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Abstract

The main objective in hydrodynamic control of wave energy converters (WECs)
is the maximization of the energy captured from the waves. Latching control, model
predictive control and “PI” control are examples of implementable strategies sur-
veyed in the literature. “PI” control is the common name of a form of hydrodynamic
control where the control force applied to the captor is a proportional-integral feed-
back of captor velocity. While suboptimal, it has the merit of being simple, requiring
only straightforward computations and can be considered a standard solution for
WECs with a four-quadrant power takeoff (PTO) system. Adaptive “PI” control has
been already discussed in the literature, usually using a gain-scheduling approach,
with optimal gains precomputed off-line for a representative set of sea states and ap-
plied as a function of estimated sea state conditions. In most literature, only average
on-line estimations of sea states have been proposed, with time windows of several
minutes. Such intermittent adaptive control laws are clearly suboptimal in terms
of energy recovery, since the control gains are not continuously updated whereas
the sea state is continuously time-varying. In this paper we present a continuously
adaptive “PI” control strategy, whose gains are adapted on-line on a wave-to-wave
basis, based on a real-time estimate of the dominant wave frequency of the wave
force. The PTO efficiency is taken into account. The proposed control method is
validated and compared through experiment for irregular sea states.
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1 Introduction

A wave energy converter (WEC) is a device used to produce electrical energy
from wave-induced motion. Several studies have shown that one of the key
aspects for maximizing the energy yield of many WECs is the control of the
dynamic response of the device to wave conditions, also defined as hydrody-5

namic control [17]. More precisely, we consider here the response control of
the WEC captor, whose task is to transfer energy from wave to oscillating
body, via the power-take off (PTO) system, responsible of a further energy
conversion, generally to electricity. A schematic example of a WEC of the
point absorber type is shown in Figure 1: a float (the captor) oscillates under10

the action of waves and is connected to a PTO system; the PTO, by exer-
cising an appropriate force on the float, converts its mechanical energy into
electrical energy. The PTO can be a simple linear electric generator, or a more
complex multi-stage device, such as, for instance, a hydraulic motor connected
to a rotary electric generator. Hydrodynamic control of such a WEC can be15

performed using the PTO as an actuator and adjusting the force it exercises
on the oscillating body serving as a captor, in order to maximize the extracted
energy.

Fig. 1. Schematic diagram of a generic (heaving-buoy) wave energy converter

Among the implementable strategies surveyed in the literature, we can re-
call for instance, latching control, model predictive control and “PI” control.20

While, in theory, latching control [1] and model predictive control (MPC) [4],
[19] allow to achieve high levels of energy capture, their practical implemen-
tation may be very challenging. This is due to the fact that these control
strategies require a short-term prediction of wave excitation force, which can
degrade the control performance, if the prediction is not perfect. Moreover,25

if the conversion efficiency of the PTO system is less than 100%, the MPC-
or MPC-like optimization problem is generally nonlinear and non-convex [22],
[2]. Hence the computational burden might be prohibitive for on-line imple-
mentation. On the other hand, “PI” control, where the PTO force is computed
from a proportional-integral action on captor velocity, has the merit of being30

2



simple, requiring only straightforward computations [11]. Because of that, it
was one of the first control strategy to be implemented on WEC prototypes,
for instance the “Salter’s duck” [25]. Even nowadays, it can be considered a
standard solution, when a four-quadrant PTO, capable of both harvesting and
drawing power from the grid, is available. The “P” component converts the35

wave energy into useful energy, while the “I” component modifies the WEC
system natural frequency which allows the absorber to be more often in phase
with the incoming waves, at the expense of some power being drawn from
the grid. Note that the damping or “P” controller, where the PTO force is
specified to be proportional to and oppositely directed to the velocity of the40

primary converter, is even more widely adopted, as it does not require the use
of reactive power.

Assuming 100% PTO conversion efficiency, tools involved in the computation
of the optimal PI gains are greatly simplified. For the case of regular waves,
there exists an elegant analytical expression for the PI gains as a function of45

wave frequency [6]. One of the well known results is that, in order to harvest
the maximum amount of energy, the PI gains should be chosen in such a
way that the optimal velocity is in phase with the wave excitation force [6].
Unfortunately, a perfect PTO with no losses is unrealistic. The power that
is withdrawn from the grid is always more expensive than the power that is50

delivered to the grid. In this case, the PI gains are computed off-line using a
griding approach: for each sea state, the closed loop is simulated for a grid of
gains, and the combination leading to the best average power is picked [26].
Clearly, this is a brute-force search, and therefore no optimality is guaranteed.

