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Abstract

This paper provides i) air traffic and ii) Jet-Fuel demand projections
at the worldwide level and for eight geographical zones until 2025. The
general methodology may be summarized in two steps. First, air traf-
fic forecasts are estimated using econometric methods. The modeling
is performed for eight geographical zones, by using dynamic panel-data
econometrics. Once estimated from historical data, the model is then
used to generate air traffic forecasts. Second, the conversion of air traffic
projections into quantities of Jet-Fuel is accomplished using the ‘Traffic
Efficiency’ method developed previously by UK DTI to support the IPCC
(IPCC (1999)). One of our major contribution consists in proposing an al-
ternative methodology to obtain Energy Efficiency coefficients and energy
efficiency improvements estimates based on modeling at the macro-level.
These estimates are obtained by directly comparing the evolution of both
Jet-Fuel consumption and air traffic time series from 1983 to 2006. Ac-
cording to our ’Business As Usual’ scenario, air traffic should increase by
about 100% between 2008 and 2025 at the world level, corresponding to
a yearly average growth rate of about 4.7%. World Jet-Fuel demand is
expected to increase by about 38% during the same period, corresponding
to a yearly average growth rate of about 1,9% per year. Air traffic energy
efficiency improvements yield effectively to reduce the effect of air traffic
rise on the Jet-Fuel demand increase, but do not annihilate it. Thus, Jet-
Fuel demand is unlikely to diminish unless there is a radical technological
shift, or air travel demand is restricted.
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1 Introduction

According to the International Civil Aviation Organization (ICAO)3, air traffic
is characterized by mean annual growth rates comprised between 5% and 6%
since the middle of the 1980s (ICAO (2007)). This growth, strictly superior
to that of other economic sectors, is supposed to continue in the coming years.
The main actors in the aeronautical industry anticipate for instance the same
sustained growth rate for the next twenty years (Airbus (2007), Boeing (2007)).
If these projections were to come true, they would imply a multiplication by
two of air traffic at the worldwide level by 2025.

This strong and rapid growth of air transport is arguably a factor of eco-
nomic growth, facilitating international exchanges (among others). Yet, in a
scarce energy resources context, this development may appear problematic dur-
ing the 21st century, leading to an increased interest for policy makers4. The
classical example is the integration of the aviation sector in the EU Emissions
Trading Scheme (EU ETS) in January 20125.

Hence, forecasting and modeling Jet-Fuel6 demand has become more and
more a central issue for public policy, that this paper aims at pursuing. Jet-Fuel
is only used as a fuel in the aviation sector. Therefore, it cannot be consumed
directly. Consequently, the consumption of Jet-Fuel depends very closely on the
demand for mobility for air transport. To understand the evolution of this con-
sumption, we must start by studying the fundamentals of this transportation
means. This research work may then be decomposed into two distinct steps.
First, we perform various forecasts for air traffic in the mid-term (2025), at the
world and regional levels. These forecasts are derived from the prior modelling
and estimation of the relationship between air transport and its main deter-
minants. This first piece of work is developed by using econometric methods.
Second, the data on air traffic are converted into quantities of Jet-Fuel based
on energy coefficients7.

Therefore, the two major contributions of this study consist in providing air
traffic and then Jet-Fuel projections at both worldwide and regional levels until
2025. The two successive steps of our research have been detailed above. The
first econometric work is performed to estimate the respective influence of the

3The ICAO is a body from the United Nations created in 1947 in order to standardize
international security and navigation rules in the air transport sector.

4See among others on this topic ECI (2006), IEA (2009a, 2009b, 2009c), IPCC (1999,
2007a, 2007b, 2007c) and RCEP (2002).

5The amending Directive 2003/87/EC highlights that ‘emissions from all flights arriving at
and departing from Community aerodromes should be included’. Compared to other sectors
included in the EU ETS, this requirement introduces a major specificity when estimating
aviation CO2 emissions concerned by the EU ETS. Indeed, some CO2 emissions from airlines
that are not registered in one of the 27 Member States need also to be estimated.

6The fuel traditionally used in the aviation sector is Jet-Fuel, also known as Jet-A1.
7Energy coefficients, as well as their evolution through time, constitute the main assump-

tions of this work. We will devote a chapter later to better explain how they were computed.
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main fundamentals of air transport. These estimates are then used to obtain
various forecasts of i) air transport and ii) the associated Jet-Fuel demand by
2025.

From a methodological viewpoint, this approach corresponds globally to that
developed in previous literature8. Our research differs from previous work in
the choices and the methods proposed to carry out the various steps. We shall
present them briefly below, and we emphasize the methodological contributions
stemming from our analysis.

First, we need to perform air traffic forecasts. To do so, the relationship
between air traffic and its main fundamentals is first estimated econometrically
over around thirty years (1980-2007). Several factors of air transport are there-
fore identified. Based on panel-data econometric modelling, we show that the
sensitivity of air transport differs depending on the degree of maturity of the
market under consideration. Then, various scenarii are proposed concerning the
evolution of these fundamentals. Once the econometric relationship has been
estimated and the scenarii have been defined, we obtain various trajectories
for the evolution of air traffic. This modelling, and the associated forecasts,
is applied to eight geographical zones9 and at the world level (i.e. the sum of
the eight regions) by specifying a dynamic model on panel data. To our best
knowledge, this type of modelling has never been applied to air transport.

Second, the projections of air transport are converted into corresponding
quantities of Jet-Fuel. This task is performed based on the specific ’Traffic Effi-
ciency method’ developed by the UK DTI (Department of Trade and Industry)
for the special IPCC report on air traffic (IPCC (1999)). The idea underlying
this method may be summarized as follows. An increase by 5% per year of air
traffic does not imply an increase by the same magnitude of Jet-Fuel demand.
Indeed, the growth of Jet-Fuel demand following the growth of air traffic is
mitigated by energy efficiency gains10. Energy efficiency improvements are ob-
tained through enhancements of i) Air Traffic Management (ATM); ii) existing
aircrafts (such as upgrades); and iii) aircraft and airframe/engine design (which
is linked to fleet renewal rates)11. The difficulty to convert air traffic forecasts
into Jet-Fuel is due to the fact that we need adequate energy coefficients on the
one hand, and coherent scenarii for expected growth rates, expressed per year,
of their future improvements on the other hand. This is precisely the aim of the

8We may cite in this growing literature DfT (2009), ECI (2006), Eyers et al. (2004), Gately
(1988), IPCC (1999), Macintosh and Wallace (2009), Mayor and Tol (2010), RCEP (2002),
Vedantham and Oppenheimer (1994, 1998), Wickrama et al. (2003).

9Air traffic forecasts are computed for the following regions: Central and North America,
Latin America, Europe, Russia and CIS (Commonwealth of Independent States), Africa, the
Middle East, Asian countries and Oceania (except China). China is the eighth region. We
choose to focus on that specific region due to its solid economic growth.

10For instance, over the last twenty years, the strong increase of air traffic has been accom-
panied by important progresses in the energy efficiency of aircrafts and aviation tasks (Greene
(1992), Greene (2004)). Consequently, if Jet-Fuel demand has increased over the period, its
growth rate has been largely lower than the demand for air traffic.

11See among others on this topic Greene (1992, 1996, 2004), IPCC (1999), Lee et al. (2001,
2004, 2009), Eyers et al. (2004), Lee (2010).
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methodology developed by the UK DTI. Nevertheless, this method has several
limits that we will develop later. We propose to enhance this methodology with
orginal and complementary ideas. We propose an alternative and complemen-
tary methodology to obtain energy efficiency coefficients and energy efficiency
improvements estimates based on modeling at the macro-level. These estimates
are obtained by directly comparing the evolution of both Jet-Fuel consumption
and air traffic time series from 1983 to 2006. There are two contributions based
on this methodology. First, we are less dependent on the assumption of energy
homogeneity between the various aircraft fleets. Indeed, we are able to compute
simply and quickly energy efficiency coefficients depending on the regions and
the type of the flight (short or long-hauls). Second, we may define scenarii for
the evolution of these energy coefficients which take into account the totality of
potential factors enhancing the air traffic energy efficiency.

This paper is structured as follows. The second section details the evolu-
tion of air transport from 1980 to 2007 at the worldwide level, and for the
eight regions considered. The data come from the ICAO. This section presents
descriptive statistics which contain useful information on air traffic. We have
already mentioned the sharp debate concerning the evolution, past and present,
of energy efficiency. This question is examined in the third section. The main
interest of this section is to propose a new method to estimate air traffic energy
efficiency, as well as their evolution overtime. The fourth section presents first
the estimation results of the relationship between air transport and its main
fundamentals. The database has been previously defined in Section 2. This
work is performed by using panel-data econometric techniques. The results of
this modeling are then used to perform air traffic forecasts at the world level
and for the eight regions. Combined with the results shown in Section 3, these
forecasts are used to deduce that of Jet-Fuel demands until 2025. The last
section concludes.
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2 Descriptive statistics on air traffic

Air Traffic data for 1980 to 200712 have been obtained from the International
Civil Aviation Organization (ICAO). This specialized agency of the United Na-
tions provides the most complete air traffic database13: international and domes-
tic, passenger and freight traffic (both for scheduled and non-scheduled flights).

The ICAO database used in this paper is the ‘Commercial Air Carriers -
Traffic’ database. As detailed on the ICAO website14, it contains on annual basis
operational, traffic and capacity statistics of both international and domestic
scheduled airlines as well as non-scheduled operators. Where applicable, the
data are for all services (passenger, freight and mail) with separate figures for
domestic and international services, for scheduled and non-scheduled services,
and for all-freight services15. One of the main interests of this database consists
in providing data by country, and not by pre-aggregated regions. Thus, it
allows to recompose any kind of regions on any scenarii. Within the database
by country, statistics are provided for airlines registered in a given country on a
yearly basis16. Another advantage lies in the possibility to account for freight vs.
passenger, and for domestic vs. international air traffic within each zone. There
exists however one limit with the use of such data for international air traffic.
When re-aggregating the data by zone, one considers that the airline which
declared the flights as ‘international air traffic’ has not registered international
flights outside the country within which it is registered, and thus outside of the
region within which it has been re-aggregated.

Cargo traffic is measured in Revenue Ton Kilometers (RTK) whereas pas-
senger traffic is expressed both in Revenue Passenger Kilometers (RPK)17 and
RTK18.

