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Abstract 

In standard microeconomic theory, short-run and long-run marginal costs are equal for 
production equipment with adjusted capacity. When the production of joint products from 
interdependent equipment is modeled with a linear program, as in oil refining, this equality 
is no longer verified. The short-run marginal cost then takes on a left-hand value and a 
right-hand value which generally differ from the long-run marginal cost. In this article, we 
demonstrate and interpret the relationship existing between long-run marginal cost and 
short-run marginal costs for a given finished product. That relationship is simply expressed 
as a function of marginal capacity adjustments (determined in the long run) and marginal 
values of capacities (determined in the short run).  
 
JEL classification numbers: D20, C61 
 
Keywords: microeconomics, marginal cost, linear programming, energy economics. 
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1. Introduction 
 

1.1 The standard microeconomic theory 

When one considers an activity involving the production of a single product, 
microeconomic theory tells us that with adjusted capacity, short-run and long-run marginal 
costs are equal under certain conditions. To take a specific example, consider a construction 
project for a facility of which the size (i.e. the production capacity) needs to be determined. 
We assume that this size can be represented by a continuous variable. We also assume that 
the annual production cost for a given size, i.e. the short-run annual cost, is a continuous 
function that can be derived with respect to the quantity of good produced over the year. If 
the marginal cost begins to increase at a certain level of production, the curves representing 
the annual cost for facilities of various sizes generally take the shape of those drawn by the 
dashed lines on the first graph of Figure 1. The curve representing the long-run annual cost 
is then the envelope curve (shown by a solid line) of the short-run cost curves. The second 
graph of Figure 1 reveals, in the case of a rising marginal cost over the long run (long 
dashed lines), the usual shape of average cost curves over the short run (dashed lines) and 
the long run (solid line), as well as curves representing short-run and long-run marginal cost 
(it should be noted that marginal cost can decrease over the long-run in the presence of 
economies of scale). Under the usual conditions of continuity and differentiability, these 
properties are well known (e.g. see Boîteux 1960). 
 
LAC: long-run average cost; LMC: long-run marginal cost; ACk: short-run average cost with a 
production facility of size Ek; MCk: short-run marginal cost with a production facility of size Ek. 
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Figure 1. Equality of short-run and long-run marginal costs in standard microeconomic theory. 
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1.2 Purpose of this paper 
 
In this article, we analyze the case of the production of joint products using various types of 
interdependent equipment when the production system is modeled via a linear program. Our 
objective is to establish the relationship between short-run marginal costs and long-run 
marginal costs in this case. 
 
A first example of such a production system is given by the petroleum refining industry: the 
main variables represent the quantities of crude oil to be processed and the various flows of 
intermediate products that characterize the operation of the production units (atmospheric 
and vacuum distillation, reforming, cracking, etc.) and the composition of the finished 
products (gasoline, automotive diesel, heating oil, heavy fuel oil, etc.). The main constraints 
are material-balance equations (which are the most common), product-quality specification 
equations (sulphur content, gasoline octane number, etc.) and demand equations for finished 
products (quantities produced, increased in some cases by imported quantities and 
decreased by exported quantities, greater than or equal to demand). In a short-term 
management model, there are also capacity equations limiting the feedstock to be processed 
in each of the units. The economic function only includes operating costs (decreased where 
applicable by revenues generated by the sale of certain products). In a long-term investment 
model, variables represent the capacities of the units to be built. If we are dealing with a 
dynamic model extending over several periods, (linear) investment costs must be associated 
with these capacity variables, and the economic function is then a total cost discounted over 
a long period. If we are dealing with a “static” long-term model, the model is representative 
of a given time horizon. An equivalent annual investment cost is then associated with each 
capacity variable (initial investment divided by the sum of the discount factors). The 
economic function to be minimized is then an equivalent annual cost, which results from the 
sum of the operating cost and equivalent annual investment costs. 
 
