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Abstract 

 

H2S-containing (sour) service environments present a considerable risk of hydrogen induced 

cracking (HIC) and sulfide stress cracking (SSC) to steel line pipe, pressure vessel and tubular 

components during upstream oil and gas production, through the ability of H2S to corrode and 

promote hydrogen entry into the material bulk via a cathodic reaction process. Materials 

selection for sour service is made via standard test methods such as NACE TM0284 and 

NACE TM0177. A commonly used test solution (NACE TM0177 solution A) comprises 

sodium chloride (5.0%) + acetic acid (0.5%), to work in a range between pH 2.8 – 4.0. When 

pH stability is essential over long testing periods, solutions that are buffered by acetic acid 

with sodium acetate are proposed. NACE TM0177 solution B (5.0% NaCl + 0.4% sodium 

acetate + 2.5% acetic acid) presents an initial pH of 3.4 – 3.6, specified not to exceed pH 4.0 

over the testing duration. Newer, alternative solutions from the high-strength line pipe (HLP) 

research committee from the Iron and Steel Institute of Japan (ISIJ) propose higher acetic 

acid/acetate concentrations for enhanced buffering capacity. This may offer practical testing 

advantages, although material corrosion rates and hydrogen uptake are possibly affected.  

  

In this conference proceeding, we report on the corrosion and hydrogen uptake performance 

of a sour-grade X65 steel exposed to NACE Solutions A and B, and an HLP solution (at the 
same pH as NACE B solution, i.e. pH 3.5) under continuous H2S purging (0.1 MPa, T = 

24°C) over 720 hours. Electrochemical methods measure electrochemical impedance at the 

entry face of, and hydrogen permeation across, the X65 membrane. Overall, the differences 

we note are linked to the different weak acid/conjugate base concentration. 
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Introduction 

Materials used in oil and gas industries are exposed to H2S-containing (sour) 

environments, which is corrosive and known to promote hydrogen entry into steels. This may 

lead to several types of failures such as hydrogen-induced cracking (HIC), sulfide stress 

cracking (SSC), or stress-oriented hydrogen induced cracking (SOHIC). Standard test 

methods have been developed for the selection and the qualification of steels for use in H2S 

containing environments, such as NACE TM0177 and TM0284 
1; 2

. Selecting test conditions 

for carbon and low alloy steel qualification is conducted using a pH(y)-PH2S(x) diagram to 

impose ‘levels of severity’ for assessing material cracking susceptibility 
3
. It is, nonetheless, 

acknowledged that the solution chemistry may affect the test result 
4
. The prescribed solutions 

in the current ISO15156 standard contain 5% NaCl with acetic acid (CH3COOH or 

HAc)/sodium acetate (CH3COONa or NaAc) buffered to fix the solution pH over a long 

testing period (720 h) 
3
. Born out of a need to use a test solution with excellent pH stability 

for fitness for purpose (FFP) HIC tests, the high-strength line pipe (HLP) research committee 

from the Iron and Steel Institute of Japan (ISIJ) proposed higher HAc + NaAc concentrations 

for enhanced buffering capacity 
5–7

. In this conference proceeding, we expose a sour-service 

grade X65 to NACE A, NACE B and ISIJ HLP solutions saturated with H2S (Ptotal and PH2S 

~1 bar) for a period of 720 h. Both corrosion and hydrogen uptake tests have been conducted 

using a classic two-chamber hydrogen permeation cell in order to evaluate the influence on 

the solution chemistry on material performance.   

 

Experimental procedure 

Solution chemistry 

Test solutions, NACE A (pHstart = 2.7) and B (pHstart = 3.5) representative of qualification 

tests (e.g. NACE TM0177), and an ISIJ HLP solution at the same pH as NACE B (pHstart = 

3.5) were used. The solution compositions are provided in Table 1. In addition, results in an 

unbuffered 3.5 wt% NaCl solution (pH = 4.3) are sometimes included for comparative 

purposes.  

  

Table 1: Acetate concentration used in test solutions in this work (T = 24°C, PH2S ~1 bar, 

t = 720 h).  

 Composition [HAc](aq) (M) [NaAc](aq) (M) [Ac
-
](aq) (M) 

NACE A 0.5% HAc 0.09  0.09 

NACE B 
2.5% HAc + 

0.4% NaAc 
0.42 0.05 0.47 

HLP 
5.0% HAc + 

0.8% NaAc 
0.83 0.1 0.93 

 

Corrosion and hydrogen permeation tests 

Exposure of X65 steel specimens was carried out in a jacketed Devanathan-Stachurski cell 
8
. 

