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Abstract

In this paper, we study how uncertainties weighing on the climate system impact the optimal
technological pathways the world energy system should take to comply with stringent mitigation
objectives. We use the TIAM-World model that relies on the TIMES modelling approach. Its
climate module is inspired by the DICE model. Using robust optimization techniques, we assess
the impact of the climate system parameter uncertainty on energy transition pathways under
various climate constraints. Unlike other studies we consider all the climate system parameters
which is of primary importance since: (i) parameters and outcomes of climate models are all
inherently uncertain (parametric uncertainty); and (ii) the simplified models at stake summarize
phenomena that are by nature complex and non linear in a few, sometimes linear, equations so
that structural uncertainty is also a major issue. The use of robust optimization allows us to
identify economic energy transition pathways under climate constraints for which the outcome
scenarios remain relevant for any realization of the climate parameters. In this sense, transition
pathways are made robust. We find that the abatement strategies are quite different between
the two temperature targets. The most stringent one is reached by investing massively in carbon
removal technologies such as bioenergy with carbon capture and storage (BECCS) which have
yields much lower than traditional fossil fuelled technologies.
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1. Introduction

According to the Intergovernmental Panel on Climate Change (Stocker et al., 2013), anthro-
pogenic greenhouse gas (GHG) emissions, such as carbon dioxide (CO3) emissions from the
combustion of fossil fuels, play an important role in the warming of the climate system. This
global warming and the associated climate changes pose important threats to ecosystems and
human societies (IPCC, 2014). To cope with these threats, a possible strategy is to reduce
GHG emissions, the so-called mitigation approach'. The latter has been put forward by the
Paris Agreement (United Nations, 2015) to the United Nations Framework Convention on Cli-
mate Change (UNFCCC), which calls for a strong reduction in GHG emissions to limit global
temperature rise to “well below’ 2 °C, with an aim to limit the increase to 1.5 °C.

To design climate mitigation policies, and especially to analyze energy transition pathways
ensuring a strong abatement of GHG emissions, one may follow an integrated assessment (IA)
approach. The latter typically combines the socio-economic elements that drive GHG emissions
with the geophysical and environmental elements that determine climate changes and their im-
pacts. Integrated assessment models (IAMs) are computational tools to perform IA. Examples
of such models include: BaHaMa (Bahn et al., 2015), DICE (Nordhaus, 2014), FUND (Anthoff
and Tol, 2013), MERGE (Manne et al., 1995), PAGE (Hope, 2006) and TIAM-World (Loulou
and Labriet, 2008).

These TAMs operate under different paradigms (e.g., bottom-up or top-down, optimization or
simulation, ...). Furthermore, they specifically vary with respect to the level of modelling details
for the mitigation options. At both ends of the spectrum, DICE aggregates (following a top-down
philosophy) all mitigation options into a single cost function, whereas TIAM-World offers a very
detailed bottom-up representation of the energy sector with thousands of energy technologies
following the TIMES paradigm of the International Energy Agency. This large variety of TAMs
used, along with our current imperfect knowledge of all the climate change mechanisms, yield
sometimes very different climate policy recommendations. For instance, Stern (2007) has advo-
cated using PAGE for immediate actions to abate GHG emissions. While, conversely, Nordhaus
(2008), with his DICE model, has reached the conclusion that immediate and massive actions
are not necessary.

This lack of robustness across models leads some economists to disregard the use of current
IAMs (Pindyck, 2013; Stern, 2013). It is indeed undeniable that the long-term energy-economy-
climate outlook provided by current IAMs is clouded with a great degree of uncertainty that
may deeply affect the relevance of the policy analyses performed and the validity of the policy
recommandations formulated. The source of this uncertainty is multiple (see for instance van
Asselt and Rotmans, 2002). Moreover, even small variations in data can impact feasibility or
optimality properties of a given solution (Ben-tal and Nemirovski, 2000). It is thus important to
make uncertainty a core feature of long-term climate policy analyses using TAMs.

Several approaches have been followed to address uncertainties in TAMs, in particular: de-
terministic multi-scenario analysis, sensitivity analysis and Monte-Carlo simulations, stochastic
programming and stochastic control. These approaches are quite useful but all have drawbacks.
Sensitivity analysis and Monte-Carlo simulations make way for the investigation of the impact
of particular parameters, but do not provide unambiguous hedging strategies. Deterministic
multi-scenario analysis results are also difficult to interpret as models are run in a deterministic
way with little possibility to probabilize the scenario occurrence. The stochastic programming
drawback is that probability distributions (eventually parameterized) have to be defined over

L Alternative strategies are adaptation to climate change impacts and the use of geoenginering measures.



the whole tree and that conclusions might be sensitive to the choice of scenario and branching
scheme. Moreover, stochastic programming may considerably increase the size of the problem to
be solved, leading quickly to excessive computational times. Computational burden also typically
limits the use of stochastic control approaches in TAMs.

In this paper, we use robust optimization (RO). Early developments date back to Soyster
(1973), who initiated an approach to obtain relevant (feasible) LP solutions although matrix
coefficients are inexact. This idea has then been largely explored with different formalisms
(Ben-tal and Nemirovski, 2002; El Ghaoui et al., 1998) or by generalizing the Soyster approach
(Bertsimas and Sim, 2004). RO allows to solve decision-making problems under uncertainty
even when the underlying probabilities are not known. It consists in immunizing a solution
against adverse realizations of uncertain parameters within given uncertainty sets. The basic
requirement for a robust solution is that constraints of the problem are not violated regardless
of the realization of the parameters in the set. The issue then consists in identifying computable
robust counterparts for the initial optimization program. Ben-tal et al. (2012) or Bertsimas et al.
(2010) review techniques for building such robust counterparts in general cases.

Up until now, RO has not been used in IAMs, with the exceptions of Babonneau et al. (2011)
and Andrey et al. (2015). A first contribution of our paper is to propose a general robust approach
to consider uncertainty in simple climate models (SCMs) typically used by TAMs to represent
climate evolution. Our approach relies on Bertsimas and Sim (2004). It consists in defining an
uncertainty budget to control the degree of pessimism; in short, to limit the number of climate
parameters allowed to deviate from their nominal values. We then rewrite the deterministic TAM
to obtain its robust counterpart.

As an illustration, our approach is implemented in the TTAM-World integrated assessment
model, which also relies on a SCM. We first define plausible uncertainty ranges for the climate
parameters of the TTAM-World model and then calibrate these ranges using existing literature
(van Vuuren et al., 2009) against climate simulations from the MAGICC model (Meinshausen
et al., 2011). Then, using a robust counterpart of TTAM-World, a second contribution of this
paper is to enrich the climate debate by defining robust energy transition pathways for different
global warming targets. In other words, we identify economic transition pathways under climate
constraints for which the outcome scenarios remain relevant for any realization of the climate
parameters. Moreover, we can assess which climate parameter or which combination of climate
parameters are the most sensitive in our model and we can quantify the uncertainty cost. The
originality of our numerical results is that, unlike other studies (e.g., Syri et al., 2008; Labriet
et al., 2015), we consider uncertainty on all the climate system parameters of our IAM.

The reminder of this paper is organized as follows: we first present the approach in the general
case (for all TAMs). We then describe how we implement our RO approach in the TTAM-World
model and finally we present numerical results of selected scenarios and review the different
insights brought by the RO approach and how it can inform policy makers.

2. General approach

2.1. Integrated assessment modelling

Integrated assessment models (IAMs) of climate change policies present different levels of in-
tegration (Schneider, 1997). Along this axis, there are again two ends to the spectrum. On
one end, there are models such as the MIT IGSM (Sokolov et al., 2005) composed of loosely
interconnected but more detailed (economic and climate, in particular) modules. At the other
end, there are more integrated models such as TTAM-World. We believe that this second set of
comprehensively integrated models are more amenable to uncertainty analyses.