Yet another example is supplied by an electrical production system using various types of 
power plants (nuclear, coal, gas turbine, etc.). The main variables are the powers supplied 
by the different types of plant for the various hourly/seasonal periods (peak periods during 
winter weekdays, off-peak periods during summer weekends, etc.). The main constraints are 
the demand equations expressing the requirement to supply the power demanded for each 
hourly/seasonal period (and for each outcome if the demand is randomized). Anderson 
(1972) offers a general description of this type of model. 
 
In practice, the models used for short-term management (particularly in the very short run), 
are often profit maximization programs, with the price of products being fixed and assumed 
to be given by the market. It is always possible, however, by taking certain precautions 
where appropriate, to make the transition from such a profit-maximization formulation to a 
cost- minimization formulation, subject to the constraint of satisfying a demand for finished 
products. It is this latter formulation that will be used in the remainder of this article. 
 
We will therefore consider a system composed of a variety of equipment, called production 
units, producing several joint products. The interdependencies between the units are 
represented via a linear programming model. We distinguish between a short-term program, 
for which the capacity of the units is assumed to be fixed, and a long-term program for 
which a certain number of capacities are variables to be determined. Equivalent annual 
investment costs are then associated with these variables. For purposes of simplification, we 
will present the analysis by referring to a static long-term model representative of a given 
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time horizon. Over both the short- and long-term, we will consider a cost-minimization 
problem under demand constraints. 
 
1.3 Preliminary remarks on marginal costs 
 
We will begin with some general remarks. Marginal production costs are equal to the dual 
variables associated with demand constraints, at least if there is no degeneracy. When one 
varies the demand for a given product, while keeping the demand for other products 
unchanged, the marginal cost of that product is stable as long as the optimal solution 
corresponds to the same basic solution. The curve representing the marginal cost as a 
function of the quantity produced is therefore a stair-step curve. This is true for both the 
short-run marginal cost and the long-run marginal cost. 
 
Let's consider the optimal solution of a long-term problem, determined by taking into 
account  a fixed demand ib  for each product i. This solution gives the optimal value for the 
capacities to be built for the various units. Now set these capacities at their optimal values. 
The short-term program thus obtained supplies the values for the short-run marginal costs 
and, in more general terms, allows us to trace the short-run marginal cost of a product as a 
function of the demand for that product. The short-run marginal cost curve for a product i 
intersects the long-run marginal cost curve for a demand equal to ib , with the capacities 
consequently being adjusted. This is in line with standard microeconomic theory.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Short-run and long-run marginal costs of product i in linear programming, with capacity adjusted to 
demand bi. 
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The distinguishing feature of a production system represented by linear programming is 
related to the stair-step profile of the curves represented in Figure 2. In general, the long-run 
marginal cost is stable in the neighborhood of ib  while one observes a discontinuity of the 
short-run marginal cost.  
 
In fact, a long-term problem can be converted into a short-term problem by adding 
constraints setting the capacities of the units, requiring that the feedstock processed by a 
unit, or its production, be less than the capacity defined by the optimal solution of the long-
term program. These constraints, or at least a certain number of them, are binding at the 
optimum of the short-term program, which is then degenerate. The objective-function value 
of the program is no longer differentiable in ib . Nevertheless, it has a sub-differential and 
directional derivatives, which explains the discontinuity of the short-run marginal cost 
observed at ib  in figure 2. 
 
For each finished product, the short-run marginal costs at the left side and right side of the 
anticipated demand for which the capacity is adjusted are then different and given by 
components of the dual variables vectors. The literature on degeneracy supplies the criteria 
for selecting these components in the presence of multiple dual solutions (Aucamp and 
Steinberg 1982, Gal 1986 and Greenberg 1986). Consequently, we must consider a left-
hand marginal cost and a right-hand marginal cost for each finished product. 
 
