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Abstract 

 
Annulus of flexible pipelines represents a specific corrosive environment for the high 
strength carbon steel wires, mainly due to the low V/S ratio between the volume of 
electrolyte and the exposed steel surface. This environment induces high super-
saturation levels of dissolved iron, together with the establishment of pH values far 
above thermodynamic equilibrium. Nevertheless, it also induces difficulties to predict 
actual levels of pH in the annulus, since thermodynamic models do not apply. 
In order to overcome these difficulties, and to obtain trustful pH values for the design 
of flexible pipelines, lots of efforts were put both in the experimental and modelling 
directions. A kinetic model was thus developed a few years ago, taking into account 
electrochemical and chemical reaction rates which allowed to explain super-
saturated pH levels. Specific experiments consisting of continuous in situ pH 
measurements in confined corrosion cells confirmed the validity of the model in a 
pressure range 1 – 10 bar and for short term exposures.  
 

In the present paper, the extension of experimental conditions to higher pressures of 

CO2 is presented. A good agreement with the model prediction and the short term 

stabilization of in situ pH was still obtained. Furthermore, longer exposure tests were 

also performed. It appeared that the evolution of super-saturated pH with time went 

through a maximum value after a few days, but then decreased slowly to a new 

equilibrium. This trend was attributed to the slow build-up of an iron carbonate layer, 

and subsequent decrease of the corrosion rate of the metal. The first version of the 

kinetic model was well suited to predict the maximum pH reached after a few days, 

but it did not capture the slow decrease. The model was then modified, in order to 

take into account the impact of corrosion products precipitation on surface reactions. 

The new version of the model is now capable to simulate with a good accuracy the 

complete in-situ pH transient for durations of several weeks until stationary state is 

reached. It allows not only to predict stabilized super-saturated pH values, but also to 

quantify the steady-state corrosion rate, which usually stands below a few µm/year. 

Even with such low corrosion rates, high confinement still induced super-saturation 

effect, with final pH values at +0.5 pH units above saturated pH.  

 

 

 



1 Introduction 

 

Flexible pipelines are widely used for the transport of fluids in oil and gas 

applications. They are composed of successive layers of steel and polymer materials. 

An example of a structure of a flexible pipeline is described in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Example of a flexible pipe structure 

 

 

In the recent years, oil and gas production conditions evolved to higher temperature, 

higher pressure and greater acid gas contents, with a great incidence on materials 

selection. For the flexible pipelines used in offshore conditions, these conditions 

apply directly to materials from the bore, i.e. the carcass and the polymer pressure 

sheath. But there is also a great impact on the environment of the annulus, where 

high strength low alloy steels armour wires are used to withstand both the internal 

pressure and the weight of the riser. The selection and design of these steel armours 

need to consider possibilities of corrosion. Indeed, presence of water in the annulus 

is possible. Seawater can be found due to accidental rupture of the outer polymer 

sheath, or deliberate flooding for design purposes. Pure water may also be found, as 

a result of condensation of water vapour after permeation from the bore through the 

inner polymer sheath. Similarly, acid gases from the bore also permeate through the 

inner layer, and water with dissolved CO2 and H2S can be found. The corrosive 

environment thus depends in the first place of permeation rates and equilibrium 

pressures of acid gases. These properties can be determined from experimental and 

modelling data, as described in [1]. Corrosion in the annulus is also strongly 

influenced by the high confinement ratio (V/S) between the volume of electrolyte and 

the exposed surface of steel. Typical V/S ranges from 0.02 to 0.06 mL/cm², i.e. 

corresponding to a film of electrolyte of 10 to 100 µm at the steel surface. As already 

described in details, the corrosion conditions in the annular space are very specific 

[2-4]. In such conditions, the electrolyte pH no longer corresponds to the 

thermodynamic equilibrium with the acid gases partial pressures, but to a kinetic 

equilibrium involving iron dissolution and iron salts precipitation. The environment is 

highly supersaturated in ferrous ions, and the pH exceeds by far the natural pH at 

saturation [4]. Corrosion rates are thus greatly reduced compared to the ones that 
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would be observed in water with similar partial pressures of acid gases and without 

confinement. Lots of experimental and modelling efforts are directed to predict the 

annulus pH, since it represents an important parameter for materials selection for the 

carbon steel armours.  

Until recently, most applications presented CO2 equilibrium pressure in the annulus 

below or close to 1 bara. However, the development of high pressure fields with up to 

several hundred bars of CO2 moved the upper limit of CO2 content in the annular 

space to more than a few tens of bars [5]. It became thus necessary to extend the 

range of available data on pH measurements in confined conditions to higher 

pressures.  

The goal of the present paper is firstly to describe the basis of the corrosion 

phenomena modeling and secondly to show pH measurements in confined 

conditions at CO2 partial pressures from 1 bara to 45 bara CO2. Finally, comparisons 

between the experimental results and the predicted values from the model are 

presented. 