A comprehensively integrated IAM can typically be cast as a single mathematical program-
ming model, where a social planner would be assumed to maximize social welfare ( f), under
constraints which could be economic, technical or social (g) as well as climatic (h):

max, f(x) (social welfare)

s.t.

g(x) < 0 (economic, technical or social constraints) (1)
h(z) <0 (climatic constraints)

z e R"

The set h(xz) < 0 of climatic contraints minimally i) describes the Earth’s carbon cycle to
determine the atmospheric CO2 concentration; ii) computes, using this concentration as well
as other GHGs concentration (often exogenous), the Earth’s radiative forcing balance; and iii)
determines the evolution of the Earth’s mean surface temperature. This constitutes the climate
module typical of well-known IAMs such as DICE, FUND and MERGE. We shall refer to such
a module as a simple climate model (SCM). By contrast, there are more complex climate mod-
els called Earth System Models of Intermediate Complexity (EMICs) such as C-GOLDSTEIN
(Edwards and Marsh, 2005), which could take hours to run, or even full-fledged climate models
called Atmosphere-Ocean Global Circulation Models (AOGCMs, see e.g. Boville et al., 2001) ,
which could take weeks to run on a supercomputer.

In SCMs, the carbon cycle can be modelled in two main ways. It can be represented by dif-
ferent ‘carbon boxes’ (e.g., the atmosphere, the upper ocean and the lower ocean) with exchange
rates as in DICE. Or it can be represented by an impulse-response function as in FUND and
MERGE. Most SCMs do not have retroactions of the CO4 concentration on the carbon cycle
parameters. This is an obvious simplification as the CO4 removal rate from the atmosphere is
not constant due the finite uptake capacity of the ocean.

The modelling of radiative forcing (F) is rather similar across SCMs. It is defined by the
radiative forcing of each GHG considered (Fguc):

F(t) =) Fanal(t) (2)

GHG

Radiative forcing due to COx is often defined by a logarithmic function of the actual atmospheric
CO4 concentration (M):
M (t))

S

i 3)

This logarithmic function is sometimes linearized, as in TTAM-World. The main differences
among SCMs are parameter values (e.g., v and Mp) and the treatment of non-carbon dioxide
GHGs (exogenously or not).

Change in radiative forcing translates in changes for the mean surface temperature (7,;)
and the mean (deep) ocean temperature (7,.) depending in particular on the assumed climate
sensitivity. In SCMs, this is generally estimated using two linear equations:

Tat(t) = U(F(t)vTat(t - 1)7Toc(t - 1)) (4)

Toc(t) = ¢ (Tar(t — 1), Toe(t — 1)) (5)

The main differences among SCMs are, again, parameter values and the functional form of pu
and .



2.2. Uncertainty ranges

Differences among SCMs especially come from their choices of key parameters. It is thus impor-
tant to define ‘appropriate’ uncertainty ranges for these parameters. This will help assess how
robust SCMs are and understand which parameters or combinations of parameters are the most
sensitive. Evaluating such ranges reveals several difficulties (see, e.g., Hof et al., 2012; Hu et al.,
2012; Butler et al., 2014). First, as already mentioned, SCMs are designed to evaluate climate
responses with limited computational burdens. They thus rely on some structural simplifica-
tions. For instance, most SCMs ignore carbon and climate feedbacks in their description of the
carbon dynamics. Such simplifications induce bias. As an illustration, van Vuuren et al. (2009)
show how differently carbon cycle can behave within a standard impulse-response experiment,
depending on whether it includes or not feedbacks. Second, there is a parametric uncertainty
due to the intrinsic volatility of the natural phenomena at stake, as well as the imperfection
of measures and statistical estimations. As an illustration, Knutti and Hegerl (2008) exhibits
different distributions and ranges for the climate sensitivity based on different lines of evidence.
And third, there is a form of ‘selection bias’ due to heterogeneous degrees of information on
parameters estimation and calibration. Overall, TAM-SCMs modellers may have a tendency to
pay more attention to some parameters, based on available information.

2.3. Robust optimization approach

Let us consider again our basic IAM formulation:

(P):q st glx)<0 (6)

where x € R™ is a vector of decision variables, and a € R™ is a vector of uncertain parameters
in h(z,a). In what follows, h will be a temperature constraint. We assume that any realization
a; might take on of three values {a; ,a;, a;"}, each representing the lowest value, nominal value,
and highest value, respectively. This uncertainty typically gives rise to the following space of
possible candidates for a:

U={aeR™[3z" €{0,1}",27 €{0,1}", 2" + 27 <1,a; =a; + (a] —a@)z" + (a; —a;)z" }

Following Bertsimas and Sim (2004), it is possible to control the degree of pessimism of the
solution by allowing only a subset of parameters to deviate from their nominal values. The
concept of the uncertainty budget is based on the fact that it is highly unlikely that all the
parameters take one of their two extreme values at the same time. This motivates the use of the
following robust counterpart of the initial problem:

max f(x)
(RC):{ s g(x) <0 (7)
h(z,a) < 0,Ya € U(T)
with
— m + m m ZF 427 <1vzizz++zi_gr
ur) = {a eR ‘Elz e {0,1}™,z= € {0,1}"™, G = a5+ (aF —a)er + (ar —ag)s
where T" € {0,1,2,...,n} is the maximum number of parameters taking one of their extreme

values. The idea behind the robustification of h is that the solution of the energy-economy



problem should be feasible for any ‘nature-controlled’ realization of the uncertain parameters
in e.g. the temperature constraint. Thus, we want to identify the worst-case combination of
parameters in h constrained by the uncertainty budget I'. For example, assuming we want to
determine optimal economic mitigation choices to limit global warming below 2 °C, we need to
identify trajectories that meet the temperature target even though some of the climate parameters
were wrongly estimated. We assume that decisions shall be taken before the actual values of the
parameters are known, to reflect the current status of political discussions and scientific progress
in climate science.
Under linearity conditions of h(x,a) with respect to a, the uncertainty set U(T") can be
equivalently replaced with its convex hull?:
—— m n m m 2T+ <13 2 42 <T
U(T) = {aER ‘Elz €10,1]™,2~ € [0,1]™, 0= i+ (aF =)z + (ar — a5 }

7

and the robust constraint can be reformulated using strong duality as:

{ h(z,a) + Y, max ((a; —a;)h}(z) —v; 0; (a —a;)hj(z) —v) +Tv <0 (8)
v>0

where v € R is an additional decision variable that need to be optimized jointly with z, and
where h}(z) is the derivative of h(z,a) with respect to a;.

The robust problem can then be reformulated by incorporating this new set of constraint
in the original problem (see Bertsimas and Sim, 2004, for the original discussion about such a
reformulation). Unfortunately, such reformulations are not always possible. Beyond the strictly
linear case, Ben-tal et al. (2012) proposes a methodology to reformulate robust programs in
the more general case of nonlinear but still convex constraints when using convex uncertainty
sets such as U'(T"). Yet, these conditions typically involve that both h(z,a) be concave in a
and that the uncertainty set be a convex set. Unfortunately, the mere fact that h(z,a) be a
concave function prevents one from replacing U(T") with its convex hull. This implies that such
reformulation are unlikely to be obtainable for robust non-linear climate constraints when an
uncertainty set as U is used.