The objective of this article is to study the relationship between short-run marginal costs 
and long-run marginal costs. The analysis relies on the marginal values of capacities, equal 
to the dual variables associated with the capacity constraints introduced in the short-term 
model. In theory, these variables are negative: in the short run, an increase in available 
capacity should not generally result in an increase in the operating cost. In order to simplify 
the presentation of results, we assume throughout this article that the marginal values of 
capacities are all negative. 
 
1.4 Breakdown of long-run marginal costs 
 
We use the breakdown of long-run marginal costs in linear programming proposed by 
Pierru and Babusiaux (2004): the long-run marginal cost of a given finished product results 
from the sum of a marginal operating cost and a marginal equivalent investment cost. To 
obtain it, one simply breaks down the objective function into two elementary economic 
functions1. The marginal operating cost (respectively the marginal equivalent investment 
cost) is equal to the variation of the elementary function representing the operating cost 
(respectively the equivalent annual investment cost) for an infinitesimal increase in finished 
product demand. It has to be noted that the marginal equivalent investment cost is equal to 
the marginal capacity adjustment times the equivalent annual investment cost per unit of 
installed capacity. 
 
We will adopt this breakdown with the comment that the equivalent annual investment cost 
taken into account can result from the sum of the investments in the various units whose 

                                                 
1 With each elementary objective function these authors associate a vector composed of “elementary dual 

variables”; we will not review the method for breaking down long-run marginal costs here. 
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capacities are to be optimized. In addition to the operating cost, we will therefore associate 
an elementary function with each capacity variable. The long-run marginal cost of a product 
can therefore be broken down into a marginal operating cost and as many marginal 
equivalent investment costs as there are capacity variables. To eliminate any ambiguity, we 
specify that for a given finished product the term “marginal operating cost” always refers in 
this article to a change in the operating cost determined in the long-term model. 
 
The following section introduces the mathematical formulation of the model and the 
notations used. The results are then presented in the form of propositions. For reasons of 
clarity, in section 3, we first state and prove the propositions when the model only includes 
a single capacity variable. We then state and prove those pertaining to the general case in 
section 4. 
 
 2 Notations and mathematical formulation of the model 
 
To illustrate the problem under study, we will consider a static long-term linear-
programming model and the corresponding short-term linear-programming model. The 
long-term model is used to define the optimal capacities to be built to meet a demand vector 
b and provides the long-run marginal cost of each finished product, as well as its breakdown 
into marginal operating cost and marginal equivalent investment costs. The short-term 
model determines the optimal production program for demand b, assuming that capacities 
are set at the values defined by the long-term model. This short-term model is used to 
calculate the marginal values of the capacities, as well as the short-run marginal costs (on 
the left-hand and right-hand of demand ib ) for each finished product i. Although the 
problem studied relates to a linear programming model, we will adopt a formulation that 
takes its inspiration from the lagrangian duality (which facilitates the formal application of 
the envelope theorem). 
  

2.1 Long-term model 
 

We consider a capacity variable and a feedstock variable for each equipment. A feedstock 
variable has to be smaller or equal to the corresponding capacity variable (plus a possibly pre-
existing capacity). With this formulation, the operating cost (associated with the feedstock 
variable) can be distinguished from the equivalent annual investment cost (associated with the 
capacity variable) in the objective function.  
 

We adopt the following notations, considering that the long-term problem includes m 
capacity variables:  

 
b: vector formed from the demanded quantities of n finished products (the quantity of 
product i demanded is notated ib ); 
x : vector of size q formed from the variables which appear in both long-run and short-run 
primal problems;  

fx : subvector of x  whose components are the m feedstock variables; 

( )1 2, ,..., mk k k k= : vector formed from the m capacity variables in the long-term problem; 

( ),x k  thus represents the entire set of variables of the long-term problem; 
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( )1 2, ,..., me e e e= : vector formed from the equivalent annual investment costs per unit of 

installed capacity, building pk  ( { }1,2,...,p m∈ ) involves an equivalent annual investment 

cost equal to p pe k ; 
 