Let us underline that whatever method is used to compute the PI gains,55

they should not be kept constant, as the sea conditions change. Adaptive PI
control has been already discussed in the literature [27], [14], [11], at different
level of details, in the form of a gain-scheduling approach. The main idea
is to compute “optimal” gains for a representative set of sea states. Then
the appropriate control action is found from a look-up table whose input is60

the current sea state, which can be identified by the characteristics of its
spectrum. In most literature, only average on-line estimations of sea states
have been proposed, with time windows of several minutes, e.g., 10 minutes
in [14], 20 − 30 minutes in [11]. Such intermittent adaptive control laws are
clearly suboptimal in terms of energy recovery, since the control gains are not65

continuously updated whereas the sea state continuously changes.

In this paper we present a new adaptive “PI” control algorithm for WECs,
for which the “PI” gains are continuously adapted on-line, on a wave-to-wave
basis, based on a real-time sinusoidal approximation of the wave excitation
force. It has three main notable features.70

(1) It is shown that the well-known result [6] stating that the optimal velocity
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should be in phase with the wave excitation force is generally not true in
the case of a non-ideal PTO.

(2) This is the first time, to the best of the authors’ knowledge, that an
analytical expression is given for the average harvested power taking into75

account the PTO efficiency.
(3) It is shown how to convert the problem of computing the PI gains into

a convex optimization problem. This is a huge advantage compared to
solving a non-convex optimization problem.

This paper presents a rigorous treatment of the preliminary results in [23].80

The paper is organized as follows. Section 2 describes the WEC modeling and
defines the control problem, along with the performance criterion to be opti-
mized and the reference intermittent adaptive “PI” control. Section 3 presents
the procedure to compute the optimal frequency response of the control block
under regular waves in the presence of a non-ideal PTO. Section 4 explains how85

the results of Section 3 can be used to deal with realistic polychromatic sea
states. In Section 5, the experimental setup is described used to validate the
algorithm, and the results are reported. Finally, some conclusions are drawn
in Section 6.

2 WEC Modeling and Problem formulation90

2.1 WEC Modeling

We consider here the type of WECs schematically represented in Fig. 1, that
is, point-absorber WECs with an oscillating part that moves in one degree of
freedom, the heaving direction for instance, with respect to a reference (fixed
anchor or a submerged body). From the relative motion, useful energy can be95

extracted via the PTO.

Under the assumption that the oscillations of the system are relatively small,
the WEC motion can be expressed in the frequency domain as in [6](

jωM + Zpa(jω) +
Kpa

jω

)
v(jω) = fex(jω)− fu(jω) (1)

where

• v(jω) is the heaving velocity of the oscillating part.
• fex(jω) and fu(jω) are the wave excitation force and the PTO force, re-

spectively.100

• M is the mass of the float with its connected parts.
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• Zpa(jω) is the radiation impedance.
• Kpa is the stiffness coefficient.

Equation (1) is based on the Cummins integro-differential equation [5], whose
hydrodynamic coefficients can be computed via boundary element method
software, such as WAMIT, Diodore, AQWA ou NEMOH. Zpa(jω) is the result
of an approximation of the radiation impulse response by an IIR filter and can
be decomposed as

Zpa(jω) = Bpa(ω) + jω(Mpa(ω) +M∞) (2)

where Bpa(ω) is the radiation resistance, and Mpa(ω) is the added mass after
M∞, the asymptotic value of the added mass for ω → ∞ is removed. As in
most modeling studies on point absorbers, it is assumed that viscous, frictional
forces are negligible compared to the other terms in the equation of motion.
Rewrite (1) as

v(jω) =
1

Zi(jω)
(fex(jω)− fu(jω)) (3)

where the intrinsic impedance Zi(jω) is defined as

Zi(jω) = Bpa(ω) + jω
(
M +M∞ +Mpa(ω)− Kpa

ω2

)
= Ri(ω) + jXi(ω)

(4)

where Ri(ω) = Bpa(ω),

Xi(ω) = ω
(
M +M∞ +Mpa(ω)− Kpa

ω2

) (5)

2.2 Control Objective

The control objective is to maximize the average electric power produced by
the WEC

Pa =
1

T

∫ T

t=0
ηfu(t)v(t)dt, (6)

where η is the efficiency coefficient.105

In the literature, it is generally assumed that η = 1, i.e. the PTO system
is perfect [7], [12]. Unfortunately, this assumption is unrealistic. As written
in the Introduction, the power that is withdrawn from the grid and used to
accelerate the float is always more expensive than the power that is produced
by the float motion and delivered to the grid via the PTO system. To take
into account this fact, we consider the efficiency coefficient η as a function of

5



the ideal instantaneous power fuv

η(fuv) =

 ηp if fuv ≥ 0,

ηn if fuv < 0
(7)

where the coefficients 0 < ηp ≤ 1 and ηn ≥ 1 depend on the PTO system, and
may even be a function of fuv. Figure 2 shows η as a function of fuv for the
WEC system in [26], for which ηp = 0.7, ηn = 1.43, and hence ηn ≈ 2ηp. This
implies that it is two times more expensive to withdraw energy from the grid
than to deliver energy to the grid, for the WEC prototype [26].110

-5 -4 -3 -2 -1 0 1 2 3 4 5
fuv

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

η

Nonlinear efficiency coefficient

Fig. 2. Nonlinear efficiency coefficient of the PTO system.