As an illustration, let us consider that temperature follows some linear dynamics, i.e., Eq. (4)
can be written as:

Tat(t) = alF(t) + agTat(t — 1) + agToc(t - 1) 5

where (a1, as,as) are three parameters that might be considered uncertain. When unfolding this
expression in order to assess the long term effect of the parameters on the temperature level, we
get expressions of the form:

t t
Tu(t) =Y ab TarF(r) + abTu(0) + Y ab " asToe(T),
=1 =1

which is a polynomial function of (a1, as,as) and does not in general satisfy structural assump-
tions such as monotonicity, convexity or concavity. This makes the hope of obtaining a compact
reformulation as in (8) somewhat unrealistic.

Note that it is possible to avoid the need of a compact reformulation by including additional
constraints that exhaustively enumerate all possible combination of deviations that need to be
verified for a given choice of I'. Unfortunately, the number of such combinations increases

2Refer to example 14.3.2.B in Ben-tal et al. (2009) for a proof of this representation.



exponentially with respect to m, the number of uncertain parameters. To avoid the exponential
growth in the problem size, we suggest employing a constraint generation method that will
attempt to identify a small subset of such extreme value combinations that are sufficient to
obtain the optimal robust solution of the problem. This approach is fairly generic as it relies
entirely on two modest (as we will see) assumptions: i) the ability to identify a worst-case
combination of extreme value for a fixed decision x; and ii) the ability to solve the RC problem
where the robust constraint is replaced by:

h(z,a) <0,Va€ {a1,ao,...,ax} (9)
Let us now detail our proposed constraint generation algorithm:

1. Set Uy = {a} and k=1

2. Solve the master problem (M P(U)) which consists in maximizing the social surplus un-
der a robust temperature constraint that accounts only for instances of the parameters a
contained in U:

max f(x)

s.t.
(MP(U)) : g(z) <

Capture the optimal trajectories in this problem with 7.

3. Given some optimal trajectories, identify the worst-case scenario in U for the parameters
of the temperature constraint function by solving the SP(x}) worst-case analysis problem:

(SP(ap) : { B Al a)

Capture the worst-case value of this problem as h} and one of the assignments that achieve
the worst-case value as aj.

4. If h; < 0, terminate the algorithm and return zj as the optimal robust trajectories of
problem (P) in Eq. (6). Otherwise, add aj, in the set U, increase k by one, and go to
Step 2.

3. Application to TIAM-World
3.1. TIAM-World

3.1.1. Model overview

The TIMES Integrated Assessment Model (TTIAM-World) is a detailed, global, multi-region
technology-rich model of the energy/emission system of the world. It is based on the TIMES (The
Integrated MARKAL-EFOM System) economic paradigm, which computes an inter-temporal
dynamic partial equilibrium on energy and emission markets based on the maximization of total
surplus®. TIAM-World is described in Loulou (2008) and in Loulou and Labriet (2008). It is

3A complete description of the TIMES equations appears in www.etsap.org/documentation.



used in many international and European projects (for recent applications see: Babonneau et al.,
2011; Labriet et al., 2012). The multi-region partial equilibrium model of the energy systems

CH4 options
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Figure 1: TIAM reference energy system

CLIMATE MODULE (global concentrations,

of the entire World is divided in 16 regions. Regions are linked by trade variables of the main
energy forms (coal, oil, gas) and of emission permits. TIAM’s planning horizon extends from
2000 to 2100, divided into periods of varying lengths.

In TIMES, an intertemporal dynamic partial equilibrium on energy markets is computed,
where demands for energy services are exogenously specified (only in the reference case), and are
sensitive to price changes in alternate scenarios via a set of own-price elasticities at each period.
Although TIMES does not encompass all macroeconomic variables beyond the energy sector,
accounting for price elasticity of demands captures a major element of feedback effects between
the energy system and the economy. Thus, the equilibrium is driven by the maximization (via
linear programming) of the discounted present value of total surplus, representing the sum of
surplus of producers and consumers, which acts as a proxy for welfare in each region of the model
(practically, the LP minimizes the negative of the surplus, which is then called the energy system
cost).

The maximization is subject to many constraints, such as: supply bounds (in the form
of supply curves) for the primary resources, technical constraints governing the use of each
technology, balance constraints for all energy forms and emissions, timing of investment payments
and other cash flows, and the satisfaction of a set of demands for energy services in all sectors
of the economy.

The nominal formulation of the TIAM problem is a cost minimization and can be written as
follows (with some simplifications):



min Y, ¢f

s.t.

Liyxy > by, € R, Ly € R™" | (technological constraints)

Dz > dy, zy € R, Dy € R¥" | (demand constraints)

yr < wy, with yy = Ay,_1 + Fay , (recursive climate constraints)
r ER" y e RY A € RV F € RV

The objective function is the total cost of the system. It includes, among others: investment
costs, operating costs of the various sectors, taxes, transportation costs between geographical
zones... Technological constraints cover capacity limits, supply limits, yields, the allowed growth
rates of the processes in the various sectors. Demand constraints include each zone’s energy
service demands and climate constraints embrace limits on GHG emissions or stocks in the
atmosphere or on temperature increase. These latter constraints belong to an endogenous climate
module. Note that the CO5, CH4 and N5O emissions related to the energy sector are explicitly
represented by the energy technologies included in the model. The nonenergy-related CO 5, CHy
and N,O emissions (landfills, manure, rice paddies, enteric fermentation, waste water, and land
use) are also included in order to correctly represent the radiative forcing induced by them, but
they are exogenously defined. Emissions from some Kyoto gases (CFCs, HFCs, and SF6) are not
explicitly modelled, but a special radiative forcing term is added in the climate module.

3.1.2. The climate module

The climate module used in TTAM-World for this work is an adapted version of the model devel-
oped by Nordhaus and Boyer (1999). Greenhouse gas concentration and temperature changes are
calculated from linear recursive equations. We briefly present its characteristics here, a detailed
description can be found in Loulou et al. (2010).

The climate representation in TTAM-World is characterized by three steps. First, the GHGs
emitted by anthropogenic activities accumulate in the atmosphere; exchanges with the upper
and deep ocean layers occur then for CO5, while the dissipation of CH4 and N5O is described
with single atmospheric decay parameters. The terrestrial carbon cycle of this climate module
is depicted in Figure 2. Formally, the one-year-lagged dynamics of the three detailed greenhouse
gases are the following (see Appendix A for detailed equations):

M} =@M} | + FE} (10)

where M7 is the vector of the mass of gas g across the different reservoirs in year ¢, EY is the
emission of gas g in year ¢ (from the global energy model), ¢ € G = {CO5,CH4,N50} and
r : reservoirs € R = { Atmosphere, Upper Layer, Lower Layer}. This set of equations defining
the time profiles of atmospheric GHGs is then used to compute the radiative forcing. It is
common to consider that forcings are additive, so that:

AF, =Y AF{ +Exf, (11)
geG

where AFY is the forcing of gas g in period ¢ and Ex f; corresponds to an exogenous assumption
of forcing for all gases other than carbon dioxide, methane and nitrous oxide. The current
knowledge on radiative forcing suggests that none of these terms is linear in the atmospheric
stock of gas; the linearization used here is proposed by Loulou et al. (2010):

AF) = ~,A9 + v,BIM], (12)
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Figure 2: TIAM climate module

where 7 is a constant (the radiative forcing sensitivity to atmospheric CO5 doubling for g =CQ5),
and A’s and B’s are constant depending on pre-industrial concentration levels and linearization
intervals.