The long-term problem is written as follows: 
 

, ,

. .

f

Min v x e k

x X

s t Ax b

x k c

+

� ∈
� =�
� − ≤�

 

 
Where: A is an n q×  matrix, Ax b=  represents the set of demand constraints; X  is a 
closed convex set defined as the intersection of linear constraints (equalities and 
inequalities), corresponding to material balance equations, product-quality specifications, 
requirements on the signs of variables ... c is a vector whose components are the pre-
existing capacities of the m types of equipment considered; v is a vector of size q whose 
components are the unit costs associated with the variables in x; .,.  denotes the inner  
product of two vectors. 
 
The value of this long-term problem, considered as a function of the demand for finished 
products, is notated ( )V b . We assume that the optimal solution is non-degenerate; the basic 

solution is thus unchanged in the neighborhood of b. ( )V b  is therefore continuously 

derivable. We will let ( )il b  represent the long-run marginal cost of the product i: 

( ) ( )i
i

V
l b b

b
∂=
∂

. It is equal to the dual variable associated with the demand constraint for 

that product. 
 
The value of k at the optimum of the long-term problem is denoted ( )k̂ b , with 

( ) ( ) ( ) ( )( )1 2
ˆ ˆ ˆ ˆ, ,..., mk b k b k b k b= . A change in the demand for finished product i requires a 

marginal capacity adjustment equal to 
ˆ

p

i

k

b

∂
∂

 in order for the pth capacity to remain adjusted. 

This marginal capacity adjustment generates a marginal equivalent investment cost equal to 
ˆ

p
p

i

k
e

b

∂
∂

.  

 
2.2 Short-term model 
 
The short-term problem, derived from the long-term problem introduced in the previous 
subsection, is written as follows: 
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( )

,

. .
ˆ

f

Min v x

x X

s t Ax b

x c k b

� ∈
�� =�
� ≤ +��

 

 
We introduce two vectors of dual variables, associated with two sets of constraints in this 
short-term problem: 

( )1 2, ,..., ny y y y=  vector formed from the dual variables associated with the demand 

constraints in the short-term problem (where iy  ( { }1,2,...,i n∈ ) is the dual variable 
associated with the demand constraint for product i); 

( )1 2, ,..., mu u u u= : vector formed from the dual variables associated with capacity 

constraints in the short-run (where pu  ( { }1,2,...,p m∈ ) is the dual variable associated with 
the pth-capacity constraint). 
 
2.3 Construction of a "short-run cost function with continuously-adjusted capacity"  
 
Let W be a function correctly defined in a neighborhood of b, representing the value of the 
short-term program when the capacity is always adjusted. W  is equal to V (the long-term 
and short-term problems have the same optimal solution) less the sum of the equivalent 
annual investment costs: 

 
1

ˆ
m

p p
p

W V e k
=

= −�   

     (1) 
W, which we will call a “short-run cost function with continuously-adjusted capacity”, is 
everywhere equal to the part of the objective function representing operating costs in the 
long-term program (i.e. the elementary function associated with operating costs). As W is 
equal to a difference of differentiable functions (assuming that the long-term solution is 
non-degenerate), W is itself differentiable in b. This comment is particularly important for 
the proofs of the propositions stated in the article. 
 
2.4 Lagrangian formulation of the problem 
 
Where ˆ, , , ( )fL v x y b Ax u x c k b= + − + − −  denotes the usual Lagrangian constructed 

from the short-term program, we have: 
 

 ( ) ( )
, 0

ˆmax min , , , ( ),
x Xy u

W b L x y u k b b
∈≥

=        

   (2) 
If we set ( ) ( )( ) ( )( )ˆ ˆ, , , , , min , , , ,

x X
L x y u y u k b b L x y u k b b

∈
= , the equation (2) can be rewritten 

as follows: 
 