 

2 pH in confined environments 

2.1 Modeling aspects 

Leaving aside the specificities of confined environment, corrosion in the annulus of a 

flexible pipe can be described by chemical equilibria and electrochemical equations 

that are commonly used in mechanistic models of CO2 and H2S corrosion [6-9]. The 

governing reactions are acid gases dissolutions and dissociations, reduction of 

proton and/or other acid components, oxidation of iron, and iron salts precipitation.  

In CO2 environment, the global electrochemical reaction is: 

 

 2
2 3 3 2Fe 2H CO Fe 2HCO H      (reaction 1) 

 

This reaction produces alkalinity, thus a local increase of pH, or a global increase of 

bulk pH in stagnant conditions, and subsequently a decrease of corrosion rate. At the 

same time, 3HCO  is also the precipitable anion. As soon as the solubility limit is 

reached, iron carbonate precipitates and the whole reaction can thus be written as: 

 

 2 3 3 2Fe H CO FeCO H    (reaction 2) 

 

At the equilibrium and if there is no renewal of the electrolyte, the solution is then 

buffered by FeCO3, with a stable saturated pH (pHsat).  

 

Now let us consider the geometrical configuration of the annulus. The main 

parameter is the high degree of confinement, i.e. a large surface of exposed steel 

with a small volume of electrolyte. Considering the worst situation, one can also 

make the hypothesis that there is no limitation on acid gas dissolution, nor diffusion 

limitations in the thin electrolyte layer.  

Then, as soon as corrosion starts through reaction 1, and since it happens on a large 

steel surface and a small volume of electrolyte, H+ ions are consumed while Fe2+ and 

3HCO  concentrations increase extremely fast, with subsequent rise of pH and 



decrease of corrosion rate. For example, one can consider a system composed of 

pure water under 1 bar CO2 at ambient temperature. Application of pH and water 

chemistry software shows that the initial in-situ pH is 3.9, while it reaches 5.3 at 

saturation in iron carbonate, corresponding to 78 ppm Fe2+. And with a confinement 

ratio of 1 mL/cm² and a reasonable initial corrosion rate of 0.5 mm/year, one easily 

determines that saturation is reached after less than a few hours, leading to start of 

precipitation.  

However, iron carbonate precipitation is a rather slow reaction, so that the 

precipitable products of the corrosion reaction Fe2+ and 3HCO  are allowed to 

accumulate above the solubility limit, all the more so as the confinement is important. 

Consequently, pH increases above its saturated value (super-saturated pH, pHssat). 

The corrosion subsequently decreases, until a kinetic equilibrium is reached where 

all new corrosion products immediately precipitate. 

 

This scheme also holds for H2S, with a global reaction written as: 

 
 2 2Fe H S FeS H    (reaction 3) 

 

and with an intermediate electrochemical reaction producing the precipitable ions 

(Fe2+ and HS-) along with the buffer of the weak acid. However, the solubility of iron 

sulfides is much lower than that of FeCO3, and the kinetics of the precipitation 

reaction is also thought to be faster so that the super-saturation effect is expected to 

have a lower amplitude than in the case of CO2, provided that the corrosion rate is in 

the same range.  

 

Based upon these principles, a kinetic model for CO2 corrosion and pH prediction 

was developed, allowing to calculate the super-saturated pH and corrosion rate for 

various V/S and PCO2 [4,10, 11].  

Compared to the model presented in 2013 [11], improvements were made to 

describe the impact of precipitation on the metal surface. For instance for CO2, the 

evolution with time of the total amount of precipitated FeCO3 is calculated ([FeCO3]), 

and an empirical equation is then used to calculate the corresponding residual active 

metal surface (Surf) (Equation 1).  

 

 Surf (%) = 100 – α x [FeCO3] (Equation 1) 

 

In this equation, α is an empirical parameter, adjusted to experimental results.  

As a consequence, the active surface area decreases as iron precipitates, generating 

a slight decrease of pH. This model is now able to fully represent experimental pH 

transients. It is used in this paper to analyze experimental pH measurements in 

confined test cells, with PCO2 from 1 bar to 45 bar.  

 

 

 

 

 

 



2.2 Experimental verification 

Experimental devices allowing to measure pH in confined and pressurized 

environment were used (Figure 2). In these test cells, the pH electrode is surrounded 

by steel coupons, with a V/S ratio of 0.3 mL/cm². During the test, saturation of acid 

gases is ensured by a continuous bubbling in the solution, and gas flow rate is 

continuously monitored. Internal pressure is maintained by a pressure control valve, 

and is also monitored during all the test. A condenser placed before the pressure 

valve avoids liquid losses. The range of operating conditions covers 1 – 100 bara 

total pressure, and 4 – 100 °C. Gas mixtures containing N2, CO2 and H2S can be 

used.  

