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Abstract 

Establishing the steady state in hydrotreating process requires several days, leading to 
long experimentation times in order to obtain sufficient steady-state data for kinetic 
modelling. However, during the evolution towards this steady state, effluent analyses 
are already carried out at regular time intervals to determine whether the steady state has 
been reached and to ensure that the reaction is under control. In this paper, the 
stabilization time was assessed by using experimental data during these transient 
conditions. The stabilization evolution is supposed to follow a first-order response. A 
characteristic time for stabilization τ was defined. A linear model with interaction for τ 
prediction was developed. It was found that a higher LHSV leads to a quicker 
stabilization. The extent of the impact of LHSV on τ depends on the feed resin content, 
i.e., the polar components with high molecule weight. A direct relationship between 
reactor pressure and stabilization time was found. Temperature is not a dominant factor. 
Stabilization of spent catalyst depends on the previous operating conditions.  

Moreover, online transient data can be used in order to predict, from the first two 
experimental points and τ calculated by the model, the future steady-state value. By 
testing against new data with other feedstocks, the model has been found to provide a 
good prediction of the stabilization evolution and the steady-state hydrotreating 
performance. If this value is far from the target, operators can change the operating 
condition without waiting for stabilization. 

Keywords: hydrocarbon, hydrotreating, kinetic modelling, reactor, stabilization, 
transient data. 

1. Introduction 

Hydrotreating is a catalytic conversion process in petroleum refining, among others for 
removing impurities such as nitrogen and sulphur compounds from hydrocarbon 
streams. A kinetic model is a significant asset in, not to say essential for the adequate 
design and simulation of such a process (Becker et al., 2015). It is usually developed 
based on experimental data acquired at steady-state conditions. One of the main 
challenges of hydrotreating process is that establishing this steady state typically 
requires several days, leading to long experimentation times in order to obtain sufficient 
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data for kinetic modelling. However, during the transient phase towards the steady state, 
effluent analyses are already carried out at regular time intervals to detect the steady 
state and to ensure that the reaction is under control. These available transient data are 
currently not used for kinetic modelling because the stabilization behaviour is not well 
understood. 

The aim of this work is, first, to get a better understanding of the stabilization behaviour 
during these transient conditions and secondly, to use these transient data to predict the 
steady-state reaction performance. If this value is far from a target, the operators can 
change the operating condition without waiting for stabilization and without the use of a 
complex model. 

2. Materials & Methods 

The experimental data are acquired using the IFPEN Hydrotreatment (HDT) pilot plant 
operating in a continuous manner. The total catalyst volume in the reactor amounts to 
50 cm3. Operating conditions are adjusted after having reached the steady state 
corresponding with the previous operating conditions. The acquired data cover 11 
Vacuum Gas Oil (VGO) feeds over two catalysts. Operating conditions were chosen to 
cover a wide range for the VGO HDT process: Liquid Hourly Space Velocities (LHSV) 
from 0.5 to 4 h-1, temperature from 350 to 410 °C and total pressure between 50 and 140 
bar. The provided data are the ‘liquid product nitrogen content’ (N) with time on stream 
(TOS), totalling 920 measurements, see Figure 1. A series of points corresponding to 
one experimental run is called one ‘episode’. Figure 1 shows 7 episodes corresponding 
to 42 data points during around 45 days.  

 

Figure 1. Data representation (P = 140 bar, point: experimental data, solid line: model fitting 
Equation (1)) 

A hydrodynamics study on the pilot plant has been carried out using a tracer technique 
to estimate the stabilization time purely due to hydrodynamic. The objective is to 
identify whether the stabilization time is determined by hydrodynamic or kinetic 
phenomena. 

Second 
episode 

First 
episode 
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Exploratory data analysis (Tukey, 1977) is applied to our available data to assess the 
stabilization evolution. It resulted in a first-order transfer function as shown in Equation 
(1).  
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Where N is the liquid product nitrogen at a specific time on stream (ppm); Ninit is the 
liquid product nitrogen corresponding to the first experimental point of episode (ppm); 
Nfinal is the last experimental point of episode (ppm); TOS is the time on stream (h); 
TOSinit is the time on stream corresponding to the first experimental point of episode (h) 
and τ is the characteristic time of the episode (h). 

The characteristic time τ of each episode presented in the equation is estimated via 
nonlinear least-squares (solid line in Figure 1).  

A multiple linear regression with interaction technique is then used for τ prediction to 
evaluate the phenomena underlying the transient data. The general linear model with 
interaction is illustrated in Equation (2): 

bxxaxaxa  ...21122211  (2) 

Where x1, x2 are the input variables, which can be LHSV, temperature, pressure or feed 
properties such as organic nitrogen content, organic sulphur content, resin content in 
feed, etc.; x1x2 is the interaction term between x1 and x2; a1, a2, a12,… and b are the 
coefficients. 

The most influential input variables of the model are determined via variable selection 
technique called ‘leaps’ (Furnival and Wilson, 1974). Fitting linear model and nonlinear 
model was done by using respectively ‘lm’ and ‘nls’ function in ‘stats’ package in R 
software. Variable selection was carried out in R by using ‘leaps’ package obtained 
from CRAN repository (Lumley, 2017). 