When required, Jet-Fuel consumption statistics are also provided for each
region. This information is drawn from the ‘World Energy Statistics and Bal-
ances’ database of the International Energy Agency (IEA), which provides Jet-
Fuel consumptions during 1980-2006. Due to a one-year delay between the
ICAO and IEA database, air traffic data are presented for the 1980–2006 period
, when they are compared with Jet-Fuel consumption. Unless otherwise indi-
cated, all descriptive statistics presented below are thus valid during 1980-2007.
Also note that air traffic statistics are not available before 1983 for Russia and
CIS (Commonwealth of Independent States). In order to account for this gap,

12Air traffic data for the year 2008 are already available, but only for a few months. Last
accessed on October, 2009.

13Note the International Air Transport Association (IATA), which represents about 230
airlines comprising 93% of scheduled international air traffic, also provides Air Traffic data,
but this source is less detailed to our best knowledge.

14http://www.icaodata.com
15These data are not provided on air routes basis.
16With such statistics, air traffic data of a given airline cannot be provided in two different

tables. Thus, it avoids the problem of double-counting.
17A passenger kilometer is equal to one passenger transported one kilometer.
18A ton kilometer is equal to one ton of load (passenger or cargo) transported one kilometer.
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we present the descriptive statistics only during 1983-2006.

The decomposition in geographical zones follows a classical representation:
thus we obtain air traffic for eight distinct regions (Central and North America,
Latin America, Europe, Russia and CIS, Africa, the Middle East, China, Asian
countries and Oceania), and on a worldwide basis (computed as the sum of the
eight regions).

The following sections present in great details the air traffic database from
the ICAO, and the Jet-Fuel consumption database from the IEA.

2.1 Evolution of air traffic during 1980–2007

Figure 2.1 shows the evolution of world air traffic from 1980 to 2007.
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Figure 2.1: Evolution of world air traffic (1980-2007) expressed in RTK (bil-
lions).
Source: Authors, from ICAO data.

Two major remarks may be inferred from this graph. First, it emphasizes
the strong increase of this sector, with a variation growth of +340% during the
period. Second, the aviation sector - cyclical in nature - has encountered some
specific shocks (represented with gray solid bars) that all had downward impacts
on the demand for air travel (Mason (2005)). Figures in brackets represent the
variation of activity of the aviation sector during these events. The 2001 terror-
ist attacks in New York and Washington had a major impact on airline industry
(Alderighi and Cento (2004), Ito and Lee (2005)). These attacks caused many
travelers to reduce or avoid air travel and resulted in a transitory, negative de-
mand shock in addition to an ongoing negative demand shift (Inglada and Rey
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(2004), Guzhva and Pagiavlas (2004), Ito and Lee (2005)). The recovery pat-
terns clearly vary across countries and regions (Gillen and Lall, 2003). Airlines
were also affected by macro shocks such as the Asian financial crisis, SARS
(Severe Acute Respiratory Syndrome) and the Gulf Wars.

Table 2.1 describes air traffic statistics19, along with Jet-Fuel consumption,
expressed in levels, for each zone and the world. Data are presented within two
sub-periods: 1983-1996 and 1996-2006 (1996-2007 when air traffic data is not
compared with Jet-Fuel data). Note that air traffic data are expressed in two
different units: RTK and ATK. RTK measures actual air traffic, whereas ATK
is a unit to measure the capacity of an aircraft/airline. The link between these
two units is the Weight Load Factor (WLF): RTK = WLF ∗ ATK with WLF
the percentage of an aircraft’s available ton effectively occupied during a flight.
Then, if airline companies fill their aircrafts at the maximum available load
(WLF = 100%), RTK is strictly equal to ATK. Because airlines never fully fill
their aircrafts, ATK > RTK. Note that in this paper air traffic is measured in
ton kilometer (as opposed to passenger kilometer). This explains why there is
typically a 10 percentage points difference between the WLF value presented in
Table 2.1 and the usual WLF as read in the literature which are rather expressed
in passenger kilometer (thereafter called Passenger Load Factors (PLF)).

As a stylized fact, Table 2.1 shows that during the whole period airline
companies’ WLF values have rather increased. For instance, at the world level,
WLF mean yearly growth rates for the first sub-period is equal to 0.07% (last
line, fourth column) – thus registering a constant WLF – and to 0.65% (last
line, fifth column) during the second sub-period – thus registering a steady WLF
increase of 0.6% per year. This evolution is common to most regions, except
in China, Asian countries and Oceania where the mean yearly growth rate of
WLF is negative in the first sub-period. Globally, we still notice the stylized
fact that on average aircrafts are less filled in the first sub-period compared to
the second one.

Yearly mean growth rates are provided in the last three columns. According
to this table, world air traffic (expressed in RTK) has registered a mean growth
rate per year of 6.4% on the whole period. Note that this mean growth rate is
higher during the first sub-period (7.28%) than during the second sub-period
(5.34%).

Various yearly means growth rates may be observed within each zone (Ta-
ble 2.1), which explain the evolution of each zone’s weight in total air traffic
as depicted in Table 2.2. The latter Table highlights a few stylized facts. The
share of the USA and Europe in total air traffic represents around two thirds.
This share appears stable over the period (62.93% in 1983 compared to 62.61%
in 2006). It is due to the fact that the share of the USA has decreased (with
a mean variation growth during the whole period of -11.90%), while the share
of Europe has increased (with a mean variation growth during the whole pe-
riod of +21.25%). With its strong economic growth and large population size,

19For the sake of clarity, the tables and the majority of graphs are presented in the appendix.
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China is becoming a major player in air transportation (Shaw et al. (2009)).
The share of China in total air traffic has skyrocketted during the second sub-
period, going from 4.74% in 1996 to 8.57% in 2006. Its mean variation rate
represents +80% for a yearly mean growth rate of +11.89% (Table 2.1). In
order to diversify their traditionnally oil- and gas- dependent economies, some
Middle Eastern countries - such as the United Arab Emirates and Qatar - have
been pursuing substantial investments into their aviation sector (Vespermann
et al. (2008)). The share of the Middle East in total air traffic represents 4.66%
in 2006. Africa plays a minor role in the global air transport pattern (Mutam-
birwa and Turton (2000)). Figure 2.2 offers an alternative view of this evolution.
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Regular World Map 1983

1996 2006

Note: These cartograms size the geographical zones according to their relative weight in
world air traffic (expressed in RTK), offering an alternative view to a regular map of their
evolution from 1983 to 2006. Maps generated using ScapeToad.

Figure 2.2: An alternative view of the evolution of the share of each region’s
air traffic in 1983, 1996 and 2006.
Source: Authors, from ICAO data.
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and Jet-Fuel consumption (right panel, expressed in Mtoe) by zone during
1983-2007 and 1983-2006, respectively.
Source: Authors, from ICAO data.

Figures 2.3 (Appendix), 2.4 and 2.5 (Appendix) present the same informa-
tion as in Table 2.1 (Figure 2.3) and Table 2.2 (Figures 2.4 and 2.5) displayed
in different ways20.

Again, ICAO provides highly detailed data for freight, passengers, domestic
and international air traffic. It allows us to present the evolution of air traffic
for each zone in different ways: freight vs. passengers, and domestic vs. inter-
national, presented respectively in Tables 2.3 and 2.4. This decomposition will
be further studied.

Table 2.3 shows that passengers’ traffic predominates freight traffic at the
world level with a share of 91.93% in 1983 and 85.07% in 2007. Even if passen-
gers’ traffic represent the most part of air traffic, freight has widely increased
during the period. Indeed, its share has almost doubled. This comment applies
for most cases, except in Russia and CIS, Africa, Central and North America.
The repartition is globally more in favor of passengers’ traffic in the two former
zones. In North America however, freight traffic has relatively more increased
than in other zones, going from 9.12% in 1983 to 18.49% in 2007.

As shown in Table 2.4, at the world’s level, the repartition of air traffic
between international and domestic has always been more favorable to interna-
tional air traffic. Moreover, this share has greatly increased, going from 55.33%
in 1983 to 70.77% in 2006, meaning that globally international air traffic has
more grown than domestic air traffic. Actually, at the regional level, this share
is even more in favor of international air traffic (around 95% in 2006 in Europe

20Actually, Figure 2.5 contains some additional information: in each panel, WLF values and
evolution of each zone may be directly compared to the world’s values and evolution. It then
indicates how the zone performs compared to the world.
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for instance). In fact, the world’s statistic appears biased by the repartition
between international (43.84% in 2006) vs domestic (56.16% in 2006) air traffic
in Central and North America. This region is the only one to feature a repar-
tition more favorable to domestic air traffic, even if international air traffic has
increased during the period (32.79% in 1983, 43.84% in 2006). This analysis
confirms the role played by (i) the domestic market for air transport in the
USA; and (ii) the weight of the North American zone in total air traffic (about
36% in 2006 according to Table 2.2).

Figures 2.6 and 2.7 illustrate, respectively, the results presented in Tables
2.3 and 2.4 (see Appendix). By comparing these figures at the world level
(bottom right panel), the evolution of the repartition between freight and pas-
sengers’ traffic appears to be more stable than the repartition of domestic vs.
international traffic during the period.

Tables 2.3 and 2.4 have shown in two different ways the evolution of air
traffic: first, freight vs. passengers; second, domestic vs. international.

The next subsections explore in greater details these two decompositions
between the evolution of air traffic. The first one focuses on domestic vs. in-
ternational air traffic, while the second focuses on freight vs. passengers’ air
traffic.

2.2 Domestic vs. international air traffic

Compared to Table 2.2, Table 2.5 presents the share of each zone in air traffic
but at a more disaggregated level. Indeed, the latter table presents the share of
each zone in both domestic and international world air traffic. For instance, in
Table 2.2, 36.38% (first line, third column) means that the Central and North
American air traffic represents 36.38% of the world air traffic in 2006. In Ta-
ble 2.5, 66.39% (first line, third column) means that the Central and North
American domestic air traffic represents 66.39% of the world domestic air traf-
fic. Similarly, in Table 2.5, 21.85% (second line, third column) means that the
Central and North American international air traffic represents 21.85% of the
world international air traffic21.

