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Abstract	18 

Hydroprocessing stabilization has been assessed using experimental data acquired at transient 19 

conditions. These data were obtained from a hydrotreating pilot plant in a wide range of 20 

operating conditions. It has been found that the stabilization evolution follows a first-order 21 

response and could be characterized by a stabilization time τ. A linear model was developed to 22 

relate τ to its most influential parameters. The model can then be combined with online transient 23 

data to predict the steady-state performance. By testing against new data with other feedstocks, 24 

the model has been found to provide a good prediction of the stabilization evolution and the 25 

ultimate steady-state hydrotreating performance. It is, hence, possible to “online” calculate the 26 

steady-state performance without the need to reach this steady state. 27 

Keywords: hydrocarbon, hydrotreating, stabilization, transient data. 28 

1 Introduction 29 

Hydrotreating is a catalytic conversion process in petroleum refining, among others for 30 

removing impurities such as nitrogen and sulfur from hydrocarbon streams. It eliminates such 31 

heteroatoms in oil fractions from compounds by mixing them with hydrogen and treating this 32 

mixture in a fixed bed catalytic reactor at high temperature and pressure. The catalyst used in 33 

hydrotreating usually is molybdenum (group VI metal) based and promoted with cobalt or nickel 34 

(group VIII metal) and supported on alumina or silica-alumina. The most common catalysts used 35 

in hydrotreating are CoMo/Al2O3 and NiMo/Al2O3. CoMo favors the sulfur removal and olefin 36 

saturation while NiMo is used for removing nitrogen and saturating aromatic compounds (Treese 37 

et al., 2015). Hydrotreating/hydrocracking catalysts require several days before achieving stable 38 

operation while the residence time in the reactor is of the order of maximum a few hours. The 39 

observed transient phenomena can, hence, at most partly be attributed to hydrodynamics 40 
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phenomena in the equipment used and mainly to chemical phenomena occurring at the catalyst 41 

level. These are distinct from and, hence, are not to be confused with the long-term catalyst 42 

deactivation. There is very few literature on this subject. Sau et al. (2005) investigated the effects 43 

of organic nitrogen on hydroprocessing reactions. The authors did some hydrocracking 44 

experiments using a zeolite-based catalyst and determined the evolution of the conversion with 45 

time. When the reactor temperature was increased from 390 to 405 °C while processing a 46 

hydrotreated vacuum gas oil feed containing 320 ppmw organic nitrogen, a slow stabilization of 47 

the conversion was observed. The phenomenon was explained by the slow rate of nitrogen 48 

desorption from the catalyst with increasing temperature. Thanks to this nitrogen desorption, the 49 

concentration of active acid sites increases and, hence does the conversion. As the nitrogen 50 

desorption is slow, the observed conversion takes long time to reach the steady state as well. 51 

Similarly, these authors also investigated the effect of increasing nitrogen content in the feed 52 

from 5 to 125 ppmw. The observed time to reach the stabilization of conversion is also around 53 

eight days and is attributed to the adsorption of nitrogen on the active sites of the catalyst. 54 

According to Elizalde et al. (2016), the Liquid Hourly Space Velocities (LHSV) has an impact 55 

on the dynamic behavior of hydrocracking process. LHSV is the ratio of liquid volumetric 56 

flowrate and the catalyst volume. It is the inverse of the reactor space time. A lower LHSV is 57 

equivalent with a higher space time, so the time to reach the steady state is longer because the 58 

product concentration needs more time to reach the steady state. However, the authors reported 59 

that the temperature in the range of 380-400 °C does not seem to significantly affect the dynamic 60 

behavior. It means that no matter what the exact reactor temperature is, the time to reach the 61 

steady state remains similar. 62 
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A kinetic model is a significant asset, not to say essential, for the adequate design and 63 

simulation of processes, especially of large-scale operations with narrow profit margins. Since 64 

crude oil contains a lot of compounds with difficult structures, kinetic modeling of 65 

hydroprocessing is a challenging and time-consuming task (Jarullah et al., 2011). There are 66 

various approaches for hydroprocessing modeling, such as the detailed kinetic (Schweitzer et al., 67 

1999; Oyekunle and Edafe, 2009; Charon-Revellin et al., 2011; Nguyen et al., 2015; Raghuveer 68 

et al., 2016; Nguyen et al., 2017; Doukeh et al., 2018), lumping modeling (Bonnardot, 1998; 69 

López García et al., 2010; Lababidi and AlHumaidan, 2011; Tang et al., 2013; Becker et al., 70 

2015; Esmaeel et al., 2016) and black-box approach (Elkamel et al., 1999; Bahmani et al., 2010; 71 

Sadighi and Reza Zahedi, 2013; Sadighi and Mohaddecy, 2018). The most common and widely 72 

used is the lumping approach which consists of regrouping chemical compounds with similar 73 

properties (Oliveira et al., 2016). In these approaches, the model parameters are generally 74 

estimated by fitting the model to steady-state experimental data. Stabilization phenomena lead to 75 

long experimentation times in order to obtain sufficient steady-state data for kinetic modeling. 76 

