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Summary 

 

Hydrogen diffusion in two low carbon steels with ferrite-pearlite or purely pearlitic mi-

crostructures was studied with hydrogen permeation method. Strong differences in 

hydrogen permeation transients were observed. A much higher time lag for hydrogen 

diffusion is obtained for the purely pearlitic steel, which could not be explained with 

conventional hydrogen diffusion/trapping models. A new model, combining hydrogen 

diffusion/trapping and geometrical tortuosity of microstructure proved much better 

adequacy with experimental results. 

 

1 Introduction 

It is well known that interactions between hydrogen and steel are sensitive to the mi-

crostructure. Many studies relate the impact of microstructure phases (bainite, ferrite, 

pearlite, austenite or martensite) on the hydrogen diffusion and trapping in steel, as 

shown by recent publications [1, 2] on the subject. Major differences are observed for 

steels with different crystal structures. Austenitic steels, with face centred cubic 

(FCC) structure; always exhibit much higher hydrogen solubility and lower diffusivity 

[3] than body centered cubic (BCC) steels. Differences between BCC grades (ferrite, 

bainite, martensite) are usually less pronounced, and associated with different densi-

ties of trapping sites [4] (ferrite – cementite interfaces, dislocations…). In general, 

classical diffusion and trapping models [5-9] correctly describe the behaviour of these 

steels. However, in multi-phases alloys, very few works question the impact of mor-

phology and connectivity of these phases on diffusion process. Recently, Osman 

Hoch et al. demonstrate the importance of grain-boundaries connectivity on the diffu-

sion path of polycrystalline structures [10]. This recent work motivates investigation 

on hydrogen diffusion path of complex pearlitic microstructure. 

 

2 Steels characterization 

In the present work, we studied two carbon steels used as flat wires. Their chemical 

composition is given in Table 1. The only difference between both steels is the car-

bon content which is 0.35 w% for steel A, and 0.7 w% for steel B. As a consequence, 

steel B presents higher mechanical properties with an ultimate tensile stress above 

1000 MPa compared to 800 MPa for steel A.  
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Table 1: Chemical composition of tested steels (weight %) 

 C Si Mn P S Cr Mo Ni Al Cu 

Steel A 0.35 0.22 0.76 0.01 0.005 0.02 <0.005 < 0.02 < 0.03 < 0.02 

Steel B 0.71 0.21 0.72 0.01 0.005 0.02 <0.005 < 0.02 < 0.03 < 0.02 

 

Another major difference is the microstructure. A JEOL JEM2010 transmission elec-

tron microscope (TEM) with an acceleration voltage of 200 kV was used to character-

ize both steels. Sample preparation was done by electrolytic polishing as previously 

described in the literature [11]. TEM show that Steel A is of ferrito-pearlitic type, while 

steel B presents a fine pearlitic microstructure (Fig. 1). TEM micrographs also show 

that the cementite fraction in the pearlite zones of both steels is between 13% and 

19%. However, steel B is totally pearlitic, while steel A contains around 70 % ferrite 

grains. High magnification observations at the appropriate tilt angle allowed us to ob-

serve dislocations. Image analysis of more than 10 different regions for each steel 

was performed to determine the density of dislocations using the intersection meth-

ods [12]. For steel A, the average dislocation density ρ in the ferrite grains is equal to 

8±5 x 1013 m-2 and equal to 1,9±0.7 × 1014 m-2 in pearlitic regions. For steel B, 

which is 100 % pearlitic, the dislocation density was determined around 3,4±1,0 × 

1014 m-2. These values are almost the same for both steels, and result from a high 

straining process during elaboration. 

 

(a)  (b)  

Figure 1: TEM observations of steel A (a) and steel B (b). 

  

 

3 Study of hydrogen diffusion and trapping 

3.1 Experimental set-up 

 

Electrochemical permeation tests were performed with a Devanathan/Stachurski [13, 

14] experimental set-up. Jacketed cells were used ensuring a precise control of tem-

perature at 24±1 °C. Permeation membranes were machined from flat wires of steel 

A or B. Membrane thickness was 2.5 mm and the exposed surface was 0.8 cm². This 

ratio of radius to thickness is too low to avoid side effects [15]. Nevertheless, this 

should not affect the comparison between both steels since the geometry is similar. 

Before each experiment, both faces of the membrane were grinded to SiC paper grit 

4000 then degreased in acetone and dried. A thin palladium coating was then elec-

trodeposited on the exit side of the membrane to ensure a complete oxidation of all 
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hydrogen atoms [11, 16]. A deaerated NaOH 0.1 mol/L solution was used in the de-

tection cell, where hydrogen was oxidized under a fixed potential of 465 mV/SHE 

filled with 1 M KOH electrolyte. It had previously been verified that no secondary oxi-

dation reaction occurred at this potential. At the beginning of each experiment, filling 

the charging cell was only realized after a background oxidation current below 0.1 

µA/cm² was attained. 

The charging cell was filled with a corrosive solution representative of oil production 

environment. It consisted of a 3.5 % NaCl solution saturated with 0.99 bar CO2 and 

0.01 bar H2S at ambient pressure. Sodium bicarbonate was added in order to buffer 

the pH at 4.5.  