The solution temperature was maintained at 24 +/- 2°C, through circulating thermally-

controlled water through the cell’s jackets. The iron/steel membrane was used for two distinct 

types of electrochemical measurements, carried out simultaneously. EIS measurements were 

performed at the charging side left at the free corrosion potential (Ecorr). At the same time, the 

exit surface of the membrane covered with a Pd deposit was held in a deoxygenated 0.1 M
 

NaOH solution and polarized at a potential of +250 mV vs. Hg/HgO (1M KOH) providing a 

direct measurement of the hydrogen flux across the steel membrane. Membrane thickness was 

0.5 mm, and the exposed area was 16.6 cm² on both sides. In addition to the permeation 
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membrane, weight-loss specimens of the same material as the permeation membrane (9 mm x 

9 mm x 0.5 mm) were also introduced into the charging cell. These coupons were used for 

weight-loss corrosion rate evaluation. Accounting for the surface areas of the permeation 

membrane and iron coupons, the ratio between test solution volume and exposed surface was 

close to 30 mL/cm². The continuous H2S gas bubbling in the charging cell provides the only 

source of solution convection.  

 

Results and discussion 

Impact of buffer choice on solution pH 

Figure 1 shows the results of the buffer solution pH as a function of time over 720h. For the 

test configuration employed, both NACE B and the HLP solution provide an excellent pH 

stability close to pH 3.5 over the 720 h exposure period.     
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Fig 1: Evolution of test solution pH as a function of time over 720 h (T = 24°C, PH2S ~1 bar). 

 

Impact of acetate concentration on corrosion 

The evolution of corrosion rates (Fig 2(a)) is derived from the corrosion current, icorr using Rct 

and the anodic Tafel coefficient of ba = 40 mV dec
-1

, with 7.8 g/cm
3
 as the steel density. This 

is justified in 
9
.  

 

icorr = ba/2.3 Rct                                                                                  (1) 

Electrochemical corrosion rate data are supported by coupon mass loss corrosion rates in Fig. 

2(b), which also contains integrated EIS corrosion rates for comparison. 
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Fig. 2: Time evolution of the corrosion rate obtained from electrochemical measurements (a) 

and average corrosion rates determined from mass loss and electrochemical measurements (b) 

of X65 membrane exposed to buffer solutions at T = 24°C under 1 bar H2S. 

 

A good correlation is obtained between mass loss and electrochemical corrosion rate (CR) 

estimates throughout the testing campaign, which justifies the choice of ba = 40 mV dec
-1

 as 

our chosen anodic Stern-Geary coefficient. Looking at the corrosion rate (CR) evolution in 

Fig 2(a), it is noted that the CR profiles in NACE solutions are quite similar. X65 corrodes at 

a higher rate in NACE B relative to NACE A, before quickly decreasing to low values over 

the final 360 h. These values recorded at the 720
th

 hour are 90% lower than the value recorded 

at the 360
th

 hour. The CR in HLP solution is sustained at the highest rates, more than two 

times greater than NACE B, and shows a far slower kinetics of decrease over the final 360 h 

of immersion (to a final CR that is only 30% lower than its value recorded at the exposure 

midpoint. This qualitatively implies that a protective iron sulfide overlayer quite possibly 

forms at the X65 interface only in the NACE solutions. Looking at Figure 2 (b), it appears 

that for H2S-saturated buffered solutions under the same partial pressure (~1 bar and ~0.1 M 

H2Saq), comparable solution pH (3.5 ± 0.2) and hydrodynamics, a higher aqueous acetic acid 

+ acetate concentration ([HAc + Ac
-
]) elevates the base CR (i.e. HLP > NACE B > NACE A). 

Such an effect of acetic acid/acetate concentration on increasing steel corrosion rate has also 

been reported in the literature. It is possible that a buffering mechanism played by the acetic 

acid/acetate equilibrium, to supply protons for the cathodic reduction, might be at play to 

accelerate the X65 corrosion rate 
10

.  

 

CH3COOH  CH3COO
-
 + H

+
                                                                                        (2) 

This dissociation reaction might take place in the diffusion layer or be catalyzed on contact 

with a cathodic reaction site at the surface. Increasing its concentration would increase the 

diffusion-limited cathodic current density. Furthermore, the higher acetate anion 

concentrations in HLP vs NACE B may be relevant, as Ac
-
 competes with H2Saq to react with 

oxidized ferrous ions and form ferrous acetate. This species would remain in a dissolved state 

due to higher solubility in aqueous media relative to iron sulfides. We summarise the 

important metal loss corrosion reactions in Equations 3 – 5. We expect that the higher [HAc + 

NaAc] disrupts the precipitation pathways to the formation of protective iron sulfide, based on 

the observation of the delayed onset of corrosion rate decrease in the buffered solutions (i.e. 