However, in the transient regime towards this steady state, the analyses of liquid effluent are 77 

already carried out at regular time intervals to verify whether the steady state has effectively 78 

been reached and to ensure that the reaction is under control. These transient data are currently 79 

not used for kinetic modeling because the stabilization behavior is not well understood. It leads 80 

to a true challenge, meaning that experimental data acquisition to ‘calibrate’ the model is a time 81 

and money consuming task. 82 

The aim of this work is, first, to acquire a better understanding of the stabilization behavior 83 

during these transient conditions and secondly, to use these data in order to predict, from the first 84 

transient points, the steady-state performance. If this value is far from a target, the operators can 85 
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change the operating condition without waiting for stabilization and without the use of a complex 86 

model.  87 

2 Materials and methods 88 

2.1 Pilot plant 89 

The experimental data are acquired using a pilot plant located at IFP Energies Nouvelles, 90 

Solaize, France. It consists of four parallel fixed beds, operated in down-flow mode, which are 91 

used for hydrotreatment of feeds varying from gas oil to vacuum gas oil. The total catalyst 92 

volume in each reactor amounts to 50 cm3. The pilot plant operates at isothermal conditions with 93 

the temperature being controlled along the reactor. Once the unit is in continuous operation, the 94 

density, nitrogen content and refractive index of the liquid effluent are analyzed every 24 hours. 95 

The steady state is ensured by having observed the stabilization of these characteristics. 96 

Operating conditions are adjusted after having reached the steady state corresponding with the 97 

previous operating conditions. 98 

2.2 Data representation 99 

The acquired data cover 11 Vacuum Gas Oil (VGO) feeds over two similar catalysts. Liquid 100 

Hourly Space Velocities (LHSV) vary between 0.5 and 4 h-1, the temperature from 350 to 410 °C 101 

and the total pressure between 50 and 140 bar. Performance data are measured in terms of 102 

different properties of the liquid effluent such as density, refractive index and nitrogen contents 103 

over time on stream, totaling 920 measurements. A series of consecutive points corresponding to 104 

one experimental run is denoted as an ‘episode’. The latter characterizes the intended steady state 105 

kinetic analyses rather than the systematic, c.q., repeated, analysis of transient behavior. Figure 1 106 

shows 7 episodes corresponding with 42 data points acquired in about 45 days. The first from 107 

these 7 episodes corresponds to the start of the test at specific operating conditions, while later 108 
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episodes are initiated by a change of operating conditions such as LHSV or temperature. Other 109 

variables that may also change between consecutive episodes are pressure and feedstock 110 

composition. It is noted that the deactivation phenomena in the pilot plant are negligible for the 111 

test with duration less than 45 days. 112 

 113 

Figure 1. Data illustration - Liquid effluent nitrogen as a function of time on stream (TOS). 114 

2.3 Stabilization modeling 115 

A computational study on the pilot plant has been carried out using a tracer technique to 116 

estimate the stabilization time purely due to hydrodynamic phenomena. The objective is to 117 

identify whether the experimentally observed stabilization time is determined by hydrodynamic 118 

or chemical phenomena. The corresponding dynamic simulation of the pilot plant (without 119 

chemical reaction) was carried out using Matlab & Simulink R2014b in order to follow the flow 120 

of an unreactive tracer component through the pilot plant. 121 

Exploratory data analysis (Tukey, 1977) (see also Figure 1) shows that the stabilization 122 

phenomena follow a first-order transfer function as shown in Equation (1). 123 
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𝑦ሺ்ைௌሻ ൌ 𝑦௜௡௜௧ ൅ ൫𝑦௙௜௡௔௟ െ 𝑦௜௡௜௧൯ ൭1 െ 𝑒𝑥𝑝 ൬

െሺ𝑇𝑂𝑆 െ 𝑇𝑂𝑆௜௡௜௧ሻ


൰൱ (1) 

Where y is the liquid effluent property at a specific time on stream (such as nitrogen content, 124 

density, refractive index); yinit is the liquid effluent property corresponding to the first 125 

experimental point of episode (ppm); yfinal is the last experimental point of episode (ppm); TOS 126 

is the time on stream (h); TOSinit is the time on stream corresponding to yinit (h) and τ is the 127 

characteristic time of the episode (h). The characteristic time τ of each episode presented in the 128 

equation is estimated via nonlinear least-squares technique using Gauss-Newton algorithm 129 

(Bates and Watts, 1988). 130 

The estimated characteristic time τ can logically be supposed to depend on some variables 131 

such as feed properties and operating conditions. A linear function accounting for possible 132 

interaction among the variables is defined to describe the characteristic time τ (Equation (2)). 133 

 𝜏 ൌ  𝑎ଵ𝑥ଵ ൅  𝑎ଶ𝑥ଶ ൅  𝑎ଵଶ𝑥ଵ𝑥ଶ ൅ ⋯ ൅ 𝑏 (2) 

Where x1, x2 are the input variables, which can be LHSV, temperature, pressure or feed 134 

properties such as organic nitrogen content, organic sulfur content, resin content in feed, etc.; 135 

x1x2 is the interaction term between x1 and x2; a1, a2, a12,… and b are the coefficients. 136 

