b

)
− 3

4
rb2Γ

(
c+ 2,

r

2b

)
+
r3

16
Γ

(
c,
r

2b

)]
(50)

The volume-averaged radius is given by:

RV =
Γ (c+ 4)

Γ (c+ 3)
b = (c+ 3) b (51)

The variance V of the volume-average radius reads:

V =
Γ (c+ 5) b5

Γ (c+ 3) b3
− (c+ 3)2 b2

=
[
(c+ 4) (c+ 3)− (c+ 3)2

]
b2

= (c+ 3) b2 (52)

And the RSD reads:

RSD =
1√
c+ 3

(53)

Keeping in mind the condition c > 0, it is obvious that Gamma distribution cannot

lead to large RSD for the volume-averaged radius.

4.5. Exponential distribution

Let Eb (r) be the exponential distribution with scale parameter b > 0:

Eb (r) =
e−

x
b

b
(54)

Setting z = r/b we have:

SnE (x) = bn
∫ ∞
x
b

zne−z dz

= bnΓ

(
n+ 1,

x

b

)
(55)
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Using the recurrence relation Γ (a+ 1, x) = aΓ (a, x) +xae−x and the particular value

Γ (1, x) = e−x we have:

S0
E (x) = e−

x
b (56)

S2
E (x) =

(
x2 + 2bx+ 2b2

)
e−

x
b (57)

S3
E (x) =

(
x3 + 3bx2 + 6b2x+ 6b3

)
e−

x
b (58)

The covariogram reads:

K (r) = π
(
2b2r + 8b3

)
e−

r
2b (59)

which is in line with the expression given by Sonntag et al. (1981). The volume-

averaged radius is given by:

RV =
Γ (5) b4

Γ (4) b3
=

4!

3!
b = 4b (60)

The variance V of the volume-average radius reads:

V =
Γ (6) b5

Γ (4) b3
− (4b)2 = 4b2 (61)

And the RSD reads:

RSD =

√
4b2

4b
=

1

2
(62)

The RSD of volume-averaged radius is constant and small.

5. Analytical expression of covariance for union and intersection of
Boolean models

The algebra is a little simplified by the introduction of the reduced covariance C̄ii (h)

defined by:

C̄00 (h) = C00 (h)− ε2 = C̄11 (h) = C11 (h)− p2 (63)
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5.1. Union

For an union of two Boolean models, the resulting covariance reads:

ε = ε(1)ε(2)

γ (h) =
1

ε (1− ε)

[
C̄

(1)
00 (h) C̄

(2)
00 (h) + ε(1)2

C̄
(2)
00 (h) + ε(2)2

C̄
(1)
00 (h)

]
(64)

5.2. Intersection

For an intersection of two Boolean models, the resulting covariance reads:

p = p(1)p(2)

γ (h) =
1

p (1− p)

[
C̄

(1)
00 (h) C̄

(2)
00 (h) + p(1)2

C̄
(2)
00 (h) + p(2)2

C̄
(1)
00 (h)

]
(65)

5.3. Model of aggregated and isolated particles

This model corresponds to an union of two models:

• Model (a): intersection of model 1 (aggregates) with model 2 (particles in aggre-

gates);

• Model (b): intersection of the complementary of model 1 (out of aggregates)

with model 3 (particles out of aggregates).

The resulting porosities of the models read:

ε(a) = 1− p(1)p(2)

ε(b) = 1− ε(1)p(3)

ε = ε(a)ε(b) =
(
1− p(1)p(2)

) (
1− p(3) + p(1)p(3)

)
(66)

The corresponding covariance reads:

C̄
(a)
00 (h) = C̄

(1)
00 (h) C̄

(2)
00 (h) + p(1)2

C̄
(2)
00 (h) + p(2)2

C̄
(1)
00 (h)

C̄
(b)
00 (h) = C̄

(1)
00 (h) C̄

(3)
00 (h) + ε(1)2

C̄
(3)
00 (h) + p(3)2

C̄
(1)
00 (h)

γ (h) =
1

ε (1− ε)

[
C̄

(a)
00 (h) C̄

(b)
00 (h) + ε(a)2

C̄
(b)
00 (h) + ε(b)2

C̄
(a)
00 (h)

]
(67)
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6. Relative variance of Iproj (q) for some models

We define the relative variance V (q) of the SAXS intensity computed from projections

by:

V (q) =
Var [Iproj (q)]

E [Iproj (q)]2
(68)

This relative variance is observed to be constant over q and equal to 1
2 for Boolean

models of spheres with constant radius (Fig. 4 of the paper). This behavior has been

observed as well for the other models considered in the paper.

6.1. Boolean model of spheres with radius following a Gamma distribution
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Fig. 3. Relative variance of calculated SAXS intensity from projection evaluated from
1000 realizations of Boolean models of spheres with radius following a Gamma
distribution with scale parameter b = 4 and shape parameter c = 2 and volumic
fraction p.

IUCr macros version 2.1.11: 2019/01/14



17

6.2. Intersection of two Boolean models of spheres
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Fig. 4. Relative variance of calculated SAXS intensity from projection evaluated from
1000 realizations of an intersection of two Boolean models of spheres with constant
radius. Parameters of the model are reported in Table 2 of the paper.
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6.3. Cox Model
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Fig. 5. Relative variance of calculated SAXS intensity from projection evaluated from
1000 realizations of a Cox Model of spheres. Parameters of the models are reported
in Table 2 of the paper.
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