The nonlinear efficiency coefficient plays an essential role in optimal control
of WECs, and cannot be neglected. Simulation shows that disregarding η may
result in a negative Pa, i.e., in wasting grid energy, in the long run, instead of
gaining energy from the waves.

2.3 Intermittent Adaptive PI Control115

The reference control for the WEC system under study is an intermittent
adaptive PI algorithm [26]. This method can be decomposed into an off-line
and an on-line stage. For the off-line stage, a representative set of sea-states is
chosen. Then, for each sea-state of the set, the PI control gains are optimized
using a brute-force search. For the on-line stage, the gains are adapted as the120

sea state changes.

There are two main problems with this intermittent or switching adaptive PI.
The first one is that there is no guarantee that the gains are optimal even
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for a fixed sea state. The second one is that the sea state is characterized
by its spectrum, which is in its turn identified by the Fourier transform of125

the wave elevation. It is well known [8] that a large amount of data with time
windows of several minutes needs to be gathered to identify the sea state by its
spectrum. Until a new sea state is determined, the PI gains are kept constant.
This implies that the PI control law is always suboptimal, since the sea state
continuously changes.130

3 Optimal Control in Regular Waves

3.1 Average Power Computation

In a monochromatic sea state, the wave excitation force is given as

fex(t) = A sin(ωt+ φ) (8)

where the phase φ can be set to be zero without loss of generality. Assuming
that the control force is a linear feedback of the heaving velocity, see Fig. 3,
its expression in the frequency domain is

fu(jw) = Zc(jw)v(jw) (9)

Zc can be seen as a load impedance, and designed following impedance-
matching principles [6].

1/Zi(jω)

Zc(jω)
fu(jω)

fex(jω) v(jω)
−
+

Fig. 3. Block diagram with the WEC Zi(s) and control strategy Zc(s).

Recall that Ri = Re{Zi(jω)}, Xi = Im{Zi(jω)}. Define Rc, Xc, θ, respectively,
as the real part, the imaginary part, and the phase of Zc(jω). One has

Rc = |Zc(jω)| cos(θ),

Xc = |Zc(jω)| sin(θ),

θ = arctan(Xc
Rc

)

(10)
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where |Zc(jω)| is the amplitude of Zc(jw). The following theorem holds135

Theorem 1: For the given wave excitation force (8) and the control input
(9), the average power Pa is computed as

Pa =
A2Rc

2 ((Xc +Xi)2 + (Rc +Ri)2)

(
np −

ηn − ηp
π

(
Xc

Rc

− arctan
(
Xc

Rc

)))
(11)

Proof: Using (9), the WEC velocity is given as

v(jw) =
1

Zi(jw) + Zc(jw)
fex(jw) = W (jw)fex(jw) (12)

where

W (jw) =
1

Zi(jw) + Zc(jw)
is the transfer function of the closed loop system with the wave excitation
force as input and the velocity as output. Using (8), and as (12) is a linear
system, it follows that v(t) is a sinusoid with the same frequency ω as fex(t),
but with different amplitude and phase

v(t) = |W (jω)|A sin(ωt+ ∠W (jω)) (13)

where |W (jω)| and ∠W (jω) are, respectively, the amplitude and the phase of
W (jw).

Analogously, using (9), (13), one obtains

fu(t) = |Zc(jω)||W (jω)|A sin(ωt+ ∠W (jω) + θ) (14)

Combining (13), (14), the instantaneous power is given as

P (t) = fu(t)v(t)

= |Zc(jω)||W (jω)|2A2 sin(ωt+ ∠W (jω)) sin(ωt+ ∠W (jω) + θ)
(15)

and the average power as

Pa =
1

T

∫ T

0
ηP (t)dt (16)

For the average power computation, it is clear that only the relative phase
shift of two sinusoids is required. Hence ∠W (jω) can be omitted. As a result

Pa =
1

T

∫ T

0
ηPm(t)dt (17)

where
Pm(t) = |Zc(jω)||W (jω)|2A2 sin(ωt) sin(ωt+ θ) (18)
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It suffices to compute Pa for one half-period T = 2π
ω

since the wave excitation
force is periodic. Using (7), (17), it is clear that Pa depends on the sign of
Pm(t). Note that this sign depends only on the product sin(ωt) sin(ωt + θ).140

Note also that sin(ωt) ≥ 0 on the interval 0 ≤ t ≤ π
ω

. Hence Pm(t) and
sin(ωt+ θ) have the same sign on the considered interval.