The model is then tested against new data with other feedstocks. For each episode, τ is 
predicted by the model. Knowing τ and the first two points of the episode, it is possible 
to predict the evolution of the episode as well as the Nitrogen content at steady state 
calculated via Equation (3) which is developed from Equation (1). The leftover data of 
the episode are used to validate the model. If the predicted steady-state value is far from 
the target, the operating condition can be adjusted without waiting for stabilization. 

  init
init

init
final N

TOSTOS
NN

N 






 







exp1

 
(3) 



4  N.Y.P Cao et al. 

  

3. Results 

The hydrodynamic response to a tracer step reached steady state significantly faster than 
the stabilization of the HydroDeNitrogenation (HDN) behaviour. Hence, chemical 
phenomena are involved in the latter. 

Stabilization was found to follow a first-order model, which is similar to the observation 
of Sau et al. (2005) in the study of effect of organic nitrogen compounds on 
hydroprocessing reaction. The characteristic time τ reflects the time required to reach 
this steady state. First episodes take more time to stabilize than other episodes. The 
model was applied on two similar HDT catalysts (Catalyst A and B). Two linear models 
for τ were built; one for first episodes (model M1) and another for other episodes 
(model M2).  

Model M1 was obtained with a R2 of 0.83, as shown in the left side of Figure 2. It 
consists of three variables (LHSV, pressure, resin of feed) and one interaction term 
LHSV*resin, which are selected by the leaps algorithm. An inverse relationship 
between LHSV and τ was found. Temperature is not a dominant factor. These two 
results are coherent with Elizalde et al. (2016) who studied the dynamic behaviour of 
hydrocracking using the continuous kinetic lumping approach. A direct relationship 
between pressure and τ was observed. The interaction term shows that the impact of 
LHSV on τ depends on the value of feed resin, i.e., the polar components with high 
molecular weight. The resin in VGO can contain nitrogen. 

   
Figure 2. Parity plot with 95% confidence interval for M1 (left, R2 = 0.83) and M2 (right, R2 = 

0.66) 

However, the stabilization of other episodes seems more complex. The parity plot for 
model M2 is shown in the right side of Figure 2. The latter includes seven input 

variables (LHSVexp, LHSVpre, Tpre, 
preLHSV

LHSVexp
, 

expLHSV

LHSVpre
, LHSVexp*resin, Sfeed);  

where LHSVexp is the experimental LHSV of the episode; LHSVpre and Tpre are 
respectively LHSV and temperature of the previous episode; resin and Sfeed are 
respectively resin content and organic sulphur content in the feed. As can be seen, the 
model relies by not only on the feed and operating conditions but also on the operating 
conditions of the previous episode. It shows that the transient behaviour of spent 
catalyst is more difficult to predict than for the fresh catalyst. 

Model M1 Model M2 
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Model was tested by using new data with other feedstocks. τ is predicted by the model 
and the steady-state value is estimated via Equation (3). Figure 3 shows two examples 
of such prediction for first episodes (model M1). The two first points of episode which 
are used to estimate the steady-state value are shown in circle shape. The remaining data 
in the episode are represented by triangles. The Nitrogen predicted values are very close 
to the experimental values. The model can predict quite well the transient behaviour and 
the steady-state value. This algorithm may be linked to an Advanced Process Control 
method to reach as fast as possible some Nitrogen targets. 

   

Figure 3. Two examples of the prediction of model M1 (points: experimental data, solid line: 
model prediction; TOS: time on stream) 

 

Figure 4. Prediction of model M2 (points: experimental data, solid line: model prediction; TOS: 
time on stream) 

 

Figure 5. Prediction of model M2 for episode 4 and episode 6 while discarding the first three 
experimental points of both episodes 
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Model M2 (for other episodes) is evaluated and is shown in Figure 4. Model predicts 
well the evolution of episode 2, 3, 5, 7 and 8. Regarding episode 4 and 6, it seems that 
the transient behaviour did not follow a first-order model, which could be explained by 
the measurement error/experiment problem or the complex behaviour of spent catalyst. 
The experimentation duration is longer for these both episodes than for the others. It is 
possible that there was an experiment problem. If the first three points of episode 4 and 
6 are discarded, the prediction is more reliable, see Figure 5. This might be investigated 
in another study. 

4. Conclusions 

Stabilization behaviour is a critical point for hydroprocessing experiments. In this work, 
transient data of hydrotreating process were used to assess this stabilization. It is shown 
that the stabilization follows the first-order model. A characteristic time for stabilization 
τ was defined. Two models (one for the first episodes, another for the others) were built 
to calculate the stabilization time and identify the most influential parameters (LHSV, 
resin of feed, pressure). Good prediction results were obtained, particularly for the first 
episodes. The stabilization of other episodes is more complicated to predict.  

The model can predict the stabilization time and steady-state value from two initial 
measures. If the predicted steady-state value would be far from the intended target, 
operators can change the operating condition without waiting for stabilization. This 
model will be linked with an Advanced Process Control Algorithm. 

This model will be also linked to design of experiment algorithm in order to be used to 
fit kinetic parameters (Celse et al., 2016). 
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