Finally, temperature elevation profiles are computed based on the following equations:

AT [ATvP o1
372] -] oo
S: 170’1(&4’0’2) 01092
g3 170’3

where AT is the variation of the atmospheric temperature, AT the variation of the ocean
temperature, C's represents the climate sensitivity, i.e. the change in equilibrium atmospheric
temperature due to a doubling of GHG concentration; ¢ and o3 are the adjustment speeds for
respectively atmospheric and oceanic temperature (lags, in year—1); o5 is a heat loss coefficient
from the atmosphere to the deep ocean.

3.2. Uncertainty sets

The concrete procedure for estimating min and max values for the climate system parameters
differs across parameters. While most estimations are based on comparisons with existing liter-
ature (Stocker et al., 2013; Butler et al., 2014), the construction of lower and upper bounds for
the three-box carbon cycle parameters relies on a calibration against existing emission scenar-
ios and the subsequent concentrations from MAGICC6 (Meinshausen et al., 2011). More detail
about the estimation procedures can be found in Appendix B; Table 1 lists the nominal values
and upper/lower bounds for the TIAM climate model parameters. Instead of keeping an upper
and a lower value for the parameters, a rapid pre-study provided us the worst-case value of the
parameters (in bold letters in the table).
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Nominal Lower Upper

P Descripti
arameter escription value bound bound

Atmosphere to upper
ba—u layer carbon transfer | 0.046 0.04393 0.04807
coefficient (annual)

Upper layer to atmo-
Gu—a sphere carbon transfer | 0.0453 0.04326 0.0473
coeflicient (annual)

Upper to lower layer car-

Gu—1 bon transfer coefficient | 0.0146 0.0139 0.01526
(annual)
Lower to upper layer car-
Dr—u bon transfer coefficient | 0.00053 0.00051 0.00055
(annual)
Radiative forcing from
g doubling of CO» 3.7 2.9 4.5
Climate sensitivity from
Cs doubling of COs 2.9 13 4.5
o1 Adjustment speed of at- |, 0.0216 0.0264
mospheric temperature
o Heat loss from atmo- 0.44 0.396 0.484
sphere to deep ocean
o3 Heat gain by deep ocean | 0.002 0.0018 0.0022

Table 1: Nominal values and bounds for climate parameters

3.3. Robust formulation of the climate problem

Based on the uncertainty that was described above, one can describe a robust counterpart of
TIAM as follows :

. T
Hlxln Z Cy Tt
t
s.t. Liyxy > by (technological constraints)
Dixy > dy (demand constraints)

ye(r, A, F) <w, V(A F) € UT) (robust temperature constraints)
r € R}

where the climate equation is written as:

t
yi(z, A F) = Z AT Fx. + Aty

T=1

and where intuitively the uncertainty set U(I") includes any pair of matrices (4, F') that can be
obtained by setting less than I' of the uncertain parameters described in Table 1 to one of their
extreme values. The algorithm described in Section 2.3 can be applied here as long as we are
able to solve:

(SP(z})) : { max A AF) = max (e, A F) = w
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and return the maximum value with a pair (A}, F}¥) that achieves this worst-case value for one
of the time period in the horizon t =1,...,T.

This resolution will be done by enumerating through all ¢’s and identifying a worst-case
(A7, F}") pair for:

(A’gl)zgé(r) ye(z, A, F) —wy . (14)

Given that the largest worst-case difference among all ¢’s is achieved at ¢*, the oracle will return
hi = y(x, A, F) — wy with the pair (A}, F.) to be included in MP(U). While it might be
possible to solve problem (14) by enumerating through all the possible scenarios for A and B,
we present in appendix C the procedure that we employed. It relies on the resolution of a mixed
integer linear program which we believe might be more efficient when the number of uncertain
parameters becomes large.

4. Numerical results

This section presents the results obtained with our robust version of TTAM-World. The uncer-
tainty sets are given in Section 3.2 and the uncertainty budget takes value in [0 — 9] (9 being the
number of uncertain parameters in the climate module). We consider two temperature limits for
the whole 2000-2200 horizon: 2 °C and 3 °C. We will see that with the uncertainty-immunized
solution, temperature paths are consistent with the limits considered by the Paris Agreement to
the UNFCCC. We will first present temperature and GHG emission profiles, and then discuss
energy transition pathways.

4.1. Temperature and emission trajectories

Figure 3 gives the temperature trajectories obtained with the nominal values of the climate
parameters, when the trajectory with deviated parameters has to respect the 2 °C or 3 °C
limit. They can be viewed as hedging trajectories: they should be followed in order to respect
the temperature constraint even in presence of parameter uncertainty. Figure 3 reveals that
uncertainty has a significant impact on the temperature trajectories, even for the uncertainty
budget’s low values. In order to ensure that the temperature does not exceed 2 °C (respectively,
3 °C), we should aim for a temperature increase ranged between 1.3 °C and 1.5 °C (resp., between
2 °C and 2.3 °C) with the nominal climate model in 2100. These new targets are consistent with
the levels (1.5 °C and 2 °C) proposed by the Paris Agreement. Figure 3 reveals also that, to
immunize against climate uncertainty with a 2 °C temperature limit, temperature peaks between
2060 and 2070 before decreasing rapidly. This notably impacts the energy transition pathways
needed to respect these temperature levels; see Section 4.3. On the other hand, with a 3 °C
temperature limit, temperature peaks only by the end of the century and decreases more slowly
afterwards.

The robust optimization approach also makes it possible to rank the parameters or group
of parameters by sensitivity. Table 2 shows the order in which climate parameters deviate,
characterizing a diminishing negative impact on the temperature constraint. Since the robust
counterpart of the nominal problem maximizes the temperature deviation for a given emission
profile, increasing the uncertainty budget consists in finding parameters with the worst effect
on the solution within the set of remaining (undeviated) parameters. The first deviating pa-
rameter is the climate sensitivity (Cg). This can be explained by i) its wide uncertainty range
compared to the ones of the other parameters and ii) the fact that it is a central parameter
of the climate module. This is consistent with other studies analyzing climate response sensi-
tivity to derive 2 °C-compliant mitigation pathways (Vanderzwaan and Gerlagh, 2006; Labriet

12



2C Constraint 3C Constraint

3.0- 30-
25- 25-
20- oo o . 20-
- -
Sqs- 8 s-
[0 [0
a a
1.0- 1.0-
05- 05-
0.0- 0.0-
2005 2050 2100 2150 2180 2005 2050 2100 2150 2180
Year Year

- TI=0eT1=2 r=4 r=6e-1=8
—--TI=1 r=3 Ir=5-T=7e-1=9

Figure 3: Atmospheric temperature trajectories for different values of the uncertainty budget

| Parameters \ Cs \ Ga—u \ Pu—a H o2 \ Y ‘ o1 ‘ Pu—1 H Pr—u ‘ 93 ‘
Order 3 °C 1 2 3 4 5 6 7 8 9
Order 2 °C 1 2 3 4 9 7 5 6 8

Table 2: Deviation order of uncertain climate parameters

et al., 2010; Ekholm, 2014). More interestingly, after the climate sensitivity the most critical
parameters are the ones of the carbon cycle (¢,_, and ¢,_,). The terrestrial carbon dynamics
is indeed of primary importance to assess the impact of anthropogenic GHG emissions, as it in-
fluences directly the atmospheric carbon concentration, and hence the radiative forcing and the
temperature. This strengthens the importance of relying on appropriate uncertainty ranges for
the climate parameters; see Appendix B. This also pleads for the necessity to pay more attention
in TAMs to the intricacies of the carbon cycle, including feedbacks and nonlinearities. While
climate sensitivity and the carbon cycle appear as primary factors, second-order parameters are
ranked very differently. This may be (at least partially) explained by the mitigation dynamics
in the two climate scenarios: in the 2 °C case, mitigation pathways must be implemented earlier
(see the next figure) such that the climate dynamics does not have the same overall impact.