As may be seen in Table 2.5, when compared to Table 2.2, the Central and
North American domestic market predominates other domestic air traffic mar-
kets (by representing around two thirds). On the contrary, whereas this region
represents 36.38% of the world air traffic, its share in world international air
traffic is ‘only’ equal to 21.85% in 2007. Regarding the European region, it ap-
pears that its share in domestic world air traffic is dramatically low. This region

21To summarize,

36.38% =
Central and North American aggregated (domestic+international) air traffic

World aggregated (domestic+international) air traffic

66.39% =
Central and North American domestic air traffic

World domestic air traffic

21.85% =
Central and North American international air traffic

World international air traffic
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indeed represents 26.23% of world aggregated (domestic+international) air traf-
fic (Table 2.2), while it only represents 4.56% of world domestic air traffic. As a
consequence, the share of the European region in world international air traffic
is relatively more developed (34.92% in 2007). The relative sur-representation
of the international air traffic market also applies for the Asian (without China)
and Oceanian region. Figure 2.8 (Appendix) presents the same information as
in Table 2.5.

2.2.1 Focus on domestic air traffic

This section investigates air traffic data at the disaggregated domestic level.
Compared to Table 2.1, Table 2.6 describes domestic air traffic statistics

expressed in levels for each zone and the world. Given the very detailed level of
the descriptive statistics, each disaggregated table is not compared to its corre-
sponding aggregated table (for instance here Tables 2.6 and 2.1), but comments
only focus on the disaggregated table (Table 2.6 here). This comment applies
in the remainder of this section.

At the world level, domestic air traffic has increased at the rate of 4% per
year on average. Domestic air traffic has thus encountered a less dynamic devel-
opment than the aggregated (domestic+international) air traffic (6.44%, Table
2.1). Because the domestic market in the Central and North American region
represents around two thirds of the world domestic market (Table 2.5), its evo-
lution dictates the world evolution. It appears that generally other regions have
had higher growth rates than the world’s evolution. In asian countries, air trans-
port, particularly within domestic markets, appeared to be booming in the first
period. In most Asian countries except China, the financial crisis has affected
people’s willingness to travel. Since 1997, air traffic grew more slowly than in
other aviation regions (Rimmer (2000)). The most dynamic zone was China
(+16.24% during the second sub-period, Table 2.6). Regarding WLF values,
the evolution of mean yearly growth rates is similar to previous comments at
the aggregated level (Table 2.1). Figures 2.9 and 2.10 (Appendix) present the
same information as in Table 2.6.

Table 2.7 shows the repartition of domestic air traffic between passenger and
freight. At the world level, passengers’ (freight) air traffic represents 90.01%
(9.99%) of domestic air traffic in 2007, to be compared with 85.07% (14.93%)
of aggregated (domestic+international) air traffic (Table 2.3). Thus, the share
of passengers is more important in domestic air traffic than in aggregated (do-
mestic+international) air traffic. This stylized fact observed at the world level
applies also at the regional level.

Next section focuses on international air traffic.

2.2.2 Focus on international air traffic

This section investigates air traffic data at the disaggregated international level.
The same type of analysis as in the previous section is developed.

14



0

50

100

150

200

1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007

109 RTK

Central and

Europe

Latin America

Russia and CIS

North America
Africa

The Middle East

Asian countries
and Oceania

China

Note: China starts declaring its domestic air traffic data in 1993. Russia and CIS present some

inconsistency in the data until 1991. Thus, some statistics must be interpreted with great care.

Figure 2.9: Evolution of domestic air traffic (expressed in RTK (billions)) by
zone during 1983-2007.
Source: Authors, from ICAO data.

Compared to Tables 2.1 (aggregated) and 2.6 (domestic), Table 2.8 describes
international air traffic statistics. At the world level, international air traffic has
increased at the rate of 7.49% per year on average. International air traffic has
thus encountered a more dynamic development than domestic – 4%, Table 2.6
– and aggregated (domestic+international) – 6.44%, Table 2.1 – air traffic. The
most dynamic zones were China (+10.44% during the second sub-period) and
the Middle East (8.84% during the whole period). The former Soviet bloc had
little developed its international air transport prior to 1989 (Button (2008)).
Regarding WLF values, the evolution of mean yearly growth rates is very differ-
ent from the aggregated level (Table 2.1): the stylized fact previously identified
at the aggregated (domestic+international) level is not valid at the world level
and for three zones. Figures 2.11 and 2.12 (Appendix) present the same infor-
mation as in Table 2.8.

Table 2.9 shows the repartition of international air traffic between pas-
senger and freight. At the world level, passengers’ (freight) air traffic repre-
sents 83.05% (16.95%) of international air traffic in 2007, to be compared with
85.14% (14.93%) of aggregated (domestic+international) and 90.01% (9.99%)
of domestic air traffic (Table 2.3). Thus, the share of passengers appears to
be less important in international air traffic than in both aggregated (domes-
tic+international) and domestic air traffic. This stylized fact observed at the
world level applies also at the regional level. While for domestic air traffic
the superiority of passengers has been observed at the world level and glob-
ally within each zone, another pattern is observable for international air traffic.
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Figure 2.11: Evolution of international air traffic (expressed in RTK (billions))
by zone during 1983-2007.
Source: Authors, from ICAO data.

Passengers (as opposed to freight) are indeed less represented in international
air traffic, both at the world level and within each zone, than in aggregated
(domestic+international) and domestic air traffic.

Next section focuses on passenger vs. freight air traffic.

2.3 Freight vs. passengers’ air traffic

Similarly to Table 2.5, Table 2.10 presents the share of each zone in air traffic
but at another disaggregated level: freight vs. passengers. As may be seen in
Table 2.10, when compared to Table 2.2, two regions exhibit notable different
patterns in their freight vs. passenger repartition. First, the Central and North
American freight market predominates other freight markets (by representing
43.07%). On the contrary, whereas this region represents 36.38% of the world
air traffic, its share in world passenger traffic is equal to 33.32% in 2007. Second,
in the European region, it appears that its share in freight traffic is 6 percentage
points lower than its share in world aggregated (freight+passenger) air traffic
(26.23%, Table 2.2). It represents indeed 20.35% (Table 2.10) of world freight
traffic. Compared to their repartition at the aggregated (freight+passenger)
level (Table 2.2), other regions do not exhibit notable different patterns in their
freight vs. passenger repartition. Figure 2.13 (Appendix) presents the same
information as in Table 2.10.

2.3.1 Focus on freight air traffic

This section investigates air traffic data at the disaggregated freight level.
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Figure 2.14: Evolution of freight air traffic (expressed in RTK (billions)) by
zone during 1983-2007.
Source: Authors, from ICAO data.

Compared to Table 2.1, Table 2.11 describes freight traffic statistics ex-
pressed in levels for each zone and the world. At the world level, freight traffic
has increased at the rate of 9.14% per year on average. The key influence on air
freight demand is world economic and trade growth. The air cargo volume has
grown at between 1.5 and 2 times the rate of worldwide GDP growth (Zhang
and Zhang (2002)) during the 1990s. Freight traffic has played an increasingly
important role in world trade (Kasarda and Green (2005)), and has thus encoun-
tered a more dynamic development than the aggregated (freight+passenger) air
traffic (6.44%, Table 2.1). Globally, other regions have a similar development,
except China which registered the highest mean yearly growth rate (12.62%
for the second sub-period). This spurt is mainly due to the China’s rapid in-
dustrialization and the development of its manufacturing industries that export
commodities and import components that are needed to keep factories working
(Button (2008)). Regarding WLF values, the evolution of mean yearly growth
rates is very different from the aggregated level (Table 2.1): the stylized fact pre-
viously identified at the aggregated (domestic+international) level is not valid
at the world level (same negative values for both sub-periods: -0.13%) and for
five zones. Figures 2.14 and 2.15 (Appendix) present the same information as
in Table 2.11.

Table 2.12 shows the repartition of freight between domestic and interna-
tional air traffic. At the world level, domestic (international) air traffic repre-
sents 19.42% (80.58%) of freight traffic in 2007, to be compared with 29.23%
(70.77%) of aggregated (freight+passenger) air traffic in 2006 (Table 2.4). Thus,
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the share of international air traffic is more important in freight than in aggre-
gated (freight+passenger) air traffic. This stylized fact observed at the world
level applies also at the regional level. This statistic is logical given the nature of
freight transport, which is inherently international (Gardiner and Ison (2007)).

Next section focuses on passengers’ air traffic.

2.3.2 Focus on passengers’ air traffic

This section investigates air traffic data at the disaggregated passengers’ level.
This section provides tables labelled in both RTK and RPK. To conserve space,
we only comment RTK values, as it is directly comparable with previous sec-
tions. However, because passengers’ air traffic data are usually provided in RPK
units, descriptive statistics expressed in RPK are also included in the Appendix
22.

Compared to Tables 2.1 (aggregated) and 2.11 (freight), Table 2.13 describes
passengers’ air traffic statistics. At the world level, passengers’ air traffic has
increased at the rate of 6.04% per year on average. Passenger’s air traffic has
thus encountered a less dynamic development than freight – 9.14%, Table 2.11
– and roughly the same as aggregated (freight+passenger) – 6.44%, Table 2.1
– air traffic. The most dynamic zones are China (+12.13% during the second
sub-period). Note that passengers’ air traffic in the Central and North Amer-
ican zone has registered a lower growth rate than the world’s average growth
rate, both for the whole period and the corresponding sub-periods. In Asian
countries (except China), as was the case with the freight market, passenger
traffic dipped in 1998. Recall that, to compare results throughout the paper,
passengers’ WLF values are given in RTK instead of RPK, which explains some
difference with the values usually found in the literature. Besides, passengers’
WLF values in RPK are given in the Appendix. Regarding WLF values, the
evolution of mean yearly growth rates is slightly different from the aggregated
level (Table 2.1): (i) passengers’ WLF mean yearly growth rates are positive
within each sub-period; and (ii) these mean growth rates are higher during the
second sub-period. Note that passengers’ WLF stylized facts are not valid for
two zones: Europe and the Middle East. Figures 2.16 and 2.17 (Appendix)
present the same information as in Table 2.13.

Table 2.14 shows the repartition of passengers’ air traffic between domestic
and international. At the world level, domestic (international) air traffic repre-
sents 30.71% (69.29%) of passengers’ traffic in 2007, to be compared with 29.23%
(70.77%) of aggregated (freight+passenger) air traffic in 2006 (Table 2.4). Con-
trary to freight (Table 2.9), the same pattern for domestic vs. international
applies for both passengers’ – Table 2.14 – and aggregated (freight+passenger)
– Table 2.4 – air traffic. Note that the same kind of descriptive statistics for
passengers’ air traffic are also provided in RPK units (instead of RTK) in the

22Comments on RPK figures are left to the reader.
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Figure 2.16: Evolution of passengers’ air traffic (expressed in RTK (billions))
by zone during 1983-2007.
Source: Authors, from ICAO data.