The most influential input variables of the model are determined via variable selection 137 

technique called ‘leaps’ (Furnival and Wilson, 1974). The main idea of this technique is based on 138 

an efficient branch-and-bound algorithm which was first proposed by Land and Doig (1960). It 139 

searches for all possible subset solutions and stores them in the branches of a tree with the full 140 

set at the root. The algorithm runs an exhaustive search and shows the best variable subsets. It 141 

reveals the linear dependence of stabilization on the input variables. The quality of each subset is 142 

evaluated by a metric called adjusted R2. In terms of statistics, higher adjusted R2 means a better 143 
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quality. However, the number of variables in the model should not to be excessive. The selected 144 

model is a compromise between adjusted R2 and the number of variables in the subset. 145 

The adjusted R2, see Equation (3), is a measure of model fitting quality taking into account the 146 

number of variables. It is usually employed to compare multiple linear models.  147 

 𝑅തଶ ൌ 1 െ ሺ1 െ 𝑅ଶሻ
𝑛 െ 1

𝑛 െ 𝑝 െ 1
 (3) 

Where R2 is the ‘coefficient of determination’ or multiple R2; n is the number of observations 148 

in data sample; p is the number of predictors, c.q., variables and/or parameters, in the model. 149 

Multiple R2 is calculated via Equation (4). 150 

 𝑅ଶ ൌ 1 െ
∑ሺ𝑦௜ െ 𝑦ො௜ሻଶ

∑ሺ𝑦௜ െ 𝑦തሻଶ  (4) 

Where 𝑦௜are observed values; 𝑦ො௜ are predicted values; 𝑦ത are mean of sample. 151 

2.4 Stabilization prediction 152 

One of the properties of Equation (1) is that 95% of the value at steady state is reached after 3τ 153 

and 99% of the steady-state value after 5τ. It is a characteristic of first-order function which can 154 

be found in the literature (Smith and Campbell, 2016). The time required to reach steady state 155 

can be estimated thanks to the τ predicted by the model. 156 

The model for τ can then be used for stabilization performance prediction. For each episode, τ 157 

is calculated by the model. Knowing τ and the first two experimental points of the episode 158 

suffices to predict the episode evolution and, ultimately, the behavior at steady state using 159 

Equation (5), exemplified for the nitrogen content. If the predicted steady-state value is far from 160 

the target, the operating condition can be adjusted without waiting for stabilization. The 161 

prediction can be updated daily based on the new measurements. 162 
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 𝑁௙௜௡௔௟ ൌ  
𝑁ଶ െ  𝑁ଵ

1 െ 𝑒𝑥𝑝 ቀെ 𝑇𝑂𝑆ଶ െ  𝑇𝑂𝑆ଵ
𝜏 ቁ

൅  𝑁ଵ (5) 

Where Nfinal is the liquid product nitrogen at steady state (ppm); N2 is the liquid product 163 

nitrogen corresponding to the second point of episode (ppm); N1 is the liquid product nitrogen 164 

corresponding to the first point of episode (ppm); TOS2 is the time on stream corresponding to 165 

the second point of episode (h); TOS1 is the time on stream corresponding to the first point of 166 

episode (h) and τ is the characteristic time predicted by model (h). 167 

3 Results and discussion 168 

This section exhibits the results of each step in the methodology shown in Figure 2. First part 169 

represents the hydrodynamic study of the pilot plant where the experimental data were acquired. 170 

The analysis of stabilization behavior and its dependence on operating conditions, feedstock are 171 

displayed. Stabilization model is then constructed and the prediction against new data is 172 

performed. 173 

 174 

Figure 2. Methodology adopted throughout this work. 175 
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3.1 Pilot plant hydrodynamics 176 

A computational analysis of the pilot plant hydrodynamics has been carried out using Matlab 177 

& Simulink via the simulation of the behavior of an unreactive tracer component running 178 

through the pilot plant. The outlet concentration as a function of time provides insight into the 179 

stabilization behavior purely due to hydrodynamics. The pilot plant was simulated as several 180 

blocks representing each part of the pilot plant such as a heater, a reactor, a separator to remove 181 

hydrogen-rich gas from liquid stream and a stripping column to remove gas dissolved in the 182 

liquid stream such as H2S, NH3. Each element was modeled by considering it as a plug flow 183 

reactor (PFR) or as a continuous stirred-tank reactor (CSTR). Pipeline, heater and reactor were 184 

modeled as PFR while separator and stripping column were simulated as CSTR. Mass balance 185 

was then written for each block. In the simulation, the input stream is a tracer solution with a 186 

concentration set randomly at 1 mol/m3. The volumetric flowrate of the input stream was 187 

simulated at 50 cm3/h, which is similar to the one in the experimental data that would be used to 188 

compare. Temperature and pressure in the reactor were set at 370 °C and 140 bar respectively. 189 

There was no simulation of the chemical reaction expected.  190 

Figure 3 compares the transient behavior of tracer concentration in pure hydrodynamics mode 191 

with the effluent properties in reactive mode. The figure on the left represents the tracer outlet 192 

concentration. The figure on the right shows the transient behavior of liquid product nitrogen in 193 

reactive mode. As can be seen, the hydrodynamic stabilization of the pilot plants occurs within 194 