Figure 4 displays next COs emission trajectories for the nominal scenarios and emission
ranges in the robust scenarios.

In the nominal trajectories, emissions peak by the middle of the century in the 3 °C case, and
decreases rapidly afterwards. Whereas in the 2 °C case, emissions must decrease rapidly from
2020 on*. Looking at the range of robust trajectories (shaded areas), it roughly expands over
time in the 3 °C case to reach a maximum size by 2080; whereas in the 2 °C case, it reaches its
maximum size earlier (2040). These dynamics are necessary to respect the different temperature

4Positive emissions in 2100 corresponds to a steady-state level, consistent with the temperature target, given
the past emission trajectories.

13



14

12

10

6

-22000 2000 2020 2030 \F\\\\\\

.

GtC/yr

2070 090 2100

3°C - Robust range N\12°C - Robust range =—3°C - Nominal trajectory =—2°C - Nominal trajectory

Figure 4: CO; emission profiles in the nominal and robust scenarios

profiles and implies contrasted energy transition pathways (both in terms of transition timing
and energy portfolios); see Section 4.3. Note also the presence of negative emissions due to
specific energy systems (see again Section 4.3).

4.2. Robustness cost

Let us now assess how the introduction of uncertainty impacts the total energy system cost
(TTAM-World’s objective function), which yields the robustness cost. More precisely, we assess
the trade-off between optimality (low system cost) and robustness (high uncertainty budget)
by plotting in Figure 5 the cost increase with the ‘insurance’ level. It has been constructed
through Monte-Carlo simulations, using the emission trajectories obtained for each value of T’
with a temperature constraint (7};,,—=2 °C or 3 °C). The climate model parameters considered are
uniformly distributed on the previously defined uncertainty sets. We are then able to derive the
VaR and the CVaR for the temperature deviation in 2100 for both constraints. On the abscissa,
we report the temperature deviation against which we ‘insure’ ourselves using the optimal robust
pathway: z(T}im,2100,T) = CVaR(Tiim,2100,0) — CVaR(Tyim,2100,T); see Appendix D for
plots of the distributions obtained. The ordinate represents the objective function obtained for
different value of the protection level normalized by the deterministic case objective function.

Figure 5 depicts how the world energy system and its emissions adapt to increasing protection
levels with respect to a reference temperature target. It reads as the cost increase to support in
orzder to ‘buy’ a certain amount of protection level given the uncertain response of the climate
system: insuring against the risk that the 5%-CVaR of the average temperature increase will not
be higher than zx (or reducing it by za compared to the nominal case).

This function aggregates two elements, namely: (i) the evolution of the total energy system
cost with an increasing uncertainty budget; and (ii) the CVaR-computed protection level as-
sociated to the change in global GHG emissions trajectory. Both are by construction concave
functions of the uncertainty budget I'. Indeed, the robust hedging strategies are driven by a
worst-case logic, which implies that the incremental cost of increasing the uncertainty budget is
necessarily diminishing. The same principle applies to GHG emissions. Interestingly, the process
of composing these two functions yields a convex-shaped function. This implies that although
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Figure 5: Costs of insurance

both the temperature-expressed protection level and the incremental cost are concave shaped,
the incremental cost still grows faster than the temperature hedge acquired.

Overall, this plot is comparable to a ‘standard’ temperature-based marginal abatement cost
curve, except that it embeds a consistent risk perspective which combines robust optimization
and a simple CVaR metrics for the output GHG emissions pathways. Comparing the two series
for different climate constraints, it appears naturally that costs of protection are higher for the
2 °C series, and also more convex, yielding higher marginal costs.

4.3. Robust energy transition pathways

Increasing the required protection level for a given nominal temperature target implies an adap-
tation of the energy system towards lower GHG emission levels. This section describes salient
elements of these robust energy transition pathways.

4.3.1. Robust decarbonization challenges: A mesoscopic view

Figure 6 plots the world primary energy® intensity of GDP, in 2050 and 2100, for the 3 °C and
2 °C targets (2050: plain lines, 2100: dashed lines; 3 °C: blue dot markers, 2 °C: red square
markers) as a function of the protection level and 2008 normalized®. With the same convention,
Figure 7 plots the evolution of the carbon intensity of primary energy with the protection level 7.

The evolution of these two intensities reflects very different strategies for the 3 °C and 2 °C
constraints. Hedging against climate uncertainty at the 3 °C level shows a balanced use of energy
efficiency and decarbonization of primary energy in 2050; the two indicators show comparable

5Primary energy consumptions are computed as the sum of coal, crude oil, natural gas, enriched uranium,
biomass, solar and wind energy consumed in the whole energy system.

6PEL. .. — Primary Energy(Yr) G D P(2008)
ratio — GDP(Yr) Primary _Energy(2008)
7 CO3(YT) Primary _Energy(2008)
Clratio X 5

= Primary_Energy(Yr) CO2(2008)
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Figure 7: Carbon intensity of primary energy against protection level

reduction levels (more or less 50%) compared to the 2008 reference. In 2100, the 3 °C scenario
hedges with a stronger reduction of carbon intensity, at the expense of primary energy intensity:
carbon intensity drops with hedging (-50% to -60%) while energy intensity remains quite flat
(-45% to -47%). This is especially true for higher protection levels for which CCS massively
penetrates the decarbonization mix (see below). This yields negative carbon intensities, indi-
cating negative net emissions. CCS-ready technologies being less efficient than their non-CCS
equivalents, the primary energy requirements increase (moderately) with hedging.

At the 2 °C level, the tradeoff between energy intensity and carbon intensity is anticipated
as early as 2050. With increased protection levels, the fall of primary energy intensity of GDP is
less (from -40% to -30% compared to 2008), while the carbon intensity of GDP is reduced by an
additional 10% going to negative values and hence negative net emissions. By 2100, protection
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strategies have reached a status-quo situation with the amount of climatic uncertainty. Both
the primary energy intensity and the carbon intensity have become insensitive to the protection
level. The maximum abatement potential is thus reached (reflecting the model limits).

Overall, between the two climate scenarios, comparable strategies are chosen (tradeoff be-
tween energy intensity and carbon intensity, with the necessity to spend more energy to store
carbon) but with a large difference in timing. This result is consistent with the temperature ob-
servation and COs emissions paths, which show that protection at the 3 °C level is an endpoint
issue (mitigation occurs in the second half of the century), while protection at the 2°C level is
a midpoint question (mitigation is extremely strong by 2050, but final states — 2100 — show less
variability). This raises the question of the economy’s decarbonization speed, and how to reach
e.g. COP21 compliant objectives.

4.3.2. Robust energy portfolios

While the previous results show an aggregate picture of reduction and mitigation strategies in
an uncertain climate context, further desegregating the primary energy consumption level (see
Figure 8) offers additional insights.
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Figure 8: Primary energy consumption by type against protection level

Both the 3 °C and the 2 °C scenario groups show similarities. Naturally, increasing protection
and/or imposing a more stringent climate objective tend to reduce the use of the most carbonized
energy sources (coal, gas) in favour of renewable energy sources (solar, wind, biomass) (see also
Figure 9).

As primary energy sources with high carbon contents, gas and coal uses are highly elastic
to the protection level. Gas use decreases between 13% and 20% in 2050 and between 32% and
75% in 2100 in the 3 °C scenarios (always compared to the deterministic case in the same target
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Figure 9: Primary energy consumption by type

scenario group). At the same time, coal use is diminished by 22% to 36% in 2050 and 53% to
65% in 2100. The scenarios for the 2 °C target show a comparable albeit amplified tendency:
both energy source uses diminish by 75% to 90% in 2050 and 2100. At the same time, the use
of renewable energy raises in any case, up to 200% in 2050 for the 2 °C scenarios. While for the
3 °C scenarios, renewable use is tripled between 2050 and 2100. In the renewable group, biomass
plays a particular role as its use coupled with CCS is a critical pathway for decarbonization (as
it generates negative emissions).