Appendix23.

World air traffic grew by 6.44% per year according to ICAO data. Figures
show that air traffic (expressed in RTK) has quadrupled between 1983 and 2007.
Freight traffic showed 9.14% yearly average growth over the period 1983-2007
while passenger traffic grew at 6.04%.

Regional variations in traffic are pronounced. Between 1983 and 2007, air
traffic in China grew at a much faster rate than the rest of the world, i.e. 17.13
%. At the same time, Central and North America, which is the only region
with a huge domestic market, saw their passenger traffic increase per year by
5.14% with freight growing by 8.78%. Europe followed the same trend with
freight traffic up by 9.18%, while passenger lagged behind at 7.01%. In Asia,
the financial crisis slashed demand for business and leisure air travel. In this
region, air traffic dipped in 1998 and then continued to grow at a slower pace
than previously. Both domestic and international air traffic have increased in
Russia and the CIS by 10% over the past 10 years. RTK of the airlines of the
Middle East region increased at a rate of 13.02% over the 1996-2006 period,
substantially higher than the world average (5.34%).

There are important links between economic growth and aviation. Thus,
macroeconomic conditions and external shocks had a significant impact on the

23Tables 2.15 and 2.16 correspond to Tables 2.13 and 2.14 whereas Figures 2.18 and 2.19
correspond to Figures 2.16 and 2.17, respectively.
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year-on-year growth rates of the air traffic. The 1991 Gulf War had a strong
impact on international traffic. Moreover, the 09/11 terrorist attacks were fol-
lowed in 2002-2003 by the invasion of Afghanistan, the Iraq War, and the Severe
Acute Respiratory Syndrome (SARS) epidemic in Asia. They had a dramatic
effect on the demand for air travel.

Next section develops the methodology to compute Energy Efficiency (EE)
coefficients.
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3 Traffic efficiency improvements and energy ef-

ficiency coefficients

As already explained, Jet-Fuel is not consumed for itself, but to power aircraft
engines which depend on the demand for mobility in air transportation. Thus
Jet-Fuel forecasts are not based directly on Jet-Fuel consumption time-series,
but need to be computed from air traffic forecasts. As a consequence, Jet-Fuel
demand forecasts are obtained following a two-step methodology. First, total
air traffic flows and their growth rates have to be forecast. Second, these traffic
forecasts are converted into a quantity of Jet-Fuel to obtain Jet-Fuel demand
forecasts.

This section deals with converting air traffic projections into quantities of
Jet-Fuel. That is to say, one of the major tasks of this paper consists in linking
the methodological first and second steps. To do so, it relies on the ‘Traffic Ef-
ficiency’ method developed previously by UK DTI to support the IPCC (1999)
to deduce the amounts of Jet-Fuel demand projections from air traffic forecasts
estimated during the first step.

Basically, the ‘Traffic Efficiency’ methodology allows to obtain Energy Effi-
ciency (EE) coefficients (called ‘EE coefficients’ in the remainder of the paper)
to convert one amount of air transport – usually expressed in RTK or ATK (see
above for more details) – into one amount of Jet-Fuel – usually expressed in
billions ton of oil equivalent (Mtoe).

Energy Efficiency is a measure for the technological performance of an in-
dividual aircraft or an aircraft fleet. Currently, no Energy Efficiency metric
standard has been clearly established in the literature24. In this paper, we have
chosen to express Energy Efficiency in terms of mass of Jet-Fuel per Available
Ton Kilometers (ATK)25:

EEi,t =
Tjeti,t
ATKi,t

(1)

with EEi,t the abbreviation for EE coefficient in zone i at time t26. Thus

24According to Peeters et al. (2005), Lee et al. (2001) first introduced the term Energy
Intensity (expressed in Mjoule/ASK) as a measure for the technological performance of an in-
dividual aircraft. Following Peeters et al. (2005), we prefer to use the term ‘Energy Efficiency’
rather than ‘Energy Intensity’. Indeed, ‘Energy Intensity’ more refers to individual aircraft
performances, whereas this study deals with estimating the actual efficiency of the collective
fleet; i.e. on a global basis rather than at the aircraft level.

25See Owen (2008) for other EE metric definitions used in the literature.
26It would be natural to have RTK instead of ATK in this equation. However, before

converting RTK into Jet-Fuel quantities, it is first necessary to convert RTK into ATK. The
link between RTK and ATK is the Load Factor (LF), expressed in percentage. The latter may
be defined as the percentage of an aircraft available ton effectively occupied during a flight.
Thus for one flight, RTK = LF × ATK. Once RTK are converted into ATK, it becomes
possible to deduce the total amount of Jet-Fuel demand projections from air traffic forecasts
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defined, EE may be interpreted as the quantity of Jet-Fuel (expressed in ton
of Jet-Fuel) required to power the transportation of one ton over one kilometer
(ATK)27.

The intuition behind this method may be summarized as follows. The rise
of Jet-Fuel demand resulting from air traffic demand rise can be mitigated by
energy efficiency improvements. For instance, an increase of 6% per year of air
traffic does not mean a strictly corresponding increase of 6% in Jet-Fuel demand.
According to Greene (1992, 2004), the large increase in aviation traffic has been
accompanied by dramatic improvements in the energy efficiency of aviation over
the last 30 years.

Thus, one of the major tasks of the second step of the general methodology
consists in examining the expected rates, expressed per year, of EE improve-
ments; corresponding to the evolution of air traffic energy gains.

According to previous literature (Greene (1992, 1996, 2004), IPCC (1999),
Lee et al. (2001, 2004, 2009), Eyers et al. (2004), Lee (2010)), traffic efficiency
improvements depend on: (i) load factors improvements (aircraft are using more
of their capacity); (ii) energy efficiency improvements. Note that in the former
case (load factors improvements) no technological progress is achieved: airlines
diminish their Jet-Fuel consumption by filling more their aircrafts. However,
in the latter case (energy efficiency improvements) there may be some oppor-
tunities for technological progress to happen. Energy efficiency improvements
depend on a wide variety of factors, some of which are not linked to technological
progress (such as Air Traffic Management), while others do. In the latter cate-
gory, which is most likely predominant in the evolution of energy efficiency, the
factors concern first the upgrade of existing aircrafts, and second changes in air-
craft and airframe/engine design which are conditioned to the fleet renewal rate.

As a consequence, and regarding the objective of this section, two pieces
of information are required to convert air traffic projections into quantities of
Jet-Fuel: first, value(s) of EE coefficients; second, a rule for the evolution of EE
coefficients.

To obtain this information, previous literature uses a specific methodology
called ‘bottom-up’ in the remainder of the paper. The major contribution of
this section consists in proposing a new methodology to obtain EE coefficients
based on modeling at the macro-level.

The first subsection summarizes previous ‘bottom-up’ methodologies. It
also explains why these methodologies have not been retained here. The second

estimated during the first step by using the equation of EE coefficients.
27Jet-Fuel consumption is obtained from IEA, while ATK are given by ICAO. See below for

more details.
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subsection introduces the new macro-level methodology (as opposed to ‘Bottom-
up’ ones). The third subsection contains the results from the new methodology.
The last subsection conclude by comparing our results with the ‘Bottom-Up’
methodology ones.

3.1 Methodologies used in the literature: the ‘Bottom-up’

approaches

Previous literature features two ways of modeling air transport mobility. First,
modeling by routes (gravity models), and second modeling without routes (sim-
ple time-series analysis). In the former modeling, air traffic is estimated for
various routes. At a more aggregated level, it allows to forecast traffic flows
between two regions, for instance between Europe and Asia. On the contrary,
the latter modeling does not allow to forecast traffic flows, but the expansion of
various regions. In other words, the latter methodology provides spheres instead
of routes.

To convert air transport traffic into Jet-Fuel demand, researchers generally
use a ‘bottom-up’ approach to (i) obtain EE coefficients, and (ii) deduce an
evolution rule for EE coefficients (see for instance Greene (1992, 1996, 2004),
IPCC (1999), Eyers et al. (2004)). This ‘bottom-up’ approach is mostly used
for modeling by routes. In his econometric estimation of demand for air travel in
the US, Bhadra (2003) defines ‘top-down’ and ‘bottom-up’ approaches. When
demand is determined econometrically by GDP, among other things, the esti-
mated relationship is then allocated from the top down to the terminal areas,
taking into consideration the historical shares of the airport, master plans, and
expert opinion, to derive traffic forecasts. By contrast, when econometric re-
lationships are estimated at a lower level (i.e., between origin and destination
travel), they may be called a bottom-up approach. While traffic forecasts are
primarily designed to serve as a terminal area planning tool, the latter approach
focuses on market routes and flows (i.e., passengers and aircraft) within. Thus,
‘bottom-up’ approaches appear especially useful for network flow aspects. Sev-
eral studies may be cited in this literature. Bhadra and Kee (2008) analyze the
structure and dynamics of the origin and destination of core air travel market
demand using 1995-2006 US quarterly time-series data. They show that passen-
ger flows between origin and destination travel markets have exhibited strong
growth in recent years. Macintosh and Wallace (2009) document international
aviation emissions to 2025. They remark that the fuel efficiency gains associated
with the latest generation of aircraft are unlikely to be sufficient to offset the
increases in international demand, and conclude that the slow rate of turnover
in the fleet will hinder progress on curbing emissions growth. Mazraati and
Faquih (2008) model aviation fuel demand in the case of the USA and China.
By estimating Jet-Fuel demand in these two extremes of a mature sector versus
a fast growing one, they confirm that mature sectors tend to be more sensitive to
fluctuations in fuel prices and economic growth, as opposed to the fast growing
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Figure 3.1: Evolution of average Jet-Fuel consumption by aircraft vintage
expressed in Mjoule per ASK (1955-2010).
Source: Authors, based on manufacturers’ data.

regions where the price effect is less pronounced28.

The so-called ’bottom-up’ approach starts with the observation of aircrafts’
energy efficiency (expressed in Mtoe/ASK, liter/ASK or Mjoule/ASK). Air-
crafts’ energy efficiencies are published by manufacturers. By replacing aircrafts’
models by their vintage year, one can obtain (i) approximations of the values
of Jet-Fuel consumption for a typical aircraft, and (ii) an idea of the evolution
rule of EE coefficients overtime (Greene (1992, 1996, 2004), IPCC (1999), Eyers
et al. (2004))).