25 hours while the observed stabilization of the pilot plant in reactive mode requires around 200 195 

hours. The hydrodynamic response to a tracer step reached steady state significantly faster than 196 

the stabilization of the hydrodenitrogenation behavior. Hence, stabilization is mainly driven by 197 

chemical phenomena. 198 



 11

   199 

Figure 3. Calculated effluent concentration profiles of tracer (a) and experimentally observed 200 

liquid effluent nitrogen content as a function of time on stream in the pilot plant (b) (LHSV = 1 201 

h-1, T = 370 °C, P = 140 bar). 202 

3.2 Exploratory data analysis 203 

Stabilization was found to exhibit a first-order behavior, which is similar to the observations 204 

by Sau et al. (2005). The first-order characteristic time τ can be calculated from the evolution of 205 

effluent characteristics such as the nitrogen content, density and/or refractive index. Figure 4 206 

compares the transient behavior of these properties, normalized between [0, 1], for the same 207 

experimental run. The stabilization behavior of these properties is similar and the values of τ are 208 

essentially the same. Following the evolution of stabilization by density and refractive index are 209 

more suitable than by the nitrogen content for the following reasons: (1) for episodes with low 210 

nitrogen level (< 10 ppm), it becomes difficult to observe the behavior in the nitrogen curve, 211 

while it remains feasible for density and refractive index; (2) density and refractive index 212 

measurements are typically more precise than for nitrogen and (3) density and refractive index 213 

measurements are easier (and less expensive) to carry out than nitrogen measurements. 214 
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 215 

Figure 4. Comparison of transient behavior of nitrogen/density/refractive index (outputs are 216 

normalized between [0, 1]). Values of τ are 39.8, 36.3, 39.2 h calculated respectively from 217 

density, nitrogen content and refractive index evolution. 218 

There were 54 values of τ which have been classified into 21 first episodes and 33 later 219 

episodes, which are shown in Figure 5(a). It can be seen, indeed, that first episodes, on average, 220 

require more time to reach steady state as compared to later episodes. It was, hence, decided not 221 

to describe the τ of first and later episodes with a single model, but to develop dedicated models, 222 

i.e., one for the τ from first episodes and one for the τ of later episodes. 223 

 224 
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Figure 5. (a) Classification of τ regarding the type of episode; (b, c, d) Impact of pressure (solid 225 

line: 115 bar, dashed: 140 bar, feed F2588); LHSV (feed F4384, P = 140 bar, T = 370 °C) and 226 

feedstock (LHSV = 1 h-1, P = 140 bar, T = 370 °C) respectively on transient behavior of liquid 227 

effluent density. 228 

Figure 5(b), (c) and (d) show the transient behavior of liquid effluent density as a function of 229 

time on stream. Figure 5(b) displays the evolution of stabilization at two different pressures, i.e., 230 

115 and 140 bar. It can be observed that for the first episodes, the evolution of the curve of 115 231 

bar (τ = 60 h) is more rapid than the curve of 140 bar (τ = 106 h). For the later episodes, the 232 

difference in stabilization behavior between 115 and 140 bar seems to be less pronounced. 233 

The impact of LHSV was analyzed using data from two tests with the same feed and identical 234 

pressure and temperature (P = 140 bar, T = 370 °C) with LHSVs amounting to 1 and 4 h-1. As 235 
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can be seen in Figure 5(c), a higher LHSV leads to a much quicker stabilization. The value of τ 236 

in the case of LHSV of 4 h-1 was 9 h which is lower than 65 h in the case of 1 h-1. 237 

The feedstock is also found to have an impact on the stabilization. Figure 5(d) compares the 238 

evolution of liquid effluent density as a function of time on stream between two feedstocks. The 239 

evolution with F3884 having a higher resin and nitrogen content stabilizes quicker than the one 240 

with F2588. 241 

Other factors, such as temperature, catalyst were found to exert a less pronounced impact on 242 

the stabilization behavior. 243 

3.3 Model for τ prediction 244 

τ is modeled using linear regression accounting for interactions. As indicated before, two linear 245 

models for τ were built; one for first episodes and another for other episodes. 246 

3.3.1 First episodes model 247 

There are in total 21 values of characteristic time τ corresponding to first episodes. The 248 

possible input variables are operating conditions (LHSV, temperature, total pressure) and feed 249 

properties (organic nitrogen content Nfeed, organic sulfur content Sfeed, resin of feed resfeed, 250 

density dfeed and the weighted average temperature of simulated distillation TMPfeed). All input 251 

variables and the interaction terms which are products of operating conditions and feed 252 

properties are used in variable selection procedure. Figure 6 shows the evolution of the adjusted 253 

R2 of the 5 best subsets of each size as a function of the size of subsets. It seems that 4 variables 254 

represents a good compromise between model accuracy and overfitting (bias/variance 255 

compromise), i.e., although the adjusted R2 still slightly increases when including more than 4 256 

variables, the increase seems so marginal that it is preferred to limit the number of variables in 257 

the model to 4.   258 
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Table 1 presents an overview of the selected variables in the best subsets with the number of 259 

variables in subset from 1 to 7. The 5 best subsets with 4 variables are detailed as well. Among 260 

these 5 best subsets, the subset (LHSV, P, resfeed, LHSV*resfeed) giving the highest adjusted R2 is 261 

selected. This model contains only 1 interaction term LHSV*resfeed, which also appears in the 4 262 

left. It is a robust and less complicated model.  263 

The model presents an adjusted R2 of 0.79 and a multiple R2 of 0.83. The corresponding parity 264 

diagram is given in Figure 7. The results are quite good for all the feedstocks. 265 