There are two cases, as a function of θ,

(1) If 0 ≤ θ ≤ π, then  sin(ωt+ θ) ≥ 0, if 0 ≤ t ≤ π−θ
ω
,

sin(ωt+ θ) ≤ 0, if π−θ
ω
≤ t ≤ π

ω

(19)

And hence, Pm(t) ≥ 0, if 0 ≤ t ≤ π−θ
ω
,

Pm(t) ≤ 0, if π−θ
ω
≤ t ≤ π

ω

(20)

(2) If π ≤ θ ≤ 2π, then sin(ωt+ θ) ≤ 0, if 0 ≤ t ≤ −θ+2π
ω

,

sin(ωt+ θ) ≥ 0, if −θ+2π
ω
≤ t ≤ π

ω
,

(21)

And hence, Pm(t) ≤ 0, if 0 ≤ t ≤ −θ+2π
ω

,

Pm(t) ≤ 0, if −θ+2π
ω
≤ t ≤ π

ω
,

(22)

We will show the proof only for the case 1, since it is the same for the case 2.
One has

Pa =
1

T

(∫ π−θ
ω

0
ηpPm(t)dt+

∫ π
ω

π−θ
ω

ηnPm(t)dt

)
(23)

Using (18), (23) becomes

Pa =
ω

π
|Zc(jω)||W (jω)|2A2S(ω) (24)

where

S(ω) = ηp

∫ π−θ
ω

0
sin(ωt) sin(ωt+ θ)dt+ ηn

∫ π
ω

π−θ
ω

sin(ωt) sin(ωt+ θ)dt (25)

Using the following product-to-sum trigonometric identity

sin(α) sin(β) =
1

2
(cos(α− β)− cos(α + β))
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equation (25) is rewritten as

S(ω) =
ηp
2

∫ π−θ
ω

0
(cos(θ)− cos(2ωt+ θ))dt+

ηn
2

∫ π
ω

π−θ
ω

(cos(θ)− cos(2ωt+ θ))dt

One has

S(ω) = ηp
2

(cos(θ)t− sin(2ωt+θ)
2ω

)
∣∣∣t=π−θ

ω

t=0
+ ηn

2
(cos(θ)t− sin(2ωt+θ)

2ω
)
∣∣∣t= π

ω

t=π−θ
ω

= ηp
2

(
cos(θ)π−θ

ω
+ sin(θ)

ω

)
+ ηn

2

(
cos(θ) θ

ω
− sin(θ)

ω

)
= 1

2ω
(πηp cos(θ) + (ηn − ηp)θ cos(θ)− (ηn − ηp) sin(θ))

(26)

Together with (24), one obtains

Pa = 1
2π
|Zc(jω)||W (jω)|2A2 (πηp cos(θ) + (ηn − ηp)θ cos(θ)− (ηn − ηp) sin(θ))

= |W (jω)|2A2

2

(
ηp|Zc(jω)| cos(θ) + ηn−ηp

π
(θ|Zc(jω)| cos(θ)− |Zc(jω)| sin(θ))

)
(27)

Note that

|W (jω)|2 =
1

(Xc +Xi)2 + (Rc +Ri)2
(28)

Substituting (10), (28) into (27), one obtains

Pa =
A2Rc

2 ((Xc +Xi)2 + (Rc +Ri)2)

(
np −

ηn − ηp
π

(
Xc

Rc

− arctan
(
Xc

Rc

)))
(29)

The proof is complete. 2

Remark: Consider the limiting case of the ideal PTO, i.e., ηp = ηn = 1. Using
Theorem 1, the following average power is obtained

Pa =
A2Rc

2 ((Xc +Xi)2 + (Rc +Ri)2)
(30)

Equation (30) is the same as the one in [6]. Hence the classical result [6] is a145

particular case of Theorem 1, where the nonlinear efficiency coefficient is not
taken into account.