 

 (a) 

 

 (b) 

Figure 2: Experimental devices for pH measurements in confined environments at pressure up 

to 10 bara (a) and up to 100 bara (b) 

 



The evolution of in-situ pH with time is illustrated on Figure 3 for different PCO2 from 

1 bar to 45 bar.  
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Figure 3: Long term evolution of pH measured in a confined test cell (V/S = 0.3 mL/cm²) with 

high strength steel wires exposed to 3.5 % NaCl solution at ambient temperature, under 1 to 

45 bara CO2. Comparison with calculated pH transients with different models.  

 

The initial rise of pH is associated with the production of alkalinity due to reaction (1). 

It corresponds to a parallel increase of Fe2+ and HCO3
- concentrations. After a few 

days, pH value reaches a maximum, and starts to decrease. At this stage, the system 

is governed by kinetic equilibrium between iron dissolution and iron carbonate 

precipitation. Since the precipitation of FeCO3 is a slow reaction, this kinetic 

equilibrium corresponds to pH values far above thermodynamic saturation of the 

solution with iron carbonate. For instance, in a 35 g/L NaCl solution at 1 bar CO2, 

saturated pH calculated with Cormed2™ is 4.5, while the experimental value at the 

maximum is close to 5.8. Previous version of the model presented in 2013 [11], was 

already able to predict the pH transient up to this maximum value. At that time, the 

model could not represent the long term pH evolution. It was mentioned however that 

the slow long term decrease of pH was associated with the build-up of iron carbonate 

layer at the metal surface, resulting in a decrease of active corroding surface, hence 

lowering the average corrosion rate. Qualitatively, it automatically induces a 

decrease of pH. In order to capture this effect, the model was then modified with a 

function relating the evolution of active surface with the total amount of precipitated 

iron carbonate (Equation 1). The model was calibrated and then verified with 

experimental data, using a database of more than 20 long term in situ pH 

experiments up to 45 bara CO2. In all cases, the deviation between the model and 

experimental results was less than 0.15 pH units.  

 



As can be seen on Figure 3, the main experimental trends are correctly fitted, 

especially the long term stationary pH. It must be noted that this long term equilibrium 

pHssat corresponds always to a high degree of super-saturation, with + 0.5 pH units 

above saturated values.  

 

In addition, the model also allows to calculate the evolution of corrosion rates with 

time. For the experiments of Figure 3, long term corrosion rates below 10 µm/year 

are predicted, in excellent agreement with the feedback from long term field 

exposures. It is particularly remarkable that even with such low corrosion rates, the 

high level of confinement induces super-saturation effects, with equilibrium pH values 

exceeding the saturated pH by several tenths of units. 

 

The current criteria for steel grade selection and design of flexible pipelines rely on 

similar long term experiments, i.e. pHssat experimentally measured. This pH 

evaluation method still presents a reasonable safety factor, since the real average 

confinement ratio in flexible pipes is ten times lower than in our experiments, which 

should increase the long term super-saturated pH equilibrium. For some specific 

areas where the local confinement is lower, it is still in the same order as in our 

experimental devices, which thus represents a reasonable and safe envelope for real 

operating conditions in the annulus.  

 

3 Conclusions and perspectives 

The annulus of flexible pipelines is a complex corrosive environment. It depends on 

acid gases and water diffusion through polymer sheaths, kinetic equilibrium between 

corrosion of steel surfaces, iron salts precipitation and the subsequent alkalinisation 

of the electrolyte.  

In situ pH is one of the main parameters traditionally used to evaluate the potential 

corrosivity of oil and gas environments. pH measurements were therefore performed 

in specific test cells with a confinement ratio of 0.3 mL/cm² between the volume of 

electrolyte and the exposed steel surface. Total pressure up to more than 100 bar is 

now experimentally accessible, with test gases containing pure CO2 or CO2 / H2S 

mix. 

In this paper, pH transients in CO2 environments at various pressure from 1 bar to 

45 bar and at ambient temperature are presented. pH increases rapidly after 

immersion, then goes through a maximum after a few days, and finally decreases 

slowly until a plateau is reached after several weeks. The final pH values still exceed 

saturated pH by several tenths of pH units. This long term equilibrium is reached 

after more than three weeks in confined test cell, and therefore longer exposure 

periods must be adopted to determine relevant pHssat for real service conditions. At 

room temperature, a minimum test duration of two months is often needed. 

 

A predictive model, derived from the 2013 version, is now able to represent surface 

evolution associated with iron carbonate precipitation. pH evolution with time can be 

calculated. A good fit with experimental data is obtained for conditions up to 45 bara 

of CO2. The model also predicts final corrosion rates below 10 µm/year for the tests 

between 1 and 45 bar CO2 and a confinement of 0.3 mL/cm².  

 



Further work is ongoing to take into account the effects of H2S and temperature into 

the model. 
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