Nuclear is an option for decarbonizing the economy, and more precisely an electro-intensive
economy which relies more on carbon-neutral sources. The use of uranium gradually increases by
2100 in the 3 °C scenarios, and much faster in the 2 °C scenarios (up to 2050) before stabilizing.
Lastly, oil plays a particular role: while the use of other fossil energy decreases, the amount of
crude oil consumed in the primary energy mix is rather stable across scenarios and protection
levels. This tendency to maintain the use of oil products is to be related to the difficulty of
reducing transport emissions (high abatement costs) combined with the large availability of low-
carbon alternatives in other sectors (nuclear, CCS).

4.3.3. A sectoral view: The'backstop’ negative emissions pathways against low-elastic transport

Figure 10 helps next to assess the role of the various sectors in the decarbonization process.
Regardless of the scenario, transport remains the main CO4 emitter worldwide. In the 3 °C
case, all emissions peak around 2040 before falling — with the exception of the transport sector —
alternative technologies penetrate the mix. Electricity and industry are the main contributors to
abatement, essentially between 2050 and 2100. In 2100, transport emissions represent between
60% and 90% of the end-use emissions; they are rather stable in absolute terms, so that technology
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Figure 10: Sectoral emissions and Stored Carbon (from biomass and fossil fuels)

improvements (efficiency, low-carbon fuels) compensate for the demand growth. While CCS is
deployed by 2050 as a hedge for about 10 Gt/yr, transport emissions in the second half of the
century are compensated by credits from CCS captured from biomass (negative emissions).

The 2 °C case differs in three ways. First, the need to reduce emissions further to remain
compliant with a 2 °C target with uncertainty forces to reduce emissions from the power and
industry sectors much faster (by 2050). Second, even transport emissions go down sharply to
get to a 1.5 °C average elevation level. At this timescale, only transport and industry have some
residual emissions. Third, the additional use of CCS from biomass fueled power plants is not
only incremental but also comes as a substitute for fossil CCS pathways. The importance of
bioCCS in this picture reveals the importance of estimating biomass potentials and assessing
relevant sensitivity analysis on the subject.

The clear-cut arbitrage strategy between biomass-CCS and transport emissions can be ex-
plained at the technology level, see Figure 11.

The analysis of the energy mix for transport shows a strong reliance on fossil-based fuels,
which represent a large part of the mix except in the longer term for the 2 °C target. In
that case, transport fuels have become almost carbon free with a strong reliance on hydrogen.
Since transport is a sector with high abatement costs (Waisman et al. (2013)), it is only when
uncertainty is high that the oil trajectory is impacted. The vehicle fleet is progressively electrified,
diesel and gasoline losing market share with time and uncertainty. Electric vehicles appear as
a relevant way to mitigate the risk induced by climate uncertainty. Besides, in energy terms,
the moderate penetration of electricity as a transportation fuel minimizes a wider reality: while
electricity can represent up to 30% of the energy used in transport, the relative efficiency of
electric vehicles compared to conventional ones (2 to 2.5 more efficient) implies that, in 2050,
more than 50% of the total world mobility is actually electromobility. Yet, the commercial
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Figure 11: Energy mix for transport and electricity generation

transportation fleet sticks with diesel trucks, leading to a stable diesel consumption.

In the power sector, the introduction of uncertainty leads to an early use of CCS, as early as
2030 in most cases (see also Figure 10). The nuclear and the CCS trajectories under uncertainty
have large consequences in terms of policy decision. For example, given the current state of R&D
on CCS (with various projects shut down this last decade), this result suggests that we may want
to reconsider the current R&D budget allocation. The importance of nuclear in the energy mix
is also at odds with some country policies like Germany. Indeed, they decided some years ago
to close all the nuclear plants in a near future (unlike Japan, where nuclear plants are planned
to restart in the near future). Negative emission possibility is also something quite abstract and
subject to much uncertainty, as the first commercial-scale biomass-fueled power plant with CCS
has yet to be built.

5. Conclusion

Climate modeling is hampered by a considerable amount of uncertainty because of the lack of
knowledge of the climate system. As it significantly impacts climate policy making, the need for
tools to evaluate robust transition pathways is more and more urgent. In this paper, we present
a robust approach to handling climate uncertainty in Integrated Assessment Models (IAMs).
We find that the climate module’s most sensitive parameter is the climate sensitivity. This
is consistent with the existing literature on the subject. Yet, it is important to remember that
climate sensitivity is the most studied parameters and that its value estimations are numerous.
Hence, the determination of the climate sensitivity uncertainty range is quite straightforward.
Another important point is that this range relies on a large information set unlike the other
parameters, for which data is scarce. It is indeed quite complicated to find information on
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the carbon cycle parameters (few studies in the TAMs climate module literature) and yet the
global climate system behavior is very sensitive to them. Furthermore, the parameters impact
diversely the timing of the adaptation: the radiative forcing sensitivity multiplies directly the
CO; concentration, hence even a small variation of this parameter leads to a strong impact on
the CO5 abatement timing. We then believe that a stronger focus should be put on the other
climate model parameters.

To ensure that we comply with a 3 °C constraint, the temperature trajectories we should aim
at with the nominal parameters should not exceed 2.4 °C, leading to zero net carbon emissions
at the end of the century. With a 2 °C constraint, we should aim at 1.6 °C with negative carbon
emissions as soon as 2050. If the insurance cost is quite reasonable for the higher constraint (from
1.5% to 4% of the system total discounted cost), it is less the case with a 2 °C objective. In the
latter situation, the system total discounted cost increases by 7% when uncertainty is low and
up to 14% when it is high. Indeed, in order to comply with a stringent target, sectors with high
abatement costs have to participate in the global reduction effort. Transport is little impacted
by the 3 °C target (but as uncertainty grows, the vehicle fleet is slightly modified), whereas the
introduction of uncertainty leads to major fuel consumption changes for the 2 °C constraint.

The abatement strategies are quite different between the two temperature targets. For the
3 °C target, both the carbon intensity and the primary energy intensity of the economy decrease
with uncertainty whereas for the 2 °C target, the energy intensity increases and the carbon
intensity decreases. This more stringent goal is reached by investing massively in carbon removal
technologies such as bioenergy with carbon capture and storage (BECCS) which have yields much
lower than traditional fossil fueled technologies. Another interesting fact of the 2 °C hedging
trajectories is the drastic increase in the nuclear electricity production. The massive use of nuclear
or carbon removal technology is highly uncertain as BECCS is a very expensive technology that
is not competitive in the absence of a high CO4 price, while the development of the nuclear
industry could be hampered by social acceptance issues. The 1.5 °C objective mentioned during
the COP21 is obviously very ambitious and reaching it would necessitate strong political and
societal ambitions and actions (much stronger than the ones decided during COP21).