3.2 Optimal Frequency Response

Using (11), our next step is to compute the optimal Rc, Xc to maximize Pa.
We require that Rc ≥ 0, since Rc is used to convert the wave energy into useful
mechanical or electrical energy. The factor A2

2
has no influence on the optimal

solution, it can be omitted in the optimization problem. Thus, the problem to
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be solved is

max
Rc,Xc

{f(Rc, Xc)} (31)

where 
f(Rc, Xc) = g(Rc, Xc)h(Rc, Xc)

g(Rc, Xc) = Rc
(Xc+Xi)2+(Rc+Ri)2

h(Rc, Xc) = np − ηn−ηp
π

(
Xc
Rc
− arctan(Xc

Rc
)
) (32)

It is impossible to obtain an analytical form for the optimal solution to (31),
since it is a nonlinear optimization problem.150

Remark: Note that the optimal solution {Rc, Xc} does not depend on A
due to the efficiency model (7). However, the approach is readily extended to
the case when ηn, ηp are functions of A. As consequence, the optimal solution
{Rc, Xc} also depends on A.

We require that Rc, Xc are such that h(Rc, Xc) ≥ 0, since the harvested av-
erage power Pa should be nonnegative. Define µ = Xc

Rc
. One has h(Rc, Xc) =

h(µ), and
dh(µ)

dµ
= −ηn − ηp

π

µ2

1 + µ2
< 0 (33)

It follows that h(µ) is a monotonically decreasing function, since ηn ≥ 1 ≥ ηp.
Therefore the equation,

ηp −
ηn − ηp
π

(µ− arctan(µ)) = 0 (34)

has a unique solution µ∗. Consequently, the line

Xc = µ∗Rc (35)

separates the plane (Rc, Xc) into two parts155

• h(Rc, Xc) ≥ 0 for all Rc, Xc such that Xc ≤ µ∗Rc

• h(Rc, Xc) ≥ 0 for all Rc, Xc such that Xc ≥ µ∗Rc

The functions g(Rc, Xc) and h(Rc, Xc) are positive and concave for all Rc, Xc

such that Xc ≤ µ∗Rc. In addition h(Rc, Xc) is monotonic non-increasing.
Hence f(Rc, Xc) is a concave function [3]. It follows that the solution to (31)160

is unique and can be found by any constrained optimization method.

Figure 4(a) presents a numerical example of the average power Pa as a function
of Rc, Xc for a given and fixed ω, Figure 4(b) shows a contour plot of Pa in
the Rc − Xc plane. The efficiency coefficients are ηp = 0.7, ηn = 1.43. Using
the Newton-Raphson method to solve (34), one obtains µ∗ = 4.364. The WEC165

system parameters are given in Section 5.
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Figure 5 shows the average power Pa in the region where Xc ≤ µ∗Rc.

Figure 6(a) shows the optimal R∗c (solid blue) and Ri (dashed red) as a function
of ω. The optimalX∗c (solid blue) and−Xi (dashed red) are presented in Figure
6(b). It is worth noticing from Figure 6(b) that X∗c is very close but not equal
to −Xi. Hence the phase response ∠W (s) of the transfer function (36) of the
WEC closed loop system

v(jw) =
1

Zi(jw) + Zc(jw)
fex(jw) = W (jw)fex(jw) (36)

is generally not equal to zero. It follows that, in the presence of the nonlin-
ear efficiency coefficient, the optimal velocity is not in phase with the wave
excitation force. The result of Falnes [6], where it is stated that the optimal170

velocity is in phase with the wave excitation force, can be considered only as
an ideal case, where the PTO system is perfect.

Remark: For the given WEC system, it is interesting to observe that Xc

is monotonically decreasing for the considered frequency interval 1 rad/s ≤
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ω ≤ 8 rad/s. This is explained by the facts that Xc is used to change the175

WEC resonance frequency, and that the resonance frequency of the system
is wr = 7.82 rad/s. As a consequence, a relatively large amount of reactive
power is required for low frequency waves. However, the overall harvested
power should remain non-negative, see Fig. 7, since fu = 0 is always a feasible
solution.180

Remark: If the PTO system is constrained to be purely resistive, then Xc = 0.
In this case the optimization problem (31) becomes

max
Rc

{
npRc

X2
i + (Rc +Ri)2

}
(37)

There exists an analytical solution to (37)

R∗c =
√
X2
i +R2

i (38)

Note that the efficiency coefficient does not play any role in the optimal R∗c
in the resistive PTO system case. This is explained by the fact that there is
no PTO input reactive power, so the energy harvested from wave is always
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positive.