 ( ) ( )( )
, 0

ˆmax , , , , ( ),
y u

W b L x y u y u k b b
≥

=       

    (3) 
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Let ( )*Y b  denote the set of solutions ( ),y u  of the short-term dual program: 

( ) ( )( )( )*

, 0

ˆmax min , , , ,
x Xy u

Y b Arg L x y u k b b
∈≥

=  

( )*Y b  is not a singleton due to the degeneracy of the optimal solution (there are several 
vectors of dual variables and thus several saddle points). L  thus possesses partial 
directional derivatives in ib  and each product has two short-run marginal costs. Where 

( )is b+  denotes the right-hand short-run marginal cost of the product i and ( )is b−  its left-
hand short-run marginal cost, we encounter the traditional results of the degeneracy (see for 
instance Milgrom and Segal 2002): 
 

( )
( ) ( ) ( ) ( )* *, ,

max maxi i
y u Y b y u Y b

i i

L L
s b y

b b

+
+

∈ ∈

∂ ∂= = =
∂ ∂

 

( )
( ) ( ) ( ) ( )* *, ,

min mini i
y u Y b y u Y b

i i

L L
s b y

b b

−
−

∈ ∈

∂ ∂= = =
∂ ∂

 

 
Similarly, if  the vector µ   (with ( )1 2, ,..., mµ µ µ µ= ) is formed from the marginal values of 
the capacities in the short run, as defined in the introduction, we have: 
 

( ) ( ) ( ) ( ) ( ) ( )* * *, , ,
min min maxˆ ˆp p p

y u Y b y u Y b y u Y b
p p

L L
u u

k k
µ

−

∈ ∈ ∈

∂ ∂= = = − = −
∂ ∂

 

 
where pµ  ( { }1,2,...,p m∈ ): marginal value of the pth capacity set at ( )ˆ

p pc k b+  in the 
short-term problem. 
 
3 Specific case: model with a single capacity variable 
 
3.1 Statement of the propositions 
 
Our results can be summarized by the following propositions, stated for a given finished 
product i: 
 

 (i)  the left-hand short-run marginal cost is equal to the marginal operating cost if 
the marginal capacity adjustment is positive; 
(ii) the right-hand short-run marginal cost is equal to the marginal operating cost if the 
marginal capacity adjustment is negative; 
(iiia)  the difference between the two short-run marginal costs is equal to the 
absolute value of the product of the marginal value of capacity by the marginal capacity 
adjustment; 
(iiib)  if one considers two distinct finished products: the ratio of the 
differences between right-hand short-run marginal cost and left-hand short-run marginal 
cost is equal to the absolute value of the ratio of the marginal equivalent investment 
costs (or, which amounts to the same thing, to the absolute value of the ratio of the 
marginal capacity adjustments). 
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These propositions are proved in the following section. Proposition (iiib) follows directly 
from (iiia). We would remark that the first two propositions are quite intuitive, since, in the 
long-term model, the marginal operating cost represents the change in the operating cost 
when an additional ton of the product in question must be produced.  
 
3.2 Proof of the propositions 
 
The long-term model includes only a single capacity variable: k, ( )k̂ b , e and µ  are 
therefore scalars. A change in the demand for finished product i requires a marginal 

capacity adjustment equal to 
ˆ ˆ ˆ

i i i

k k k
b b b

+ −∂ ∂ ∂= =
∂ ∂ ∂

 in order for the capacity to remain adjusted. 

The marginal equivalent investment cost is equal to 
ˆ

i

k
e

b
∂
∂

.  

As W is differentiable in b, its left-hand and right-hand partial derivatives with respect to ib  
are equal. We will distinguish the two following cases. 
 