 266 

Figure 6. Variable selection using leaps for linear model with interaction (first episodes). 267 

  268 
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Table 1. Selected variables corresponding to each subset obtained from variable selection in 269 

Figure 6 (only show the best selected subsets of ‘from 1 to 7’ variables and 5 best subsets of 4 270 

variables) 271 

Index Selected variables Adjusted R2 

1 P 0.369 

2 P, LHSV*Sfeed 0.528 

3 T, P, LHSV*Sfeed 0.625 

4a LHSV, P, resfeed, LHSV*resfeed 0.788 

4b LHSV, resfeed, LHSV*resfeed, P*TMPfeed 0.782 

4c resfeed, LHSV*resfeed, LHSV*TMPfeed, P*TMPfeed 0.780 

4d LHSV, P, LHSV*resfeed, T*resfeed 0.763 

4e LHSV, LHSV*resfeed, T*resfeed, P*TMPfeed 0.756 

5 LHSV, T, P, resfeed, LHSV*resfeed 0.819 

6 P, resfeed, LHSV*resfeed, LHSV*TMPfeed, T*resfeed, P*Nfeed 0.835 

7 LHSV, P, Nfeed, LHSV*Resfeed, T*TMPfeed, T*Nfeed, P*Nfeed 0.828 
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 272 

Figure 7. Parity plot with 95% confidence interval (R2 = 0.83) (first episodes model). 273 

The coefficients of the model as well as the statistical values are presented in Table 2. The 274 

global p value amounts to 5.3×10-6 and the F value for the global significance of the regression 275 

exceeds the 95% quantile by far, which both indicate that the model is statistically significant. 276 

All variables are individually significant as well as their p value is sufficiently low. As can be 277 

seen, a negative correlation was determined between LHSV and τ. The modeling confirmed that 278 

temperature is not a dominant factor. These two results are coherent with those acquired by 279 

Elizalde et al. (2016). A positive proportionality between pressure and τ was observed. However, 280 

the impact of pressure is less pronounced than that of other variables. The interaction term shows 281 

that the impact of LHSV on τ depends on the value of feed resin, i.e., the polar components with 282 

high molecular weight.  283 
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Table 2. Coefficient and statistical values for first episodes model 284 

 Intercept LHSV P resfeed LHSV*resfeed 

Coefficient 63.339 -69.055 0.693 -7.081 5.481 

p-value 3.33×10-3 3.15×10-6 7.1×10-6 5.31×10-5 1.9×10-4 

 285 

Global p-value F F95% 

5.3×10-6 19.55 3.01 

 286 

An overview of the diagnostics for the multiple linear regression with interaction yielding the 287 

combination (LHSV, P, resfeed, LHSV* resfeed) as best performing one, is displayed in Figure 8. 288 

The analysis is as below: 289 

 Residuals vs. fitted shows that there is linear trend.  290 

 The normal Q-Q indicates that the residuals are almost normally distributed.  291 

 The assumption of equal variance is also valid by checking the scale-location.  292 

 Residuals vs. Leverage show that there is no influential observation. Even the 293 

observation #13 is on the Cook’s distance line (red dashed line on the Residual vs 294 

Leverage plot), it is not an influential observation. Because when this point is 295 

excluded from the regression, multiple R2 changes from 0.8301 to 0.8335, which 296 

means a small impact. 297 



 19

 298 

Figure 8. Diagnostic plots for linear model with interaction (first episodes model). 299 

3.3.2 Later episodes model 300 

There are 33 observations of τ in the whole data set for later episodes. The same procedure for 301 

variable selection was applied. The input variables are the feed properties, operating conditions 302 

of the current episode as well as of the previous episode. Variables relating to the previous 303 

episode are, e.g., temperature and LHSV of this previous episode: Tpre, LHSVpre; and ratio of 304 

temperature and LHSV of the episode and the previous one. Only a selection of interaction terms 305 

was allowed based on the inspiration acquired by modeling the first episodes, to keep the number 306 

of considered variables and, hence, adjustable parameters, within reasonable constraints. Table 3 307 

shows the 17 input variables taken into account in variable selection procedure. 308 

  309 
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Table 3. Variables used in variable selection technique for later episodes regression 310 

Feed 
Operating 

conditions 
Condition switching Interaction terms 

Nfeed LHSV 
T

T୮୰ୣ
 LHSV*resfeed 

Sfeed T 
LHSV

LHSV୮୰ୣ
 LHSV*Nfeed 

resfeed P 
T୮୰ୣ

T
 LHSV*Sfeed 

dfeed LHSVpre 
LHSV୮୰ୣ

LHSV
  

TMPfeed Tpre   

 311 

Figure 9 show the evolution of the adjusted R2 of the best subsets as a function of the number 312 

of variables. On similar grounds as for the first episodes modeling (Section 3.3.1), for the later 313 

episodes regression 7 variables is determined to be a good compromise between accuracy and 314 

over fitting for these later episodes. 315 

 316 

Figure 9. Variable selection using leaps for later episodes model. 317 
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These 7 variables selected are: LHSV, Sfeed, LHSVpre, Tpre, LHSV*resfeed, 
୐ୌୗ୚