4 Adaptive PI Control in Irregular Waves185

The algorithm described in Section 3 allows to compute, for a specific WEC
and for a given regular wave excitation force, the optimal frequency response
R∗c , X

∗
c with R∗c = Re{Zc(jw)} and X∗c = Im{Zc(jw)}. A control structure

needs to be assigned for Zc to employ R∗c , X
∗
c . In this work, the following

proportional-integral (PI) law is chosen

Zc(jw) = Kp +
Ki

jw
(39)

It follows that Kp = R∗c ,

Ki = −ωX∗c
(40)

Using (39), the control action is computed in the time domain as

fu(t) = Kpv(t) +Ki

∫ t

0
v(τ)dτ (41)

Remark: The “PI” control law is used in this work due to its simplicity.
However the other structures, such as “PID” or a high-order controller, can
also be used. The main advantage of the “PID” or high-order control law is
that they offer additional degrees of freedom to harvest more wave energy.

In the monochromatic sea state (8), the optimal control action is computed as190

(41), where the PI coefficients are given in (40). Unfortunately, real sea states
are polychromatic, i.e., fex(t) is not a pure sinusoid. In addition, fex(t) cannot
be measured directly when the WEC system is running.

The first problem is addressed by modeling the wave excitation force as a time
varying sinusoidal signal, i.e.,

fex(t) = A(t)sin(ω(t)t+ φ(t)) (42)

where the parameters A(t), ω(t) and φ(t) are estimated in real time. Since
A(t), ω(t) and φ(t) enter non-linearly in the equation (42), this is a nonlinear195

estimation problem.

In [9], an extended Kalman filter (EKF) approach is proposed to estimate
A(t), ω(t), φ(t). However, it must be recalled that the EKF provides a solution
to a nonlinear estimation problem via local linearizations of the underlying
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model. Thus, if the variation of the wave excitation force is large and/or200

the sampling time intervals are not sufficiently small, the linearization may
yield highly unstable filters, potentially leading to divergence phenomena [15],
[16]. A more robust solution consists in estimating A(t), ω(t), φ(t) using an
unscented Kalman filter (UKF) is proposed in [24]. The UKF is a powerful
nonlinear estimation technique and has been shown to be a superior alternative205

to the EKF in several applications including parameter estimation for time
series modeling [11], neural network training [12], and state estimation for road
vehicle navigation [13]. An interesting feature of UKF is that no linearization
of the nonlinear model is required.

As to wave excitation force estimation, a few methods have been proposed210

recently and tested in real-time, in a model predictive control (MPC) frame-
work, see for instance [18], [10], [20], [21]. The method presented and assessed
in [21], based on a linear Kalman filter and a random walk model for the
variation of the wave excitation force, has the main advantages of using only
standard measurements for reactive control, i.e., position, velocity, PTO force215

and of yielding quite accurate estimates over a large range of sea states.

The adaptive PI control strategy is summarized as follows.

Offline stage: For each frequency ω

(1) Compute Ri, Xi of Zi(jw) as Ri = Re(Zi(jw)) and Xi = Im(Zi(jw)).
(2) Compute the optimal R∗c , X

∗
c by solving the optimization problem (31)220

with constraints Rc ≥ 0, and Xc ≤ µ∗Rc.
(3) Compute the optimal PI gains Kp, Ki using (40).

Online stage: At each sampling time t

(1) Estimate f̂ex(t) using the measured WEC position, and the measured
WEC velocity.225

(2) Estimate ω̂ using the UKF approach.
(3) Compute the coefficients Kp, Ki as (41).
(4) Compute the control action as

fu(t) = Kpv(t) +Kip(t)

The adaptive PI algorithm is schematically presented in Figure 8. It is worth
noticing that only the measurements of the WEC position and the WEC speed
are required. No information about fex(t) is needed.230

Remark: For simplicity, the case when ηn, ηp are independent of the sea state
is considered. However, the proposed approach is straightforwardly extended
to the case when ηn, ηp depend on the sea state. The unscented Kalman filter
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Fig. 8. Adaptive PI control approach.

can estimate not only the dominant wave frequency, but also the dominant
wave amplitude, which are the two characterizing parameters for a given sea235

state. By solving the optimization problem (31) offline, one can obtain the
optimal parameters {Rc, Xc}, or equivalently the {Ki, Kp} gains. For the on-
line implementation, this yields a two-dimensional look-up table, where the
dominant amplitude and the dominant frequency are parameters, instead of a
one-dimensional look-up table as in the paper.240

5 Experimental Results

5.1 Experimental Setup

A laboratory prototype of a point absorber WEC [28] on a 1:20 scale with
respect to the well-known Wavestar machine installed near Hanstholm in Den-
mark from 2009 to 2013, was used to validate the adaptive PI control algorithm245

described in Section 4. As it can be seen in Fig. 9, the prototype consists of a
float attached to an arm, which in turn is attached to a PTO emulator. The
laboratory model is equipped with a laser and an acceleration sensor to mea-
sure, respectively, the position and the acceleration. The velocity of the float
can then be estimated from these measurements using a linear Kalman filter.250

A linear electrical generator is chosen to emulate the PTO system. It applies
a force to the arm, which can be measured by a load cell, see Fig. 9 and used
to compute the equivalent moment applied to the float. The WEC controller
sends a force reference to a low-level force servo-controller that operates the
generator.255

Remark: Since the motion of the considered WEC system is angular, New-
ton’s second law for rotation is used to obtain a mathematical model. The
quantity that fully describes the system in this case is the angular deviation
from the equilibrium point. The changes that take place are that the equiv-
alent mass changes to an equivalent moment inertia, and the acting forces260
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become acting moments.