3.2.1 A product with a positive marginal capacity adjustment 
 
Consider a finished product i for which the marginal capacity adjustment is positive, i.e., 

ˆ
0

i

k
b

∂ ≥
∂

. By applying the envelope theorem to the equation (3) we obtain the two following 

equations: 
 

 ( ) ( )
ˆ ˆ

( )ˆ ˆi
i i i i i

W W L L k L k
b b s b

b b b b bk k

+ + − + −
+∂ ∂ ∂ ∂ ∂ ∂ ∂= = + = +

∂ ∂ ∂ ∂ ∂∂ ∂   

  (4)    

 ( ) ( )
ˆ ˆ

( )ˆ ˆi
i i i i i

W W L L k L k
b b s b

b b b b bk k

− − + − +
−∂ ∂ ∂ ∂ ∂ ∂ ∂= = + = +

∂ ∂ ∂ ∂ ∂∂ ∂    

  (5) 

Equation (4) can be analyzed as follows: since 
ˆ

0
i

k
b

∂ ≥
∂

, an increase in demand for product i 

keeps binding the capacity constraint in the short-run, with ˆ
L

k
µ

−∂ =
∂

. Conversely, in 

equation (5), a decrease in demand for product i results in the capacity constraint no longer 

being binding, and consequently 0ˆ
L

k

+∂ =
∂

 . Equations (4) and (5) thus give us: 

 

 ( )
ˆ

( ) ( )i i
i i

W k
b s b s b

b b
µ+ −∂ ∂= + =

∂ ∂       

   (6) 
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Furthermore, by differentiating equation (1) we obtain: 
 

 ( ) ( ) ( ) ( ) ( )
ˆ ˆ

i
i i i i

W V k k
b b e b l b e b

b b b b
∂ ∂ ∂ ∂= − = −
∂ ∂ ∂ ∂      

  (7) 

Equation (7) indicates that ( )
i

W
b

b
∂
∂

 is equal to the marginal operating cost. 

By combining equations (6) and (7), we obtain: 

( ) ( ) ( ) ( )
ˆ ˆ

i i i
i i

k k
l b s b e s b e

b b
µ+ −

+ −

∂ ∂= + + = +
∂ ∂  

 
This result is crucial since it explains the transition from the long-run marginal cost to short-
run marginal costs. And finally:  
 

 ( ) ( ) ( ) ( )
ˆ ˆ ˆ

i i i
i i i

k k k
s b l b e l b e

b b b
µ µ+ � �∂ ∂ ∂= − + = − −� 	� 	∂ ∂ ∂
 �

     

  (8) 

 ( ) ( )
ˆ

i i
i

k
s b l b e

b
− ∂= −

∂
         

       (9) 
Equation (9) proves the proposition (i): the left-hand short-run marginal cost is equal to the 
marginal operating cost (i.e., the long-run marginal cost less the marginal equivalent 
investment cost). 
 
3.2.2 A product with a negative marginal capacity adjustment 
 
Now consider a product j for which the marginal capacity adjustment is negative, i.e., 

ˆ
0

j

k
b

∂ ≤
∂

. An increase in the demand for this product results in the capacity constraint being 

no longer binding in the short run. Conversely, a decrease in this demand would keep this 
constraint binding. By applying the envelope theorem, we thus obtain: 
 

   ( ) ( )
ˆ ˆ

( )ˆ ˆj
j j j j j

W W L L k L k
b b s b

b b b b bk k

+ + + + +
+∂ ∂ ∂ ∂ ∂ ∂ ∂= = + = +

∂ ∂ ∂ ∂ ∂∂ ∂
       (10) 

   ( ) ( )
ˆ ˆ

( )ˆ ˆj
j j j j j

W W L L k L k
b b s b

b b b b bk k

− − − − −
−∂ ∂ ∂ ∂ ∂ ∂ ∂= = + = +

∂ ∂ ∂ ∂ ∂∂ ∂
       (11) 
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By proceeding as in the earlier instance, we finally obtain via equations (7), (10) and (11): 

     ( ) ( )
ˆ

j j
j

k
s b l b e

b
+ ∂= −

∂
     

             (12) 

      ( ) ( ) ( ) ( )
ˆ ˆ ˆ

j j j
j j j

k k k
s b l b e l b e

b b b
µ µ− � �∂ ∂ ∂= − + = − −� 	� 	∂ ∂ ∂
 �

        (13) 
 

Equation (12) proves the proposition (ii). Equations (8), (9), (12) and (13) are summarized in 
Table 1. 
 