HLP > NACE B > NACE A).   
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Fe +H2S aq FeS(s) + 2Had                                                                        (3) 

Fe +CH3COOH  Fe(CH3COO)2 (aq) + 2Had                                                          (4) 

Fe
2+

 +2CH3COO
-
  Fe(CH3COO)2 (aq)                           (5) 

 

Impact of acetate concentration on hydrogen permeation 

Figure 4 shows the hydrogen permeation profiles obtained in the different buffered solutions. 

After the initial peak in hydrogen permeation (Jmax), attained within the first hour of exposure 

(left hand side in Figure 3), the hydrogen uptake decreases. Jmax values tended to increase with 

acetic acid concentration. 
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Fig 3: Hydrogen permeation across X65 membrane exposed to buffer solutions at T = 24°C 

under 1 bar H2S. The graph on the left shows the very initial peak (Jmax). 

A quasi-steady-state is reached by the 120
th

 hour, one governed by surface reaction control 

(corrosion rate and iron sulfide corrosion product formation at the entry face). Here, the 

steady state permeation behaviour is within a similar range in all buffered solutions (~55 

A/cm
2
) for the subsequent 240 h. Over the final 360 h of exposure, the H-permeation 

profiles for X65 in the NACE solutions follow the same trend as the EIS corrosion rate 

evolution, with marked decreases to zero current at similar times. It confirms, for these cases, 

that hydrogen absorption becomes restricted as the instantaneous CR decreases. For the HLP 

solution, however, hydrogen permeation is sustained at an appreciable value for the entire 

duration. It does appear to slowly decrease over the final 240h, in line with the slow decrease 

in corrosion rates observed for this solution.   

 

The high acetic acid/acetate concentration permits the high corrosion rate, but the 

involvement of H2Saq at the steel/solution and scale/solution interface enables the hydrogen 

permeation to continue at higher fluxes for longer. As Kahyarian et al state 
10

, increasing the 

concentration of acetic acid may serve simply as an additional source of readily available 

protons for reduction at the interface. In the absence of H2S, increasing the acetic acid 

concentration would simply increase the corrosion rate of iron through the enhanced reduction 

rates, and through the high solubility of the corrosion product iron acetate (Equation 4). The 

higher concentration of acetates keeps corroded Fe
2+

 in aqueous form, rather than enabling the 

precipitation/formation of quite insoluble iron sulfides FexSy. This could explain the later 
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onset and slower decrease of the corrosion rates in the buffers with higher HAc, i.e. how X65 

corrosion rates in NACE A begin to fall after the 10
th

 day and those in HLP after the 20
th

 day 

of immersion. In the presence of 0.1M H2Saq, a high proportion of surface adsorbed hydrogen 

subsequent to the cathodic corrosion reaction from dissociated acetic acid protons and H2S 

protons, will absorb into the subsurface of the X65 steel. Reference to Fig 4 shows that raising 

the effective interfacial proton availability (diffusion-controlled proton reduction rate) for the 

cathodic reaction through an acetic acid buffering mechanism acts to increase the 

instantaneous hydrogen uptake flux. Considering, further, that the high concentration of acetic 

acid may dissolve existing FeS, it may very well reduce the overall protective ability of the 

scale that develops in HLP solution. All these factors together could explain how and why the 

higher [HAc + Ac
-
] maintains the highest and longest hydrogen permeation flux amongst the 

studied buffer solutions throughout the 30-day exposure period. Our results convey that 

baseline corrosion rates increase with HAc, but so do the rates of hydrogen permeation – 

which are maintained at a high level throughout the prescribed testing period. This HLP 

solution could be an interesting choice in materials testing under hydrogenated environments, 

if a particularly aggressive and high hydrogen charging medium is sought. 

 

Conclusions 

We have conducted a study on the effect of changing the acetic acid and sodium acetate 

concentration [HAc + NaAc] in a 5% NaCl solution, under continuous H2S purging (1 bar, T 

= 24°C) over 720 hours, on the corrosion and hydrogen permeation response of a sour-service 

grade X65 steel. The tested solutions were The NACE TM0177 solutions NACE A (0.5% 

HAc), NACE B (2.5% HAc + 0.4% NaAc) and an ISIJ HLP solution (5% HAc + 0.8% 

NaAc). Our results show that electrochemical and weight loss corrosion rates considerably 

increase as the total [HAc + NaAc] is increased, likely down to a higher diffusion-controlled 

cathodic reaction rate from acetic acid/acetate buffering as well as the solubilisation of ferrous 

ions in the presence of acetate. This latter effect delays the likely formation of a highly 

protective iron sulfide film on the H-entry surface of X65 steel in HLP and NACE B 

solutions, if compared against NACE A. The hydrogen permeation flux tracks well with the 

instantaneous electrochemical corrosion rates, and decreases at similar times. The data 

suggest that there is significant effect on material in these different buffered media, and care 

must be taken when selecting a test solution for a given general or FFP test.        
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