By taking a robust approach to study ways of complying with ambitious climate targets, we
were able to bring to light hedging technological trajectories without excessive computational
issues. The method presented being quite generic, it could be interesting to perform similar
exercises with other TAMs. Tt would help strengthen the knowledge on technological transition
pathways with uncertainty and would allow a better understanding and awareness of the costs
of the risks linked to our partial knowledge of the climate system.
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A. TIAM World Climate Module

The terrestrial carbon cycle of this climate module is depicted in Figure 2. Formally, the one-year-lagged
dynamics of the three detailed greenhouse gases are the following:

MCOQ,Q MCOQ,(I 1
MCOQ,u — ®002 MC’Og,u + 0 EfO‘Z,
COg,l COg,l
M==2 . M= 0
MCH4,a MCH4,0. 1'
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where MJ" is the mass of gas ¢ in reservoir r in year ¢, EY is the emission of gas ¢ in year ¢ (from the
global energy model), ¢"" is the transfer coefficient for CO5 from reservoir 7, to reservoir r;, 4 and
©™29 are the decay rates of methane and nitrous oxide in the atmosphere, g € G = {COs, CHy, N2O}
and r € R = {a = Atmosphere,u = Upper Layer,l = Lower Layer}.

This set of equations defining the time profiles of atmospheric GHGs is then used to compute the
radiative forcing. It is common (IPCC, 2007) to consider that forcings are additive, so that:

AF, =Y AF/ + Exfi,
geG

where AFY is the forcing of gas g in period ¢ and Fz f; corresponds to an exogenous assumption of forcing
for all gases other than carbon dioxide, methane and nitrous oxide. The current knowledge on radiative
forcing suggests that none of these terms is linear in the atmospheric stock of gas; the linearization used
here is proposed by Loulou et al. (2010):
AFCO2 — 4 ACO2 |  gCO2 CO2a
AFCHs — pCHs 4 pCHap CHia
AFN20 _ gN20 | pN2O p N2O.a
where 7 is the radiative forcing sensitivity to atmospheric CO2 doubling, and A’s and B’s are con-

stant depending on pre-industrial concentration levels and linearization intervals. Finally, temperature
elevation profiles are computed based on the following equations:

AT [AT o1
[are], =[]+ [5]en

g 1—o01 (&+02) o102
o3 1—-o03

where AT"P is the variation of the atmospheric temperature, AT the variation of the ocean tempera-
ture, C's represents the climate sensitivity, i.e. the change in equilibrium atmospheric temperature due
to a doubling of GHG concentration; o1 and o3 are the adjustment speeds for respectively atmospheric
and oceanic temperature (lags, in year™'); o2 is a heat loss coefficient from the atmosphere to the deep
ocean.
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B. Estimation of lower/upper bounds for climate parameters

Overall, and in the course of this estimation exercise, we may classify the climate parameters at stake
in this study into three groups. First, one group contains the parameters for the carbon cycle. The
terrestrial carbon cycle itself is a rather large field of study in geophysics (see e.g. Smith et al., 2012;
Joos et al., 2013; for a multi-model approach). One can also find sensitivity analysis on the carbon cycle
in TAM-based research (Butler et al., 2014; Hof et al., 2012), or are least clues on how uncertain these
parameters are (Nordhaus, 2008). One way of assessing the behavior of carbon cycle models is to perform
the so-called ‘doubling experiment’, where the evolution of an atmospheric COy doubling-concentration
pulse in year 0 is followed across the various carbon sinks for the next 100-400 years. Existing multi-
models experiments (Joos et al., 2013; van Vuuren et al., 2009) point out large response spectra; van
Vuuren et al. (2009) additionally show that simple carbon models (few boxes, simple linear recursive
dynamics) such as DICE end up in the low range of possible outcomes: they have, compared to the rest,
relatively optimistic carbon cycles. Such an experiment seems to be a good starting point to calibrate a
carbon cycle. However, the uncertainty it translates covers both parametric and structural uncertainty.
For example, van Vuuren et al. (2009) argue that the PAGE model behaves very differently from the
rest of the test population because it includes feedbacks on the carbon cycle. This limitation carbon
cycle models have different structures, hence different parameters — makes it difficult to adopt such a
calibration procedure. Therefore, we adopt a calibration procedure similar to that of Nordhaus and
Sztore (2013), but for the four IPCC-RCP emissions scenarios ran under the multi-ensemble simulation
mode of MAGICC6 (Meinshausen et al.,; 2011). To this purpose:

e the nominal values of the parameters in the climate module in TIAM-World was left as described
in Loulou et al. (2010);

e the upper bound of the inter-boxes transfer coefficients were estimated to get close to the 83rd
percentile of the MAGICC6 inter-model simulations for the four RCP scenarios. This is done by
changing the parameters by identical relative amounts, and computing a simple distance measure
(the sum of squares of annual relative distances between the TTAM-climate simulation and the
MAGICC6-RCP benchmark).

The result of this experiment is shown in Figure 12. The blue lines and shade represent, in each
subgraph, the average, 95% and 90% confidence intervals produced by MAGICC6. The black plain and
dotted show the average and 95% confidence intervals obtained with the TTAM-World climate module.
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Figure 12: TIAM-World climate module: Uncertainty in the carbon cycle agains MAGICC6 ranges for
the four RCP scenarios
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These variations allow to capture only a minor part of the carbon cycle model variations described
by Joos et al. (2013) or van Vuuren et al. (2009). Hof et al. (2012) show that the variations in climate
change benefits from a set of IAMs due to the carbon cycle are lower than the MAGICC6 ranges, which
seems to indeed indicate that simple carbon cycles do not capture all the ‘volatility’ of outcomes.

A second set of parameters includes the forcing and climate sensitivities, which are likely to be the
most well-documented parameters in the climate literature. They traduce the global equilibrium surface
forcing and warming after a doubling of atmospheric CO2 concentration; any climate models includes
these parameters. The importance of the equilibrium radiative forcing is widely acknowledged (Cao et al.,
2010); multi-models comparisons and simulations are also frequent (Schmidt et al., 2012). If issues such
as climate feedbacks arise in the estimation of forcing (Block and Mauritsen, 2013), available comparisons
indicate plausible range for the forcing parameters (using doubling or quadrupling experiments), with
the last IPCC report (AR5-WGI, Stocker et al., 2013) providing a central value of 3.7 with a +/- 0.8
99% confidence interval. This estimation is consistent with Zhang and Huang (2014), and is retained for
this study. As for the climate sensitivity, the initial value of the TTAM-World calibration corresponds
to the Knutti and Hegerl (2008) synthesize plausible sensitivity ranges for the climate sensitivity for
different lines of evidence, and demounstrate how critical it is if the policy objective is to prevent damages
caused by certain levels of warming. The IPCC most likely value and upper bound are 3 °C and 4.5 °C
respectively, which is consistent with other papers such as Syri et al. (2008). Butler et al. (2014) make
a different choice, and end up with a range (upper bound of 8 °C) closer to what Knutti and Hegerl
(2008) refer to as ‘expert elicitation’. Combining different lines of evidence, these authors obtain a range
close to the one of IPCC, which we will retain as a basis. Compared to existing literature on TAM-SCM
sensitivity analysis in Butler et al. (2014), these ranges are high for forcing and low for the climate
sensitivity.