Such a representation is given in Figure 3.1. The first point represents the
average Jet-Fuel consumption of the Comet 4 aircraft model issued in 1958. The
last point represents the average Jet-Fuel consumption of the A350-900 aircraft
model issued in 2011. In Figure 3.1, notice that due to technological innovations
aircrafts’ energy efficiency has been improved by a factor nearly equal to 3.50
between 1958 and 2007.

Having detailed the ’bottom-up’ methodology, one understands why it is
usually used in the literature due to its intuitive appeal. However, this ap-
proach encounters several important empirical limits.

First, it relies on a few assumptions which may be seen as too restrictive.
Indeed, once the ’bottom’ step has been performed (as illustrated by Figure
3.1), some assumptions need to be made in order to obtain EE coefficients at
the aggregated level. These assumptions include basically: i) the composition
of the aircrafts’ fleet, and ii) an evolution rule for this fleet concerning the re-
newal/upgrade policy of existing aircrafts. This underlying information about
fleet characteristics and their evolution appears hard to investigate in practice,

28Besides, they show that the Chinese aviation sector and Jet-Fuel consumption will con-
tinue to outpace that of the United States, but growth in both regions will reach a steady
state as the Chinese economy cools down and approaches maturity.
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since researchers lack the access to detailed and reliable databases on this topic.
The need for such data is all the more complicated that it is required by routes.
Based on these restrictive assumptions, average aircrafts’ Jet-Fuel consumption
are used to obtain aggregated EE coefficients and their evolution rule.

Second, besides relying on restrictive assumptions, this approach is very
time-consuming in terms of data management. Modeling by routes adds an-
other layer of complexity, since this approach necessitates to obtain aggregated
EE coefficients for each route.

Third, recall that there exist two main factors to increase traffic efficiency:
load factors improvements on the one hand, and energy efficiency improvements
on the other hand. The latter factor contains three possible sources of improve-
ments: ATM, aircrafts’ upgrades, and fleet renewal. Regarding energy efficiency
improvements, the ‘bottom-up’ approach relies only on the last two sources. No
improvements stemming from ATM can thus be accounted for when using this
methodology.

Fourth, the last drawback concerns data availability. Recall that (i) EEi,t =
Tjeti,t/ATKi,t, and (ii) ‘bottom-up’ approaches are mostly used with modeling
by routes. ICAO provides air traffic by routes only for international scheduled
air traffic (not for domestic air traffic)29. IEA does not provide Jet-Fuel con-
sumption by routes, but by countries. Whereas the ‘bottom-up’ approach leads
to obtain Jet-Fuel consumption by routes, results cannot be confronted to ac-
tual data. Even if the ‘bottom-up’ approach is not used for modeling by route,
it supposes to infer Jet-Fuel consumption data which is then adjusted to match
historical data, as provided by IEA.

Given these various limits, an alternative methodology to compute directly
aggregated EE coefficients is presented in the next section based on deductions
from empirical data.

3.2 Macro-level methodology proposal used in this paper

This section proposes another approach to reconstruct EE coefficients values
and their evolution rule. It departs from the previous one by 1) providing di-
rectly aggregated EE coefficients; and 2) deducing them directly from empirical
data.

As defined in eq(1):

EEi,t =
Tjeti,t
ATKi,t

29When forecasting Jet-Fuel demand at the worldwide level, this data limitation generates
some incoherence in the methodology used: international air traffic may be modelled by route,
while domestic air transport cannot. This limitation involves to use another type of dataset.

25



The new methodology proposed to obtain EE coefficients is to directly com-
pare the Jet-Fuel consumption and the evolution of air traffic (see Figure 3.2).
As straightforward as it may look like, this methodology has not been imple-
mented before to our best knowledge30.

Again, Jet-Fuel consumption is obtained from IEA, while air traffic is given
by ICAO. More precisely the ‘World Energy Statistics and Balances’ database
of the International Energy Agency (IEA) provides Jet-Fuel consumption (ex-
pressed in ktoe) for the 1980–2006 period, while the ‘Commercial Air Carriers
- Traffic’ database of the ICAO provides Air traffic (expressed in ATK) data
during 1980–2007. Both databases provide these data by country. It is thus
readily possible to re-aggregate these two data time-series for each of the eight
regions preliminary defined.

This macro-level methodology allows then to obtain the ‘aggregated’ EE
coefficients – as opposed to ‘bottom-up’ EE coefficients – and their growth rates
from 1980 to 2006. This idea is summarized for a typical region in Figure 3.2.

1980 1985 1990 1995 2000 2005

TJet

ATK

1980 1985 1990 1995 2000 2005

EE coefficients

left panel: Jet-Fuel consumption (expressed in Mtoe) and air traffic (expressed in ATK);

right panel: EE coefficients computed as the ratio of the former over the latter.

Figure 3.2: Illustration of the Macro-level methodology used to compute
‘aggregated’ EE coefficients and their yearly growth rates.

In Figure 3.2 (left panel), the solid black line represents air traffic (expressed
in ATK) and the dotted black line represents Jet-Fuel consumption (expressed
in ktoe) for a given region. As defined in eq(1), EE coefficients for each year
may be obtained by dividing ktoe/ATK (right panel).

Thus defined, EE corresponds to the quantity of Jet-Fuel required to power
the transportation of one ton over one kilometer. For a given region EEt+1 <
EEt means that quantities of Jet-Fuel required to power the transportation of
one ton over one kilometer have decreased. Thus, a negative growth rate of
EE coefficients, as it is expected, indicates the realization of energy efficiency

30Peeters et al. (2005) and Owen (2008) already had the same intuition as ours, but they
did not apply the methodology at such a detailed level compared to what we do here.
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improvements in air traffic for the region under consideration. As it may be
deduced from the illustrative Figure 3.2, EE coefficients negative growth rates
arise when, in a given year, Jet-Fuel consumption growth rates are slower than
air traffic ones.

By following this methodology, first for each zone the value of the EE coeffi-
cients until 2006 is obtained. Second, an evolution rule for these EE coefficients
in the future may be derived for each zone by observing the evolution of their
growth rates between 1980 and 2006. Actually, both datasets are available at
an even more disaggregated level for each zone, i.e. domestic vs. international.
Following the same methodology for each region, it becomes thus possible to
obtain not only the ‘aggregated’ EE coefficients, but also EE coefficients corre-
sponding to both international and domestic air travels.

This methodology allows to investigate three issues. First, by comparing the
evolution of EE coefficients overtime, one may observe the occurrence (or not)
of energy efficiency improvements over the last 30 years. Second, by comparing
the values found for aggregated EE coefficients, one may deduce which zone is
more energy efficient compared to others. Third, by comparing ‘domestic’ and
‘international’ EE coefficients within each zone, one may observe if domestic air
travel is effectively less efficient than international air travel31. These questions
are investigated in-depth in Section 3.3.

The new methodology proposed seems promising. However, it is also char-
acterized by some limitations.

First, EE coefficients obtained cannot be used in a modeling by routes. This
restriction supposes a modeling without routes, as done in this paper. This
corresponds to an output loss compared to the ‘bottom-up’ approach, which
does not prevent from using either of the two modeling types of air transport
mobility.

Second, even if all potential sources of energy efficiency improvements are
covered by the macro-level methodology, it is not possible to disentangle the ef-
fects from which improvements in energy efficiency are obtained. Recall that it
could come from ATM, aircrafts’ upgrades, aircraft and airframe/engine design
(which is linked to fleet renewal rates). However, this drawback is relatively
less important than the corresponding limitations of the ‘bottom-up’ approach,
which cannot account for the ATM source of possible energy efficiency improve-
ments.

Overall, each methodology (‘bottom-up’ vs. macro-level) involves numerous
assumptions. For various reasons presented above, it has been chosen to use the
macro-level methodology in this paper. Results of this methodology are given

31As highlighted in the literature (Gately (1988), Vedantham and Oppenheimer (1998)),
domestic air traffic is supposed to be more energy intensive than international air traffic due
to more frequent take-off and landing of aircrafts, the most energy-intensive component of a
flight.
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in the next section.

3.3 Results of the Macro-level methodology

As already explained, the macro-level approach to recover EE coefficients is
summarized in eq(1):

EEi,t =
Tjeti,t
ATKi,t

where EE coefficients for the i-th region and date t correspond to the ratio
of Jet-Fuel consumption (Tjeti,t) over air traffic (ATKi,t). Again, the ‘World
Energy Statistics and Balances’ database of the International Energy Agency
(IEA) provides Jet-Fuel consumption (expressed in ktoe) for the 1983–2006 pe-
riod, while the ‘Commercial Air Carriers - Traffic’ database of the ICAO provides
Air traffic (expressed in ATK) data during 1983–2007. Both databases are given
by country. Thus, for each zone, EE coefficients are computed over the period
going from 1983 to 2006.

These mean values are presented for two sub-periods (1983-1996 and 1996-
2006) and the whole period. Databases are first re-aggregated by region. Then,
EE coefficients are computed for each region. Countries do not necessarily start
declaring their data simultaneously. For instance, China has started to declare
its air traffic data to ICAO since 1993. As a consequence, exogenous shocks
in the evolution of EE coefficients values may be wrongly interpreted, as they
only reflect the entrance of a new data source (e.g. a country starts declaring
either its Jet-Fuel consumption or its air traffic data). Thus, to smooth these
potential biases in the data, EE coefficients are presented in mean values during
two sub-periods: 1983-1996 and 1996-2006, besides the whole period.

Despite the fact that data are globally available since 1983, USSR started to
declare its air traffic data in 1983 only. Besides USSR, some other countries did
not declare either air traffic data or Jet-Fuel consumption during the first years
of the 1980s. Thus, it has been chosen to start the first sub-period in 1983, in
particular to allow comparisons of the Russia and CIS region with other regions.

EE mean values during the first sub-period are not provided for two regions:
China, and Russia and CIS. Again, China starts declaring its air traffic data in
1993. Russia and CIS presents some inconsistencies in the data during 1991-
1992, since this region had to be re-aggregated.

This section presents results from the macro-level methodology. A three-step
analysis is conducted here.

First, EE coefficients values for each zone and the world and their respective
growth rates are presented and analyzed. By comparing the evolution of EE
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coefficients overtime, one may observe the occurrence (or not) of energy effi-
ciency improvements over the last 30 years. Thus, both research questions are
answered, i.e. what is the value of the EE coefficients for each zone, and what
is their respective evolution rule. These coefficients are given for international
and domestic travels, and at the aggregated (domestic + international) level.