Table 1: short-run marginal costs 
 

 Left-hand short-run marginal cost Right-hand short-run marginal 
cost 

 
marginal equivalent investment cost 0≥
 

 

 
marginal operating cost  

 
marginal value of capacity

marginal operating cost
 marginal capacity adjustment

+
×

 
 

 
marginal equivalent investment cost 0≤
 

 
marginal value of capacity

marginal operating cost - 
 marginal capacity adjustment×

 

 
marginal operating cost  

 
For any finished product i, the proposition (iiia) is immediately deduced from the preceding 
equations: 

 ( ) ( )
ˆ

i i
i

k
s b s b

b
µ+ − ∂− =

∂
 

Which can be written: 
 

right-hand short-run marginal cost left-hand short-run marginal cost 

= marginal value of capacity marginal capacity adjustment

−
×

 

 
For a given finished product, the difference between the two short-run marginal costs is 
therefore proportional to the marginal equivalent investment cost assigned to this product. 
We do in fact find that for any product i: ( ) ( )i is b s b+ −≥  . 
If we consider two finished products i and j, we have: 

( ) ( )
( ) ( )

ˆ
marginal equivalent investment cost of product 

ˆ marginal equivalent investment cost of product 
i i i

j j

j

k
s b s b b i
s b s b jk

b

+ −

+ −

∂
− ∂= =
− ∂

∂
 

 
This equation proves the proposition (iiib): the ratio of the differences of short-run marginal 
costs is equal to the absolute value of the ratio of the marginal equivalent investment costs. 
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4. General case: model with several capacity variables 
 
4.1 Statement of the propositions 
 
Let us consider a given finished product i. Let iZ +  denote the set of capacity variables for 

which the marginal equivalent investment cost associated with product i is positive. iZ −  
then denotes the set of capacity variables for which the marginal equivalent investment cost 
associated with product i is negative. We can state the following propositions: 
 
 (j)  the left-hand short-run marginal cost is given by the following formula: 

( )
-

marginal operating cost - marginal capacity adjustment marginal value of capacity
iZ

×�  

 (jj)  the right-hand short-run marginal cost is given by the following formula: 
( )marginal operating cost - marginal capacity adjustment marginal value of  capacity

iZ +

×�  

  (jjj)  the difference between the two short-run marginal costs is equal to: 

-

marginal capacity adjustment marginal value of capacity
i iZ Z ++

×�  

 
 4.2 Proof of the propositions 
 
The long-run marginal cost of a given finished product i is broken down into the sum of 

1m +  terms: 
 - the marginal operating cost, 
 - m marginal equivalent investment costs. 
 
Without loss of generality, we will assume that the marginal equivalent investment costs 
corresponding to the first z capacity variables are positive and that those corresponding to 
the other m z−  are negative. In other terms, the set of the first z capacity variables forms 

iZ + . The marginal capacity adjustments are as follows: 

  ( )
ˆ

0p

i

k
b

b

∂
≥

∂
 for { }1,2,...,p z∈  

 ( )
ˆ

0p

i

k
b

b

∂
≤

∂
for { }1, 2,...,p z z m∈ + +  

Following the same line of reasoning as was used in the specific instance of a single 
capacity constraint, we obtain: 
 

 ( )
1 1

ˆ ˆ
( ) ( )

z m
p p

i p i p
p p zi i i

k kW
b s b s b

b b b
µ µ+ −

= = +

∂ ∂∂ = + = +
∂ ∂ ∂� �    

    (14) 
Moreover, by differentiating equation (1) we have: 
         

 ( ) ( ) ( )
1

ˆm
p

i p
pi i

kW
b l b e b

b b=

∂∂ = −
∂ ∂�        

     (15) 
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As previously, ( )
i

W
b

b
∂
∂

 is equal to the marginal operating cost. 