Before each test, the charging solution was carefully deaerated to less than 10 ppb 

dissolved O2 by argon bubbling. The charging cell was also purged with inert gas be-

fore introduction of the test solution. Dissolved H2S and CO2 were then kept constant 

by continuous bubbling in the solution during all experiment and the steel surface 

was kept at free corrosion potential. 

 

3.2 Results and discussion 

 

Figure 2 illustrates typical permeation curves for both steels obtained in charging so-

lution at pH 4.5 with 10 mbar H2S and 990 mbar CO2. Although the same corrosion 

potential was measured for both steels (-670 ± 10 mV vs. Ag/AgCl). Permeation tran-

sients showed strong differences between steel A and steel B. The exit delay of hy-

drogen is much higher for steel B, and its steady-state flux is lower than for steel A. 

Several other permeation tests were performed at other pH and H2S partial pressure 

and the same trend was systematically observed. Qualitatively, this trend may be a 

result of a lower hydrogen apparent diffusivity (Dapp) for steel B. According to diffu-

sion – trapping models [7, 9], increasing the number of traps directly results in a de-

crease of Dapp. For ferrite-pearlitic steels, such increase of trap density is often as-

sociated [17] to with local trapping at the cementite/ferrite interphases and disloca-

tions density. 
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Figure 2: Comparison between the experimental data and the best numerical correlation for both 

steels. Taking tortuosity into account for steel B. 
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Permeation transients were therefore analyzed with a diffusion/trapping model [5, 6, 

9, 18] based on McNabb/Oriani equations. In the case of steel A, the numerical mod-

el fits well to experimental data. On the contrary, the behavior of steel B could not be 

correctly represented with this model. Indeed, as illustrated on Figure 2, this model 

strongly underestimates the increase of hydrogen permeation current during the 

transient. For pearlitic steels, it is often considered [19] that cementite acts as a diffu-

sion barrier. Hydrogen diffusion thus proceeds only through the ferrite phase. Due to 

the continuous aspect of cementite bands (Figure 1), a large increase of diffusion 

path is created for steel B. In order to capture this effect [19, 20], a tortuosity parame-

ter (τ) was defined as the ratio between the length of the real hydrogen path and the 

length of the shortest path, i.e., the membrane thickness. 

 

From TEM micrographs, we estimated the average tortuosity of steel B to be be-

tween 20 and 35. Combining geometrical tortuosity with the previous diffusion – trap-

ping model, hydrogen diffusion was modeled with the finite element analysis software 

Comsol Multiphysics, associated with the numerical computing environment 

MATLAB. For hydrogen, diffusion was considered to proceed only by lattice diffusion 

in the ferrite phase, with a path increased by tortuosity effect. The diffusion equations 

used are based on Fick’s laws. In order to account for hydrogen traps, modifications 

of diffusion equations were applied, identically as in the work of McNabb, Foster, Ori-

ani and Krom [5, 6, 7], later modified by several authors [9, 18, 21, 22, 23].  

A free triangular mesh was used for the calculations, and the problem was solved 

using the Parallel Sparse Direct And Multi-Recursive Iterative Linear Solvers pack-

age PARDISO [24]. The thickness of the membrane was e = 2.5 mm. The lattice 

sites density NL was taken equal to 2×105 mol/m3 [7, 8]. A trap binding energy of -

0.3 eV was used [9, 18], in order to consider deep hydrogen trapping. 

 

The effect of tortuosity on permeation transients is illustrated on Figure 3 for different 

tortuosity values. Tortuosity raises drastically the hydrogen delay to exit the mem-

brane, and the steady-state flux is also strongly decreased. To emphasize the effects 

of the tortuosity, we present in Figure 4 the variation of the normalized exit-side delay 

of permeation curves as a function of the square of tortuosity obtained using FEM 

calculation. A linear relation clearly appears between both independently to the set of 

diffusion coefficient and trapping parameters. In other words, t10% is the sum of the 

delay due to hydrogen trapping and the delay due to the tortuosity. This last result 

provides a simple method to extract diffusion coefficient from experimental data con-

sidering tortuosity of diffusion path. 
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Figure 3: Effect of the tortuosity of hydrogen path on a permeation transient (other parameters 

equals). 
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Figure 4: Correlation between the standard time lag and the time lag of a tortuous material depending 

on the tortuosity value 
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4 Conclusion 

We have considered hydrogen diffusion in two different BCC steels, with ferrite-

pearlitic or purely pearlitic microstructures. Both steels exhibited strong differences in 

permeation transients, with a much larger time lag for the pearlitic grade. Hydrogen 

diffusion behavior of the ferrito-pearlitic steel could well be modeled by usual diffu-

sion-trapping models from the literature. On the contrary, these models were not ca-

pable to represent correctly the behavior of steel B. A new model, including an in-

crease of hydrogen diffusion path associated with the pearlitic microstructure was 

proposed. Numerically, we observed a remarkable correlation with the experimental 

permeation data, non-attainable using only a classic diffusion and trapping model. 

This new model allows determining more accurately the effective hydrogen diffusion 

coefficient in the steel, as well as the trap density and hydrogen subsurface concen-

tration. 
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