The experimental work was carried out in a wave basin at Aalborg University,
Denmark, see Fig. 10. It consists of four parts: the wave generation (a), the
wave elevation (b), the point absorber model (c), and the wave termination
(d). The basin has a length of 15 m, a width of 8 m and a maximum water265

depth of 0.7 m. The wave paddles are driven by a total of 15 hydraulic pistons
moving in the horizontal direction. The waves were generated by the wave
maker based on a Pierson-Moskowitz spectrum. Three distinguished features
of the system were used thoroughly for testing. First the paddle movement
can be stored during a test run and then can be reproduced in further test270

runs. Secondly, a trigger signal is sent by the wave generator, allowing exact
alignment of the tests. Thirdly, the torque sensor of the PTO can be used to
measure the wave excitation moment, for the case, when

• The control is not active, i.e. the PTO system does not introduce any torque
to the system.275

• At the same time the float is manually blocked at equilibrium position.

These three features allow to compare the measured wave excitation moment
from the first test to estimated wave excitation moment from the other tests,
where the float is moving and the PTO is turned on.

Fig. 9. Experimental set-up.
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Fig. 10. Experimental setup at AAU. The waves are generated by the wave genera-
tion system (a) and the wave elevation is measured by a series of wave gauges (b).
The waves then reach the WEC model, where the wave energy absorption takes
place (c). Finally, they reach the beach where the termination takes place by a
scattering process (d).

The WEC transfer function is given as [13], [26]

Zi(s) =
s6 + a5s

5 + a4s
4 + a3s

3 + a2s
2 + a1s

b7s7 + b6s6 + b5s5 + b4s4 + b3s3 + b2s2 + b1s+ b0
(43)

whose coefficients are given in Table 1.

Numerator Denominator

b7 = 1.44

b6 = 300.4

a5 = 208.6 b5 = 1.237× 105

a4 = 8.583× 104 b4 = 1.284× 107

a3 = 8.899× 106 b3 = 1.652× 108

a2 = 1.074× 108 b2 = 2.106× 109

a1 = 7.031× 108 b1 = 9.988× 109

b0 = 6.539× 1010

Table 1
WEC model coefficients

280

Figure 11(a) presents the Bode plot of the considered WEC system. The reso-
nance frequency is wr = 7.84 rad/s. This Bode plot is very typical for a WEC
system of the point-absorber type.

The following input constraints

− 6.25 ≤ fu ≤ 6.25 (44)
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Fig. 11. Bode plot of the considered WEC system

are also considered. Note that for this adaptive PI algorithm such constraints
are not yet taken into account in computing the optimal gains.285

5.2 Experimental Results

In this section, we present experimental results obtained using the control
algorithm in Section 4, and a PI control, which is the state of the art control
law for the considered WEC system [13], [26]. The PI gains are obtained offline
using a griding approach.290

The experiments were carried out for two different waves defined using a set of
three sea states representative of normal operating conditions for this WEC.
Figure 12 shows the spectral power density of the two waves. It is important
to point out that wave 1 corresponds to one constant sea state (sea state 1),
while wave 23 represents the transition between the two most frequent sea295

states (sea state 2 and 3), which containing much more energy than sea state
1 (as can be seen from the spectra). Wave 23 is used to validate the proposed
control algorithm against the fact that the sea state changes continuously.
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Fig. 12. Wave spectra of sample data set.
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Figure 13 shows the estimated wave frequency ω̂ and wave amplitude Â as
a function of time using the UKF filter for wave 1. It can be seen that ω̂ is300

around 6(rad/s) and 7(rad/s) which correspond to the peak of the spectrum
of wave 1.

0 100 200 300 400 500 600 700
Time (s)

0

1

2

3

4

5

6

7

8

ω̂
(r
a
d
/
s)

100 110 120 130 140 150 160 170 180 190 200
Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Â
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Fig. 13. Time-varying sinusoidal approximation of wave 1 using UKF filter. (a)
Estimated wave frequency ω̂. (b) Estimated wave amplitude Â (solid blue) and
wave excitation moment (solid red).