Finally, the rest of the parameters, traducing the temperature dynamics, are part of a third group
constituted of apparently less studied parameters. There seems to be considerably less available work
on these. By default, we proceed as Butler et al. (2014), and apply a 10% variation to the annual
heat transfer coefficients. The range of temperature responses of TTAM-World are compared against
MAGICCS for the 4 RCPs scenarios, accounting for the uncertainty of all parameters. The results are
presented in Figure 13 (it reads as Figure 12).
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Figure 13: TIAM-World climate module: Uncertainty in the global mean temperature against MAG-
ICC6 ranges for the four RCP scenarios

The final nominal values and ranges for the climate parameters are presented in Figure 3 along with
the values kept in Butler et al. (2014) for comparison purposes.
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Parameter| Description Nominal | Lower/ Nominal Lower /Upper
value Upper value (Butler | bound (But-
bound et al., 2014) | ler et al,
2014)
Ga—u Atmosphere to upper | 0.046 0.04393 0.189288 0.223288
layer carbon  transfer
coefficient (annual)
Gu—a Upper layer to atmosphere | 0.0453 0.0473385 | 0.097213 derived
carbon transfer coefficient
(annual)
Gy Upper to lower layer car- | 0.0146 0.013943 0.05 0.025
bon transfer coefficient
(annual)
Dl—u Lower to upper layer car- | 0.00053 | 0.00055385| 0.003119 derived
bon transfer coefficient
(annual)
y Radiative forcing from | 3.7 4.5 3.8 3.9
doubling of CO4
Cs Climate sensitivity from | 2.9 4.5 3 8
doubling of COq
o1 Adjustment speed of at- | 0.024 0.0264 0.22 0.24
mospheric temperature
o9 Heat loss from atmosphere | 0.44 0.396 0.3 0.27
to deep ocean
o3 Heat gain by deep ocean 0.002 0.0018 0.05 0.045

Table 3: Nominal values for climate parameters and comparison with Butler et al. (2014)

C. Appendix : Implementation details for the worst-case oracle in TIAM-
World model

For simplicity of exposure, we describe the procedure for solving Problem (14) when the respective
worst-case extreme value (between minimum and maximum) for each parameter can be identified a-
priori (either analytically or using common sense). Following the information presented in Table 1, we
can describe the uncertainty as follows:

wa—u — TZG_“ _ J}a—uzl
wu—l — &u—l _ ’lﬁu_l23
Y= +9%

o1 =01 +6'127

03 =03 + 0329,

wu—a — 1;11—11 + 1/311.—(1‘22
,wl—u — ,lZl—u + q/;l—uz4
(1/Cs) = (1/Cs) = (Cs/(CE + CiCs))z6

09 = 02 + 5'22:8

where the “bar” annotated parameter refers to the nominal value and the “hat” annotated parameter
refers to the magnitude of the perturbation needed to get to the chosen extreme value. We also modeled
the perturbation on the term 1/C; using an additive formulation, namely:

veo={ el

1/Cs
s+ Cs)
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Based on the definitions of A and F', one should notice that these two matrices are not linear functions
of the uncertainty z1, z2, ..., z9. This can be remedied by replacing the nonlinearities with additional
binary variables. In particular, when studying the effect of z on each term of A, one might realize that
the following expressions come into play:

TP = T = T+ BT s — Mz
YT = AT+ A 2 + P T s + AP 2azs

T T = T = A T+ A s + 613
— 51%1}17“2125 - 61712)&7“2127 + 61 M zsar + 51’%2)&7“212527
oIt = G T E T e+ B s+ 61

+ 51’%1%7“2225 + 61%@”7“2227 + G T s ar + &1%217‘7&222527
017/Cs = 6170 + 514025 — 517026 + 617027

— (771:}/192526 + 6’1’3/52’527 — 6’1’3/972627 — &1’?9252’627

0102 = G101 + 010127 + 00228 + 01022728 ,

where 0 := 1/C and 0 := C,/(C? + C,Cs). By making the replacement vo;x := zjz, and vijk = 2i2; 2k,
one would instead get the following set of linear representations:

Y T = AT — A T + 9 s — 49 vo1s
YU = AT+ AT 2 + 9T s + 49" “vo2s

o_l,ywafu _ 5’1’71/7}(17” - 5’1’3/’12)0'7’“21 + alfA}an*uzs + 6'1'71Za7u27
— G139 w015 — G170 w017 + 6150 “vosT + 6159 “v1s7
TV = ST+ EIY T Y2+ EIAY T s + 1Y

+ 51%/3“_(111025 + 6171/3“_(111027 + 61" Mvost + 61@7/3“_%1257
017/Cs = 61790 + 514025 — 517026 + 617027

— 51’?911056 + 6190v057 — 6150v067 — &1’?év567
0102 = 0101 + 010127 + 00228 + 0102078 ,

Hence it becomes possible to represent U as:

3z =1,2€{0,1}™, v € {0,1}!]

=1

U= (A, F) € RYX® « RWX™ A= [}4_ Zzl 14{727 + Z(i,j,k)es z{lijkvijk
F=F+3" Fizi+ 3 i mes Fiikvijr
zitzit+ze—2< v <(1/3)(zi + 2 +21), V(i,5,k) €S

where
S:={(0,1,5),(0,1,7),(0,2,5),(0,2,7),(0,5,6),(0,5,7),(0,6,7),(0,7,8), (1,5,7),(2,5,7),(5,6,7) },

and where A + > Az + Z(i,j,k)es Aijkvi]‘k and F + > Fiz + Z(i,j,k}es Fijk;vi]'k are the respective
linear matrix representations of A and F. Furthermore, the set of linear constraints that take the form:

zi + 25+ 2 — 2 < <(1/3)(2i + 25 + 1)

are simply a convenient way of representing the nonlinear equality constraint vijr = 2i2;2k.
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Having this representation for U in hand, Problem (14) can be described as:

max Yy — Wy

Y,2,v
S.t Yr4+1 = A + Z A Zi + Z AZ]kUZ]k)y

(i,7,k)ES

+ (F + Zle + Z F”kv”k)azT ,Vr=1,.

(4,4,k)ES
Saer
zit+ 2tz —2 < vk < (1/3)(zi + 25+ 21) , V(§,5,k) €S
2e{0,1}™, v e {0,1}"!

which is still a mixed integer nonlinear program due to the cross-terms z;y, and v;jry-.

In order to facilitate the resolution, we apply a second step of linearization by employing additional
variables Z € R™** and V € RISI** guch that Zir = 2ziyr and Vijkr := vijry-. This leads to the
following mixed integer linear program:

max Y
Y,2,0,2,V
s.t. Yr+1 = Ayr + ZA Zz r+ Z AL]k‘/z]k r+ FQ:T + Z wa‘rzl + Z FlﬂkxTUUk
(i,5,k)€S (4,4,k)ES
Fz, + ZFQUTZZ + Z Fijkvaijk
(i,5,k)€S

—Miz; < Zi7 < Maz;

— Mao(1 = 2) < Zir <yr+ Mi(1— 2z)
— Myv; < Vi, < Mav;

— My(1—v;) <Vir <yr+ Mi(1—v)

St
zitzit+ 2z —2<vige < (1/3)(zi+ 2 +21), V(i,5,k) €S
z€{0,1}", v e {0, 1},

where M7 and My are large enough constants that are known to capture —M; < y; < Ms. One can
easily verify that the “big M” constraints on Z; » and Vjj;i - ear equivalent to imposing that Z; ; := z;y-
and Vijg,r = vijry-.

D. Monte-Carlo simulations of the temperature

For readability reasons, we plot only 100 trajectories (to calculate the CVaR, we have realized 2,000
draws).
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Figure 14: Temperature trajectories (2 °C and 3 °C emission pathways with I' = 0 and I" = 3)
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The "Cahiers de I'Economie" Series

The "Cahiers de I'économie" Series of occasional discussion papers was launched in 1990 with the aim
to enable scholars, researchers and practitioners to share important ideas with a broad audience of
stakeholders including, academics, government departments, regulators, policy organisations and

energy companies.

All these discussion papers are available upon request at IFP School. Discussion papers from 2004

onwards can be downloaded at: www.ifpen.fr

The list of discussion papers from 2006 onwards includes:
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The Economic Consequences of Rising Oil Prices.
Mai 2006
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le temps : I'effet de la saturation de I'équipement en automobiles
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Juin 2006
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Septembre 2006
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Juillet 2006
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Octobre 2006
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