Second, EE coefficients values are compared in order to assess which region
is more energy efficient compared to the world’s average.

Third, within each zone, domestic EE coefficients are compared with inter-
national EE coefficients. This is done in order to test if domestic air travel is
less efficient than international air travel, as underlined in the literature.

It is worthy to remark that, to our best knowledge, this paper provides for
the first time EE coefficients at such a detailed level: (i) by region; and (ii) by
type of travel (domestic vs. international).

3.3.1 How do EE coefficients evolve overtime? An analysis for each
zone and worldwide

EE coefficients mean values, their yearly mean growth rates for sub-periods and
the whole period, and the rate of change during the whole period are provided
in Table 3.1. These coefficients are presented for domestic travel, international
travel, and aggregated (domestic+international) travel, and for each region and
the world. Comments are not provided for the mean value of each zone, as the
actual figures obtained are not meaningful. However, the comparison of these co-
efficients between and within regions yields significant economic insights. These
comments are presented in the two next subsections (respectively in Tables 3.2
and 3.3)32.

In what follows, only yearly mean growth rates are commented upon. As
explained above, one may observe the occurrence (or not) of energy efficiency
improvements over the last 30 years by comparing the evolution of EE coeffi-
cients overtime. EE coefficients indicate the quantities of Jet-Fuel required to
power the transportation of one ton over one kilometer (recall eq(1)). Hence
computed, a decrease in EE coefficients indicates that less Jet-Fuel is needed
to power the same unit of air transport. Thus, negative growth rates of EE
coefficients shall be interpreted as energy efficiency improvements.

32As explained in the introduction, some authors rather express energy efficiency coefficients

as the ratio of Jet-Fuel consumption over air traffic (EE
′

i,t =
Tjeti,t
ATKi,t

). In this case, one

generally prefers to use the term ‘Traffic Efficiency’ (see Owen (2008) for more details). Traffic
efficiency is then the reciprocal of fuel efficiency. To facilitate comparisons between these two
approaches, these coefficients are also provided in the Appendix (Tables 3.1bis, 3.2bis, 3.3bis).
Comments of these Tables are left to the reader.
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All regions have registered energy efficiency improvements during the whole
period at the aggregated (domestic+international) level. Effectively, all yearly
mean growth rates are negative (Table 3.1, sixth column), ranging from -0.80%
(Africa) to -3.86% (the Middle East)33. At the world level, energy efficiency im-
provements have been equal to 2.88% per year during the whole period (Table
3.1, sixth column, last lines). Still at the world level, energy efficiency improve-
ments have been more important during 1983-1996 (3.09% per year; see Table
3.1, fourth column, last lines) than during 1996-2006 (2.61% per year; see Table
3.1, fifth column, last lines).

The macro-level methodology proposed here leads us to recover, and quan-
tify, previous results highlighted in the literature. Energy efficiency improve-
ments have been effectively accomplished in the air transport sector. According
to our methodology, these energy efficiency improvements have been rather im-
portant during the last 30 years (about 3% per year at the world level).

These results depart however from previous literature. First, energy effi-
ciency improvement values drawn from the macro-level approach are relatively
higher than those obtained with the ‘Bottom-up’ method. Indeed, The most
often cited energy efficiency gains estimates are generally comprised between
1.5% per year (Lee et al. (2004)) and 2.2% per year (Airbus (2007))34. Second,
applied to the eight different regions, the macro-level methodology indicates
that energy efficiency improvements have been very heterogeneous between re-
gions during the last 30 years.

The two next sections present the comparison between and within regions
of these EE coefficients values.

3.3.2 Which region is more energy efficient?

To compare EE coefficients between regions, three kinds of ratios between EE
coefficients are computed. Results are presented in Table 3.2.

In Table 3.2, aggregated (domestic + international), domestic and interna-
tional EE coefficients mean values of each region are compared to the world ones
for the whole and the corresponding sub-periods. To do so, ratios presented in
the first (respectively second and third) line of the i-th region correspond to,
for the period under consideration, the aggregated (respectively domestic and
international) EE coefficient mean value of the i-th region over the aggregated
(respectively domestic and international) EE coefficient mean value of the world.
In other words, these ratios are computed as follows:

33Note the presence of two outliers at the domestic vs. international level: Africa registers a
yearly mean growth rate of +3.50% at the domestic level during the whole period (this region
records however negative yearly mean growth rates during the second sub-period); and Latin
America registers a positive growth rate of +0.14% at the international level during the whole
period.

34See Eyers et al. (2004) and Mayor et Tol (2010) for a more comprehensive literature
review.
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EEi,t,k

EEw,t,k

(2)

where EEi,t,k represents the EE coefficient mean value of region i, at time
t={1983-1996;1996-2006;1983-2006}, and for kind of travel k={aggregated; do-
mestic; international} and EEw,t,k represents the EE coefficient mean value of
the world, at time t={1983-1996;1996-2006;1983-2006}, and for kind of travel
k={aggregated; domestic; international}.

For instance the value in the first line of the first column (0.95) represents
the relative energy efficiency mean value of the Central and North American
region during 1983-1996, when compared to the world’s energy efficiency. It
corresponds to the ratio of 3.93E− 0.7/4.17E− 0.7, where 3.93E-0.7 is equal to
the Central and North American region EE coefficient value during 1983-1996
(Table 3.1, first line, first column), and 4.17E-0.7 is equal to the World’s EE
coefficient value during 1983-1996 (Table 3.1, third to last line, first column).

Again, according to eq(1), EE coefficients mean values shall be interpreted
as the quantity of Jet-Fuel required to transport a given quantity (ton) over a
given distance (kilometer). A ratio superior to one means that one needs more
quantity of Jet-Fuel to transport one ton kilometer in a given region compared
to the world’s average. Thus constructed, a ratio >(<) 1 means that the re-
gion’s energy efficiency is inferior (superior) to the world’s energy efficiency.

During the whole period35 (Table 3.2, column 3), aggregated (domestic +
international) EE ratios are less than one for four regions (Central and North
America, Europe, China, Asia and Oceania), and greater than one for the four
others (Latin America, Africa, Russia and CIS, the Middle East). This result
means that, for aggregated (domestic + international) travel, the former regions
are in average more energy efficient during the whole period than the world’s
benchmark. On the contrary, the four latter regions are less energy efficient
than the world’s average during 1983-2006. According to previous literature
(Greene (1992, 1996, 2004), IPCC (1999), Eyers et al. (2004)), these results
appear quite intuitive except for the Middle East region. Indeed, according to
the results, the Middle East seems to be 1.66 more energy-intensive than the
world’s benchmark (Table 3.2, sixteenth line, third column). This particular
case is further investigated below by a visual inspection of the data. Comments
are not further developed at the domestic vs. international level, since they fol-
low the same trends as observed at the aggregated (domestic + international)
level.

Figure 3.3 (Appendix) provides a visual representation of the evolution of
EE coefficients. It compares each region’s aggregated EE coefficients against
the world’s benchmark (left panel).

35Comments apply only for the second sub-period for Russia and CIS, and China. See above
in Section 3.3 for more details.
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EE coefficients correspond to the ratio of two time-series: Jet-Fuel consump-
tion over Air traffic. To understand EE coefficients evolution (Figure 3.3, left
panel), one needs thus to know the evolution of the two time-series. That is
why they are also represented in middle and right panels.

By looking at Figure 3.3, one may observe the results commented in Table
3.2. EE coefficients (solid black curve) of Central and North America (first line,
left panel), Europe (second line, left panel), Asia and Oceania (seventh line,
left panel) and China (eighth line, left panel) are globally below the EE world’s
benchmark (dashed black curve). One retrieves indeed the result that these
regions are the less energy-intensive in the world. Similarly, the same patterns
as in Table 3.2 are observable for the four more energy-intensive regions.

Figure 3.3 provides an additional information compared to Table 3.2: all EE
trends are decreasing globally. These globally decreasing trends illustrate that
each region has achieved energy efficiency improvements, as it has been already
highlighted in Table 3.2.

As explained above, the middle and right panels of Figure 3.3 allow to un-
derstand the evolution of EE coefficients by representing the evolution of its
constituent aggregates: Jet-Fuel consumption (expressed in Mtoe, middle panel)
and air traffic (expressed in ATK, right panel).

This representation is convenient, since it may explain the a priori counter-
intuitive results observed in the Middle East. Indeed, Table 3.2 indicated that
this region is less energy efficient than the world’s benchmark. It is common
knowledge that the Middle East airline companies are currently purchasing a
lot of new aircrafts. Thus, they have a higher fleet renewal rate than other
airlines. One may deduce that in this region the performance in terms of energy
efficiency should be relatively better than the world’s benchmark. By look-
ing at the left panel of Figure 3.3, EE coefficients are effectively always above
the world’s benchmark during the period, but they have dramatically decreased
since 2001 to be below this benchmark in 2006. When looking at the right panel
of Figure 3.3, a strong increase of the traffic registered in this region may be
noted since 2001. However, one cannot notice an equivalent increase in the con-
sumption of Jet-Fuel during the same period in the middle panel of Figure 3.3,
which means that energy efficiency improvements must have occurred through
the use of newer aircrafts.

The next section compares international and domestic EE coefficients.
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3.3.3 Are domestic air travels less energy efficient than international
ones?

To reply to this question, one proposes to compare EE coefficients within re-
gions. To do so, three kinds of ratios between EE coefficients are computed.
Results are presented in Table 3.3.

In Table 3.3, within each zone, domestic and international EE coefficients
mean values are compared to respectively aggregated (domestic + international)
and international ones for the whole and the corresponding sub-periods. To do
so, ratios presented in the first (respectively second and third) line of the i-th
region correspond to, for the period under consideration, the domestic (respec-
tively international and domestic) EE coefficient mean value of the i-th region
over the aggregated (respectively aggregated and international) EE coefficient
mean value of the same region. In other words, these ratios are computed as
follows:

First Ratio =
EEi,t,dom

EEi,t,agg

Second Ratio =
EEi,t,int

EEi,t,agg

Third Ratio =
EEi,t,dom

EEi,t,int

(3)

where:
EEi,t,dom represents the EE coefficient mean value of region i, at time t={1983-
1996;1996-2006;1983-2006} for domestic air travel;
EEi,t,agg represents the EE coefficient mean value of region i, at time t={1983-
1996;1996-2006;1983-2006} for aggregated (domestic + international) air travel;
EEi,t,int represents the EE coefficient mean value of region i, at time t={1983-
1996;1996-2006;1983-2006} for international air travel.