Figure 14(a) shows the float velocity (solid blue) as well as the wave excitation
moment (dashed red) as a function of time. Figure 14(b) presents the control
input.
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Fig. 14. Experimental results for wave 1. (a) Float velocity (solid blue) and wave
excitation moment (dashed red). (b) Control input.

305

Figure 15(a) shows the instantaneous powers of the adaptive PI control (solid
blue) and of the PI control (solid red) as a function of time. It is worth
noticing that the fixed PI control tries to avoid large reactive power excursions.
Improvements brought by the adaptive PI strategy are easy to see on Figure
15(b), where the harvested energies of the adaptive PI control (solid blue)310

and of the PI control (dashed red) are presented. For wave 1, the gain of using
the adaptive PI algorithm is 13.86% with respect to the fixed PI strategy.
It should be said that in real-life conditions, the adaptive PI control can be
expected to harvest even more energy than the fixed-gain PI control, since it
is pre-computed for wave 1 for this experiment.315
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Fig. 15. Experimental results for wave 1. (a) Instantaneous power for adaptive PI
control (solid blue) and for PI control (solid red). (b) Harvested energy for for
adaptive PI control (solid blue) and for PI control (dashed red).

Now we will demonstrate the performance of the adaptive PI strategy for wave
23, which represents a time-varying sea state. Figure 16 shows the performance
of the UKF filter used to approximate wave 23 as a time-varying sinusoidal
signal. It can be observed that the estimated frequency of wave 23 varies in a
much larger interval than the estimated frequency of wave 1.
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Fig. 16. Time-varying sinusoidal approximation of wave 23 using UKF filter. (a)
Estimated wave frequency ω̂. (b) Estimated wave amplitude Â (solid blue) and
wave excitation moment (solid red).

320

Figure 17(a) presents the float velocity (solid blue) as well as the wave exci-
tation moment (dashed red), while Figure 17(b) shows the control input as a
function of time.

Finally, Figure 18(a) shows the obtained instantaneous power of the adaptive
PI algorithm (solid blue), and of the fixed PI strategy (solid red). The gains325

of the fixed PI are optimized for sea state 3, which contains much more energy
than sea state 2. Of course, for such a time-varying sea state, the performance
of the reference PI controller could be improved by switching between from
the optimal PI gains for sea states 2 to the optimal PI gains for sea state 3,
when we are ”close” to sea state 3. Due to the limited time available for the330

tests, it was not possible to implement a controller reproducing this switching
PI behavior. Nevertheless, assuming that that this behavior can be obtained
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Fig. 17. Experimental results for wave 23. (a) Float velocity (solid blue) and wave
excitation moment (dashed red). (b) Control input.

in real-life conditions, which is questionable since the wave is not known in
advance, the benefits of using an adaptive PI instead of a switching PI in
the long run should be evident. The adaptive PI can take advantage of each335

time interval where the switching PI gains are kept fixed, to increase its lead.
Figure 18(b) presents the harvested energy of the adaptive PI control (solid
blue), and of the fixed-gain PI control (dashed red). Using the adaptive PI
control, we harvest 57.14% more energy than the fixed-gain PI control.
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Fig. 18. Experimental results for wave 23. (a) Instantaneous power for adaptive
PI control (solid blue) and for PI control (solid red). (b) Harvested energy for for
adaptive PI control (solid blue) and for PI control (dashed red).

6 Conclusions340

A new approach is proposed to design a continuously adaptive proportional-
integral (PI) velocity-feedback control strategy for wave energy converters.
The optimal PI gains are computed based on the solution of a convex opti-
mization problem taking into account non-ideal PTO efficiency. It is shown
that the optimal velocity is generally not in phase with the wave excitation345

force when realistic PTO efficiencies are considered. The gains of the PI con-
troller are continuously adapted on-line, on a wave-to-wave basis, using two
robust and accurate methods for real-time estimation of the wave excitation
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force, and of the frequency of the estimated wave excitation force. A case
study, based on a lab-scale point-absorber WEC, has been used for valida-350

tion. Experimental results show that the proposed adaptive control scheme
can recover more energy than a fixed-gain PI controller even in a sea state
with constant spectral characteristics.

In the future, a more extensive assessment is planned, both in simulation
and through experimentation. Though the proposed adaptive PI control sys-355

tem has already been tested in a wave basin on the lab-scale prototype used
as a case study, with encouraging results, further experiments are needed to
precisely quantify its energy harvesting potential. Finally, further research is
needed to take into account WEC motion or actuator constraints, i.e., PTO
force limits, stroke limits, which are not dealt with in the current optimization360

procedure, as well as more complex WEC dynamics.
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