By combining equations (14) and (15), we obtain: 
 

 ( )
1 1

ˆ ˆ
( )

m m
p p

i i p p
p p zi i

k k
s b l b e

b b
µ−

= = +

� �∂ ∂
= − −� 	
� 	∂ ∂
 �

� �     

     (16) 
     

 ( )
1 1

ˆ ˆ
( )

m z
p p

i i p p
p pi i

k k
s b l b e

b b
µ+

= =

� �∂ ∂
= − −� 	
� 	∂ ∂
 �

� �      

   (17) 
 
Equations (16) and (17) prove the propositions (j) and (jj). By combining these two 
equations, we obtain: 

1 1

ˆ ˆ
( ) ( )

m z
p p

i i p p
p z pi i

k k
s b s b

b b
µ µ+ −

= + =

∂ ∂
− = −

∂ ∂� �  

 
Or (assuming that the marginal values of capacities are negative):  
 

 
1

ˆ
( ) ( )

m
p

i i p
p i

k
s b s b

b
µ+ −

=

∂
− =

∂�         

    (18) 
Equation (18) proves the proposition (jjj). 
 
 
5. Conclusion: economic interpretation 
 
In conclusion, we will emphasize the economic interpretation of the results obtained, 
formulated by the propositions in section II. We will first consider the specific case of a 
model with only one capacity variable.  
 
Take the example of a finished product for which the marginal equivalent investment cost is 
positive. The right-hand short-run marginal cost of this product is given by the right-hand 
term of equation (8) which represents the sum of two terms. The first term is equal to the 
marginal operating cost (i.e. the cost of the optimal change over the long run in inputs 
which remain variable over the short run). The second term is equal to the marginal 
capacity adjustment (i.e. the additional capacity required in the long run to produce an 
additional unit of the finished product) multiplied by the marginal value of the capacity in 
the short run. Since one cannot have this additional capacity in the short term, a cost 
premium, equal to this additional capacity multiplied by the marginal value of the capacity, 
is generated. Conversely, the left-hand short-run marginal cost of this product is just equal 
to the marginal operating cost. In fact, in the long run, increasing the production of the 
finished product, to the point of meeting anticipated demand, requires having additional 
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capacity. In the short run, however, this additional capacity is available (since the capacity 
was set in relation to anticipated demand). As a result, no cost premium is generated. 
 
A similar analysis can be made for a product with a negative marginal equivalent 
investment cost. Thus, the left-hand short-run marginal cost is less than the marginal 
operating cost since, in the short run, producing more entails a relaxation of the capacity 
constraint thereby saving cost.  
 
It is interesting to note that in the specific case in which the absolute value of the marginal 
value of capacity is equal to the equivalent annual investment cost per unit of installed 
capacity, each finished product has a short-run marginal cost equal to the long-run marginal 
cost (the right-hand cost for products for which the marginal equivalent investment cost is 
positive, and the left-hand cost for the others). 
 
This type of analysis is also applicable in the general case of models with several capacity 
variables. The marginal operating cost is then increased by the sum of additional costs 
incurred (for the right-hand short-run marginal cost) or decreased by the sum of costs saved 
(for the left-hand short-run marginal cost). 
 
In addition to their theoretical interest, these results, which complement traditional 
microeconomic theory, can be quite useful in practice. There are numerous constraints and 
variables in the field of oil refining. Apart from extreme situations, the number of steps 
comprising marginal cost curves is such that the curves are "smoothed" and are not far 
removed from those of traditional microeconomic theory. However, for runs with highly-
binding capacities, the “jumps” in marginal costs can be significant. This is all the more true 
for peak demand in the electricity sector, where power cannot be stockpiled. A better 
comprehension of marginal costs should thus serve as a valuable aid for market power 
analysis.  
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