୐ୌୗ୚౦౨౛
, 

୐ୌୗ୚౦౨౛

୐ୌୗ୚
. The 318 

model gives an adjusted R2 amounting to 0.55 and a multiple R2 to 0.66. Figure 10 shows the 319 

parity diagram of the model. The quality of the model is lower than that of first episode model, 320 

which is, at least partly, explained by the fact that the results are closer to each other, i.e., there is 321 

less spread for a higher number of variables. 322 

 323 

Figure 10. Parity plot with 95% confidence interval (R2 = 0.66) (later episodes model). 324 

The regression is globally statistically significant since the global p-value is sufficiently small 325 

and the F value exceeds the critical value.  326 

Table 4 displays the parameter values obtained for the model and their individual statistical 327 

significance. The p values for the individual variables indicate that Sfeed and LHSVpre are at the 328 

margin of statistical significance (P = 0.11 and P = 0.07, respectively) and that the other 329 

variables are significant. LHSV, sulfur and resin content in the feed represent the operating 330 

conditions and feed properties. Other variables represent the impact of previous conditions on the 331 
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τ. The τ of later episodes is more complicated to model than the first episodes and depends on the 332 

conditions of the previous episode. 333 

τ fitted by data has an uncertainty due to the measurement error of the output such as liquid 334 

effluent nitrogen or density. In another database, one episode was repeated several times. The 335 

values of τ fitted by the obtained data are 45, 45, 50, 64, 54 and 59 (hours). The obtained mean is 336 

53 hours and the standard deviation is about 8 hours. Besides that, the residual standard deviation 337 

of the model is 7. It is shown that τ fitted by data varies from one experiment to another 338 

experiment under the same conditions. The latter can lead to the inaccuracy of model since the 339 

values of fitted τ were used to train the model. The proposed model can be sufficient since it 340 

simulates well the order of magnitude of fitted τ and the model is easy to establish and 341 

understand.  342 

Table 4. Coefficient and statistical values for later episodes model 343 

 Intercept LHSV Sfeed LHSVpre 

Coefficient 177.349 -10.943 2.589 8.851 

p-value 8.32×10-5 0.036 0.114 0.071 

 344 

 Tpre LHSV*resfeed 
LHSV

LHSV୮୰ୣ
 

LHSV୮୰ୣ

LHSV
 

Coefficient -0.379 -0.828 8.832 -11.713 

p-value 8.34×10-4 3.85×10-3 5.78×10-3 0.020 

 345 

Global p-value F F95% 

1.4×10-4 6.83 2.40 

 346 
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Diagnostics of model for later episodes is discussed as below (see also Figure 11). 347 

 Residuals vs. fitted shows that there is a linear trend.  348 

 The normal Q-Q indicates a normal distribution. 349 

 Scale-location shows that the assumption of equal variance is valid.  350 

 Residuals vs. Leverage show no influential observation. 351 

 352 

Figure 11. Diagnostic plots for linear model with interaction (later episodes model). 353 

3.4 Prediction 354 

The model was used to predict τ and the steady-state performance was calculated via Equation 355 

(5) assuming that the first two points of the episode have already been measured. The prediction 356 

was carried out on a new experimentation with another feedstock operating on another pilot plant 357 

but the same catalyst. 358 
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3.4.1 First episodes 359 

First episodes model is tested using new data from other feedstocks. Figure 12 shows two 360 

examples of such predictions by the model. The first two points of the episode which are used to 361 

predict the steady-state value are shown as circles. The remaining data in the episode are 362 

represented by triangles. The predicted nitrogen values are very close to the measured ones. The 363 

model has been found to provide a good prediction of the stabilization evolution and the steady-364 

state value. 365 

Using the model for τ prediction enables the calculation of the steady-state performance 366 

without the need to wait for reaching steady state. The advantage is that if the steady-state value 367 

could be far from target, operators can change the operating condition without waiting for 368 

stabilization. 369 

  

Figure 12. Two test predictions using the first two points of episode (points: experimental data, 370 

solid line: model prediction; Test (a): LHSV = 1.34 h-1, P =132 bar, T = 370 °C; Test (b): LHSV 371 