For instance the value 1.33 (Table 3.3, last line, third column) represents the
domestic relative energy efficiency mean value of the world during the whole pe-
riod, when compared to its international energy efficiency. It corresponds to the
ratio of 4.36E − 0.7/3.28E − 0.7, where 4.36E − 0.7 is equal to the world’s
domestic EE coefficient value during the whole period (Table 3.1, second-to-
last line, third column), and 3.28E − 0.7 is equal to the World’s international
EE coefficient value during the whole period (Table 3.1, last line, third column).

Again, according to eq(1), EE coefficients mean values shall be interpreted
as the quantity of Jet-Fuel required to transport a given quantity (ton) over a
given distance (kilometer). Thus constructed, a ratio >(<) 1 means that the
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Figure 3.4: Comparison of the evolution of (i) aggregated (domestic + inter-
national), (ii) domestic and (iii) international EE coefficients at the world level
from 1990 to 2006.
Source: Authors, from ICAO and IEA data.

energy efficiency of the kind of travel in numerator is inferior (superior) to the
kind of travel in denominator. These ratios aim at comparing, within each re-
gion, (i) the domestic vs. aggregated (domestic+international) EE coefficients
mean values, (ii) the international vs. aggregated (domestic+international) EE
coefficients mean values, and (iii) the domestic vs. international EE coefficients
mean values.

Hence, the value 1.33 (Table 3.3, last line, third column) indicates that there
is a ratio of 1.33 to one between world’s international and domestic energy effi-
ciencies for the whole period. Thus, at the world level, domestic energy efficiency
appears to be lower than the international one. This comment applies in all re-
gions: domestic energy efficiency appears to be inferior to international energy
efficiency whatever the region considered (third line for each zone). This result
confirms the intuition that domestic air travels are more energy intensive than
international air traffic. One of the main reasons advanced in previous literature
is that domestic flights are more energy intensive due to more frequent take-off
and landing.

Figure 3.4 clearly illustrates this stylized fact. At the world level, interna-
tional air travels (black dashed line) are more energy efficient than domestic
air travels (gray dashed line), over the last twenty years. Indeed, the domestic
EE coefficients curve is above the one for international EE coefficients36. Thus,

36As a consequence the aggregated (domestic + international) EE coefficients curve (solid
black line) is between the two other ones.
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this figure illustrates previous results presented in Table 3.3. Moreover, the de-
creasing trend of the three curves illustrates the results presented in Table 3.1:
both international and domestic air travels – and as a consequence aggregated
(domestic + international) air travel too – have encountered energy efficiency
improvements during 1983-2006 at the world level.

The same kind of figures may be obtained at the regional level. They are
not provided here as they would exhibit exactly the same kind of pattern and
stylized fact37.

The two precedent remarks lead then to the following stylized fact: even if
both international and domestic air travels have encountered energy efficiency
improvements from 1983 to 2006, international air travels appear to be less en-
ergy intensive than domestic air travels. The macro-level approach proposed in
this paper conducts then to same conclusions drawn from previous literature,
but obtained with ‘bottom-up’ approaches. Applied to air traffic at the world
level, the macro-level approach allows to quantify this stylized fact: air traffic
efficiency gains have been equal to +4.08% per year and +1.00% per year dur-
ing the whole period, respectively for international and domestic air travels (see
Table 3.1, last lines, sixth column). Still at the world level, domestic air travels
are 1.33 less energy efficient than international ones during the whole period
(see Table 3.3, last line, third column).

3.4 Concluding remarks

To conclude this Section 3, the macro-level methodology presented has been
initially developed to obtain air transport energy efficiency improvements sce-
narii in order to deduce Jet-Fuel demand forecasts from air traffic ones (see
Section 4). Compared to the ’Bottom-Up’ methodology, the interest of using
’macro-level’ methodology is its results are i) all precisely quantified according
to a simply replicable methodology, and ii) obtained without any (restrictive)
assumptions on either the composition of the aircrafts’ fleet or the evolution
of the renewal/upgrade rate of existing aircrafts. Effectively, our results are
obtained just by systematically comparing the evolution of both air traffic and
Jet-Fuel consumptions among eight geographical zones during the last 30 years.

The first interest of the macro-level methodology is to obtain precisely quan-
tified results regarding air transport energy efficiency improvements both at the
world level and at a more disaggregated level (the eight regions). More pre-
ciselly, it allows us to obtain ’aggregated’ (domestic + international), domestic
and international EE coefficients and their growth rates from 1980 to 2006.
These coefficients are provided at the world level and for eight geographical
zones.

37These figures may be obtained upon request.
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Our results indicate that, first, air travel energy efficiency improvements
have been occurring in all regions, but not with the same magnitude (Table
3.1). At the world level, that is for the world aircraft fleet taken as a whole,
energy efficiency improvements have been equal to 2.88% per year during the
1983-2006 period. Still at the world level, energy efficiency improvements have
been more important during 1983-1996 (3.09% per year) than during 1996-2006
(2.61% per year). Second, it has been identified that some regions appear effec-
tively more energy efficient than others (Table 3.2). Central and North America,
Europe, China, Asia and Oceania are in average more energy efficient than the
world’s benchmark. Third, domestic energy efficiency appears to be lower than
the international one. This latter comment applies both at the world level and
for all regions (Table 3.3).

These results highlight the necessity of taking into account energy efficiency
heterogeneity between aircraft fleets when converting air traffic into Jet-Fuel
demand. Two kinds of heterogeneities have to be distinguished. First, region’s
aircraft fleet do not have the same energy efficiency as fleets are not composed
of the same aircrafts. Second, domestic air traffic are less energy efficient than
international ones, ceteris paribus. This is due to more frequent take-off and
landing, the most energy-intensive component of a flight.

In the next section, EE coefficients obtained by our ’macro-level’ method-
ology are used to convert air traffic projections into quantities of Jet-Fuel (see
Section 4.2.1).
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4 Econometric analysis of air traffic determinants

and Jet-Fuel demand forecasts

This section presents first the econometric analysis of air traffic determinants.
Combined with those of the previous section, these results are then used to
project Jet-Fuel demand in the mid-term (2025).

As explained in the introduction, Jet-Fuel demand cannot be modelled di-
rectly. A preliminary step is required by modelling air traffic mobility. Indeed,
Jet-Fuel is not purchased for itself, but for the services that it provides: flying
for leisure or business, transportation of goods and services. Thus, it appears
necessary to first examine the specific characteristics of demand in the aviation
sector to understand the past evolution of air traffic38, and second anticipate its
evolution before deducing Jet-Fuel demands. That is why most studies model
first the demand for mobility in air transportation, and second deduce Jet-
Fuel demand from these estimates (BTE (1986), Gately (1988), Schafer (1998),
Vedantham and Oppenheimer (1998), Graham (2000), Abed Seraj et al. (2001),
Battersby and Oczkowski (2001), Lee et al. (2001), Olsthoorn (2001), Lim and
McAleer (2002), Bhadra (2003), Wickrama et al. (2003), Lai and Lu (2005),
Bhadra and Kee (2008), Mazraati and Faquih (2008), Dft (2009)).

In a first step, the influence of air traffic determinants is estimated using
econometric analysis. This analysis supports an interpretation of world air traf-
fic growth in which GDP and Jet-Fuel price play a central role. The former has
a positive influence on air traffic, whereas the influence of the latter is negative.

Depending on assumptions made on the evolution of air traffic drivers, we
obtain different air traffic projections. According to our ’Business As Usual ’
scenario, at the world level, air traffic (expressed in RTK) should increase with
a yearly average growth rate of about 4.7%. These air traffic forecasts differ
from region to region. At the regional level, yearly average growth rates range
from 3 % in North America to about 8.2 % in China.

In a second step, EE coefficients and their growth rates (corresponding to
the evolution of energy gains) obtained in Section 3 are applied to these air traf-
fic projections to deduce the evolution of Jet-Fuel demand until 2025. As traffic
(and energy) efficiency differs among regions, Jet-Fuel demand projections are
also provided at the regional level.

The section is organized as follows. The first subsection reports and dis-
cusses the econometric results. It also presents different air traffic scenarii. In
the second subsection, these traffic forecasts are converted into a quantity of
Jet-Fuel to obtain Jet-Fuel demand projections.

38Recall that the evolution of air traffic depends mainly on the drivers of demand in the
aviation sector.
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4.1 First step: econometric analysis and forecasts of air

traffic

First, the econometric analysis is conducted, and second the forecasts of air
traffic are obtained.

4.1.1 Air traffic econometric analysis

Gravity models appear to be the most intuitive modeling, since they represent
a way to model journeys by following specific routes (Jorge-Calderon (1997),
Graham (1999), Wojahn (2001), Becken (2002), Swan (2002), Bhadra (2003),
Jovicic and Hansen (2003), Njegovan (2006), Wei and Hansen (2006), Grosche et
al. (2007), Bhadra and Kee (2008), DfT (2009)). However, this approach is not
adopted here for different reasons. The first reason is linked to data access lim-
itations. Recall that ICAO provides air traffic by routes only for international
scheduled air traffic (not for domestic air traffic)39. Second, even if all routes
data could be accessed, there would remain the problem of re-aggregating jour-
neys by route which can be extremely time consuming. Thus, if gravity models
appear to be more appropriate at a first glance, they do not necessarily fit well
when one wants to model Jet-Fuel demand at the worldwide level.

For all these reasons, a more parsimonious approach is adopted here by
modeling air traffic demand based on panel-data econometric techniques. Be-
fore presenting the estimates, the potential explanatory variables of air traffic
are detailed (Gately (1988), Greene (1992, 1996, 2004), Vedantham and Oppen-
heimer (1998), Lee et al. (2001, 2004, 2009), Eyers et al. (2004)).

4.1.1.1 Analysis of potential determinants
This section presents the main drivers of air traffic demand. As recalled in
the introduction, the literature identifies broadly three categories of air traffic
drivers. The first type is represented by GDP growth rates, the second deals
with the ticket price, and the third concerns exogenous shocks. Besides, the
magnitude of the influence of these air traffic determinants depend on the mar-
ket maturity of each region.