= 1.71 h-1, P =140 bar, T = 386 °C). 372 

3.4.2 Later episodes 373 
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Later episodes model is tested using new data from other feedstocks as well. Figure 13 374 

compares the prediction (solid line) and the experimental data. Again, the first two points of 375 

episode which are used to estimate the steady-state value are shown as circles. The remaining 376 

data in the episode are represented by triangles. The model predicts well the evolution of 377 

episodes 2, 3, 5, 7 and 8. Since nitrogen values are low in episode 7 and 8, the prediction is 378 

considered not far from the experimental value, even if the evolution is not perfectly in line with 379 

the experimentally observed one. Moreover, during the first point of an episode, hydrodynamic 380 

effects still may have a certain impact, indicating that we should be careful with the reliability of 381 

this first point. 382 

Regarding episode 4 and 6, the stabilization behavior did not follow the first-order response 383 

since the reactor temperature was slightly adjusted to reach an intended nitrogen level. The 384 

reactor temperature profile is shown in Figure 14. A target of 30 ppm was fixed for the value of 385 

liquid effluent nitrogen in episode 4. The reactor temperature was firstly set at 378.7 °C. The 386 

prediction using the first two points was 25 ppm (see solid line in episode 4, Figure 13). The 387 

reactor temperature was, hence, gradually decreased to 377.1 °C. The temperature profile was 388 

considered constant from the fourth point. The steady-state value prediction using the fourth and 389 

fifth point was 32.8 ppm, which is not far from the target (see dashed line in Figure 13). The 390 

third point was not used for prediction since the temperature was adjusted during that time. 391 

Similar to episode 4, the liquid effluent nitrogen target of episode 6 was 50 ppm. The 392 

temperature was firstly set at 374.7 °C for episode 6 and the steady-state forecast using the first 393 

two points was 80 ppm. The temperature was gradually modified to 376.7 °C. The steady-state 394 

value prediction using the fourth and fifth point was 52 ppm, which was close to the target (see 395 

also dashed line in episode 6, Figure 13). As the liquid product nitrogen values seem to be 396 
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sensitive to the reactor temperature value, it is needed to carefully control the temperature 397 

profile. As can be seen, the steady-state performance prediction depends not only on the 398 

predicted value of τ but also on the first two “online” measurements. This ‘online’ prediction is, 399 

hence, flexible and the operators should consider the certainty of experimental data and adapt to 400 

what really happen (modification of operating conditions, measurement error and equipment 401 

problem). 402 

 403 

Figure 13. Prediction with the first two points of other episodes (points: experimental data, solid 404 

line: model prediction using the first two points, dashed line: prediction while discarding the first 405 

three points). 406 
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 407 

Figure 14. Reactor temperature profile corresponding to each episode 408 

Even if the quality of the model seems limited, the model reproduces well the order of 409 

magnitude of τ. The impact of τ predicted by model on the stabilization evolution prediction was 410 

carried out for one episode. Figure 15 shows the steady-state prediction based on the first two 411 

points and different values of predicted τ. In fact, a variation of ±15% and ±30% was added on τ 412 

predicted by model in order to study the impact of predicted τ on the steady-state prediction. As 413 

can be seen, the nitrogen value comes to its steady state at about 14 – 20 ppm for ±30% variation 414 

of predicted τ. The steady-state value of nitrogen is 15.5 – 18.5 ppm for ±15% variation. It is 415 

shown that a small variation of τ does not impact significantly on the prediction. Moreover, the 416 

model can be employed at the experimentation scheduling step. The predicted τ (in hours) can be 417 

used to estimate the order of magnitude of the time required to reach steady-state (in days). As 418 

explained in Section 2.4, the steady state can be considered to reach after about 3τ – 5τ. 419 
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The proposed methodology can be applied to any reaction where the chemical stabilization 420 

requires significantly more time than the hydrodynamic stabilization and analysis time to 421 

forecast the evolution towards the steady state. The latter can help the operator to follow the 422 

trend of the stabilization behavior. It enhances the decision making in process operation to reach 423 

an intended target.  424 

 425 

Figure 15. Sensitivity of predicted τ by model on the steady-state prediction (points: 426 

experimental data; line: prediction based on the first two points and different values of τ) 427 

 428 



 29

4 Conclusions 429 

Stabilization is crucial for hydroprocessing. In this work, transient hydrotreating data were 430 

used to probe the details of this stabilization, which was found to follow a first-order response. 431 

Two models, i.e., one for the first episodes, another for the later episodes, for stabilization time 432 

‘τ’ prediction were constructed. It was found that a higher LHSV leads to a quicker stabilization. 433 

The extent of the impact of LHSV on τ depends on the feed resin content. A proportional 434 

relationship between pressure and stabilization was found. Temperature is not a dominant factor. 435 

Stabilization of later episodes depends not only on the feedstock and operating conditions but 436 

also on the operating conditions of the previous episode.  437 

The availability of two initial measurements during stabilization typically suffices to predict 438 

the steady-state hydrotreating performance. Good prediction results were obtained, particularly 439 

for the first episodes. The stabilization of later episodes is more complicated to predict. The 440 

prediction results indicate that transient data can be used to optimize the steering of pilot plants 441 

to reach quickly some targets. 442 
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Nomenclature 446 

CSTR: continuous stirred-tank reactor  447 

LHSV: liquid hourly space velocity (h-1) 448 

P: pressure (bar) 449 

PFR: plug flow reactor 450 

T: temperature (°C) 451 
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TOS: time on stream (h) 452 

ppm: parts-per-million 453 

VGO: vacuum gas oil 454 
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Figures	&	Tables	529 

Figures 530 

 531 

Figure 1. Data illustration - Liquid effluent nitrogen as a function of time on stream (TOS). 532 

 533 

Figure 2. Methodology adopted throughout this work. 534 



 35

    535 

Figure 3. Calculated effluent concentration profiles of tracer (a) and experimentally observed 536 

liquid effluent nitrogen content as a function of time on stream in the pilot plant (b) (LHSV = 1 537 

h-1, T = 370 °C, P = 140 bar). 538 

 539 

Figure 4. Comparison of transient behavior of nitrogen/density/refractive index (outputs are 540 

normalized between [0, 1]). Values of τ are 39.8, 36.3, 39.2 h calculated respectively from 541 

density, nitrogen content and refractive index evolution. 542 
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Figure 5. (a) Classification of τ regarding the type of episode; (b, c, d) Impact of pressure (solid 543 

line: 115 bar, dashed: 140 bar, feed F2588); LHSV (feed F4384, P = 140 bar, T = 370 °C) and 544 

feedstock (LHSV = 1 h-1, P = 140 bar, T = 370 °C) respectively on transient behavior of liquid 545 

effluent density. 546 
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 547 

Figure 6. Variable selection using leaps for linear model with interaction (first episodes). 548 

 549 

Figure 7. Parity plot with 95% confidence interval (R2 = 0.83) (first episode model). 550 
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 551 

Figure 8. Diagnostic plots for linear model with interaction (first episodes model). 552 

 553 

Figure 9. Variable selection using leaps for later episode model. 554 
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 555 

Figure 10. Parity plot with 95% confidence interval (R2 = 0.66) (later episodes model). 556 

 557 

Figure 11. Diagnostic plots for linear model with interaction (later episodes model). 558 
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Figure 12. Two test predictions using the first two points of episode (points: experimental data, 559 

solid line: model prediction; Test (a): LHSV = 1.34 h-1, P =132 bar, T = 370 °C; Test (b): LHSV 560 

= 1.71 h-1, P =140 bar, T = 386 °C). 561 

  562 



 41

 563 

Figure 13. Prediction with the first two points of other episodes (points: experimental data, solid 564 

line: model prediction using the first two points, dashed line: prediction while discarding the first 565 

three points). 566 
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 567 

Figure 14. Reactor temperature profile corresponding to each episode 568 
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 569 

Figure 15. Sensitivity of predicted τ by model on the steady-state prediction (points : 570 

experimental data; line: prediction based on the first two points and different values of τ) 571 

  572 
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Tables 573 

Table 1. Selected variables corresponding to each subset obtained from variable selection in 574 

Figure 6 (only show the best selected subsets of ‘from 1 to 7’ variables and 5 best subsets of 4 575 

variables) 576 

Index Selected variables Adjusted R2 

1 P 0.369 

2 P, LHSV*Sfeed 0.528 

3 T, P, LHSV*Sfeed 0.625 

4a LHSV, P, resfeed, LHSV*resfeed 0.788 

4b LHSV, resfeed, LHSV*resfeed, P*TMPfeed 0.782 

4c resfeed, LHSV*resfeed, LHSV*TMPfeed, P*TMPfeed 0.780 

4d LHSV, P, LHSV*resfeed, T*resfeed 0.763 

4e LHSV, LHSV*resfeed, T*resfeed, P*TMPfeed 0.756 

5 LHSV, T, P, resfeed, LHSV*resfeed 0.819 

6 P, resfeed, LHSV*resfeed, LHSV*TMPfeed, T*resfeed, P*Nfeed 0.835 

7 LHSV, P, Nfeed, LHSV*Resfeed, T*TMPfeed, T*Nfeed, P*Nfeed 0.828 

 577 

  578 
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Table 2. Coefficient and statistical values for first episodes model 579 

 Intercept LHSV P resfeed LHSV*resfeed 

Coefficient 63.339 -69.055 0.693 -7.081 5.481 

p-value 3.33×10-3 3.15×10-6 7.1×10-6 5.31×10-5 1.9×10-4 

 580 

Global p-value F F95% 

5.3×10-6 19.55 3.01 

 581 

Table 3. Variables used in variable selection technique for later episodes regression 582 

Feed 
Operating 

conditions 
Condition switching Interaction terms 

Nfeed LHSV 
T

T୮୰ୣ
 LHSV*resfeed 

Sfeed T 
LHSV

LHSV୮୰ୣ
 LHSV*Nfeed 

resfeed P  
T୮୰ୣ

T
 LHSV*Sfeed 

dfeed LHSVpre 
LHSV୮୰ୣ

LHSV
  

TMPfeed Tpre   

 583 

  584 
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Table 4. Coefficient and statistical values for later episodes model 585 

 Intercept LHSV Sfeed LHSVpre 

Coefficient 177.349 -10.943 2.589 8.851 

p-value 8.32×10-5 0.036 0.114 0.071 

 586 

 Tpre LHSV*resfeed 
LHSV

LHSV୮୰ୣ
 

LHSV୮୰ୣ

LHSV
 

Coefficient -0.379 -0.828 8.832 -11.713 

p-value 8.34×10-4 3.85×10-3 5.78×10-3 0.020 

 587 

Global p-value F F95% 

1.4×10-4 6.83 2.40 

 588 

 589 