GDP
Figure 4.1 presents the respective growth rates of world GDP vs. world air

traffic (measured in RTK).
Figure 4.1 confirms that world air traffic has been increasing at 6.4% on

average during 1980-2006 (see Table 2.1), while world’s GDP growth rate has a
mean value of 3.3%. When comparing the growth rates of GDP and the aviation

39When forecasting Jet-Fuel demand at the worldwide level, this data limitation generates
some incoherence in the methodology used: international air traffic may be modeled by route,
while domestic air transport cannot. This limitation involves to use another type of dataset.
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Figure 4.1: Comparison of GDP (solid line) and world air traffic (dashed line)
growth rates during 1981-2007.
Source: Authors, from ICAO and Thomson Financial Datastream Data.

sector, one may conclude that the aviation sector is characterized by a dynamic
growth compared to other sectors in the economy. GDP constitutes by far the
most important determinant of air traffic (Gately (1988), Greene (1992, 1996,
2004), Vedantham and Oppenheimer (1998), Lee et al. (2001, 2004, 2009), Ey-
ers et al. (2004)). Moreover, we notice a high variability in the range of world’s
air traffic growth rates, going from +20% in 1983 to -6% in 2001.

Ticket prices
Dresner (2006) and Graham and Shaw (2008) show that there exists a neg-

ative elasticity between ticket prices and air traffic: the higher ticket prices, the
lower the demand for flights. More particularly, Dresner (2006) indicates that
leisure passengers display higher elasticities of demand and lower valuations for
travel time compared to business travelers40. According to Graham and Shaw
(2008), the escalating desire and propensity to fly is driven by the growing af-
fordability of air travel, which stems from increased disposable income and the
growth of low-cost airlines. Low fares allow customers to fulfill derived demand
in a much wider variety of ways, and more often while also stimulating latent
demand at regional airports. This is satisfied with relatively small aircraft flying
short sectors41.

Besides taxes, the two other main components of plane tickets are first wage
costs, and second Jet-Fuel prices. Prices variation of these two inputs influence
unitary costs, and thus ticket prices fixed by airline companies. Apart from wage
costs, the strong increase in Jet-Fuel prices between 2002 and July 200842 has

40Thus, the percentage of leisure to total passengers is likely to increase as low-cost air
carriers increase their market share.

41Note however that this industry has changed the social structure of air travel, but has
also accelerated the growth rates of a mode that is the fastest-growing cause of transport’s
contribution to atmospheric emissions.

42Jet-Fuel prices appear to be strongly correlated with brent crude oil prices.
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fostered numerous debates, more especially about the extra-charge to be paid in
order to cope with Jet-Fuel prices increases. Airline companies have introduced
an extra-charge for Jet-Fuel since its strong increase was impacting negatively
their operating costs. Thus, the share of Jet-Fuel in airline companies’ operat-
ing costs has risen from 13% in 2002 to 36% in 2008, according to the ICAO.
When crude oil brent prices have been remarkably high, the (positive) impact
of Jet-Fuel prices on airline companies’ ticket prices has become quite large43.

At least in the short term and for relatively modest prices variation, it seems
that ticket prices have a limited impact on demand in the aviation sector. Fig-
ure 2.1 shows that air traffic has increased dramatically between 2002 and 2007.
In the meantime, average ticket prices have been increasing due to crude oil
brent price increases (see Figure 4.2 in Section 4.1.1.2 for a representation of
the Jet-Fuel Price evolution between 1980 and 2007). These arguments lead to
minimize (not eliminate) the negative impact of tickets’ price levels on demand
in the aviation sector. Indeed, ceteris paribus, other drivers seem to have a
stronger impact on demand in the aviation sector. However, when ticket prices
reach a given threshold (upper or lower bounds), or when they are character-
ized by significant (positive or negative) variation levels, demand reacts quite
rapidly. The introduction of low-cost airlines in Europe since the middle of the
1990s, and the structural changes that it caused on demand, is a good example
of such phenomena44.

Exogenous shocks
With respect to Figure 2.1, one may observe a strong increase of activity in

the aviation sector, which corresponds to the evolution of GDP analyzed above.
The evolution of air traffic seems to over-react to exogenous shocks45. It is im-
portant to distinguish between two types of exogenous shocks. The first type
corresponds to a slow-down in economic activity, such as the influences of the
restrictive monetary policy led by the USA in 1982 (with corresponding GDP
and air traffic growth rates respectively equal to 0.88% and 0.3%), the first
Gulf-War in 1991 (with corresponding GDP and air traffic growth rates respec-
tively equal to 1.47% and -3.7%), and the Asian financial crisis in 1997 (with
corresponding GDP and air traffic growth rates respectively equal to 2.5% and
0.3%). The second type corresponds to exogenous shocks specific to the aviation
sector, such as the 9/11 terrorist attacks (with a corresponding air traffic growth
rate equal to -5.99%), and the epidemic of SARS in 2003 (with a corresponding
air traffic growth rate equal to 4.26%).

43This impact may be captured with a delay due to airline companies’ ‘fuel hedging’ be-
havior, which aims at avoiding the negative impacts due to rapid increases in crude oil brent
prices.

44Note, to our best knowledge, there is no study that attempts to quantify the impact of
low cost airline companies on increased air traffic. This question is left for further research.

45See for instance Gately (1988), Alperovich and Machnes (1994), Witt and Witt (1995),
Oppermann and Cooper (1999), Hatty and Hollmeier (2003), Lai and Lu (2005), Koetse and
Rietveld (2009) for specific analysis of different shocks on air traffic.
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Influence of regions’ market maturity and short/medium hauls vs.
long hauls

The main drivers of demand in the aviation sector have been detailed. While
not exhaustive, this description shows that the number of these drivers is quite
limited. Their influence varies depending on two criteria. Indeed, demand in
the aviation sector - and the influence of its drivers - is not the same depending
on (i) short/medium hauls vs. long hauls, and (ii) the maturity of the market
in the region considered.

Short/medium hauls vs. long hauls
Compared to short/medium hauls, long hauls are less sensitive to competition
from alternative transportation means. This situation explains why the (nega-
tive) effect of ticket prices on demand in the aviation sector is less important for
long hauls. To synthesize, long hauls are less sensitive to ticket prices because
of the lack of alternative transport modes for these kinds of travels.

Air transport market maturity of regions
The degree of maturity of the aviation sector, and thus the growth rate of air
traffic, is linked to the level of economic development of a given region (see for
instance Vedantham and Oppenheimer (1998)). Globally, the growth rate of
air traffic is higher in developing countries like India and China than in OECD
countries. At a certain point in time, the market seems to reach maturity and
its growth rate decreases towards the GDP growth rate. Regarding the eight
regions examined in this paper, the air transport market of both Europe and
Central and North America appear to be the more mature. Following the typol-
ogy proposed by Vedantham and Oppenheimer (1994), Africa seems to remain
in the ‘Transition’ stage of ‘[Aviation] Market Life Cycle’ whereas the five other
regions are in their ‘Growth’ stage. According to the authors, the latter stage
corresponds to the period of the aviation market life cycle in which air traffic
growth rates are likely to be the highest. Besides, most countries in the re-
gions of China, Asia and Oceania are rapidly developing economies. Thus, the
perspectives of growth in the aviation sector lie most probably in Asia than in
Europe or the USA.

We turn now to the presentation of the econometric specifications. To take
into account the latter criteria (air transport market maturity of regions), the
modeling is realized for the following eight regions: Central and North Amer-
ica, Latin America, Europe, Russia and CIS (Commonwealth of Independent
States), Africa, the Middle East, Asian countries and Oceania. As already ex-
plained, the eighth region is China, in order to have a specific focus on this
rapidly developing country.
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4.1.1.2 Data and econometric specification

This section presents first the data used, and second the econometric speci-
fications.

Data
Air Traffic data are the same as used in Section 2. It spans the time period

going from 1980 to 2007, and has been obtained from the International Civil
Aviation Organization (ICAO)46.
As explained above, one of the main interests of this database consists in pro-
viding data by country, and not by pre-aggregated regions. Thus, it allows to
recompose any kind of regions on any scenarii. Within the database by country,
statistics are provided for airlines registered in a given country on a yearly basis.
Another advantage lies in the possibility to account for freight vs. passenger,
and for domestic vs. international air traffic within each zone.

Air traffic data have been re-aggregated for each of the eight regions. These
data correspond to the total amount of air traffic of these regions47 (such as
those presented in Table 2.1 for instance), and are expressed in RTK. Indeed,
as explained above, cargo traffic is measured in RTK whereas passenger traffic
is expressed both in RPK and RTK.

Data for GDP time series (expressed in 2000 constant USD) are taken from
Thomson Financial Datastream. Series have been obtained for all countries and
then re-aggregated by region. Thus, 9 series of GDP are computed: one for the
world and one for each zone.

The Jet-Fuel price is expressed in 2000 constant USD per ton. The original
series, expressed in current terms, have been obtained from Platts. Figure 4.2
displays the evolution of Jet-Fuel prices during 1980-2007, which may be used
as a proxy of ticket prices. Indeed, according to the literature (Abed Seraj et
al. (2001), Battersby and Oczkowski(2001), Bhadra (2003), Lai and Lu (2005),
Bhadra and Kee (2008)), the time series of tickets prices is unobservable, or at
least hard to investigate empirically.

The time-series of Jet-Fuel prices exhibits a wide variability during the pe-
riod, going from 143$/ton in 1998 to 730$/ton in 1980. During 1980-1986, the
price of Jet-Fuel has been rapidly decreasing as a rebound effect of the second oil
crisis. Until 2003, the time series fluctuated in the range of 150-300$/ton. Due
to its strong correlation with the brent crude oil market, Jet-Fuel prices have
been rapidly increasing since 2004 (up to 600$/ton), mainly due to dramatic
increases in worldwide energy demand.

46The ICAO database used in this paper is the ‘Commercial Air Carriers - Traffic’ database.
47One do not discriminate anymore neither between domestic and international travels nor

between freight and passenger air traffic.
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Figure 4.2: Evolution of Jet-Fuel prices during 1980-2007 (expressed in 2000
constant USD per ton).
Source: Authors, from Platts.

Econometric specifications
According to the discussion presented in Section 4.1.1.1, GDP, Jet-Fuel prices

(used as a proxy of ticket prices) and some exogenous shocks should have an
influence on air traffic. But the magnitude of the influence of these air traf-
fic determinants seems also to depend on air transport market maturity, which
varies widely among the eight regions previously identified48.

Following this discussion, and to take into account the different regional air
transport market maturities, the role played by these variables on air traffic
is estimated using panel-data econometrics. As detailed below, cross-sectional
units of the panel-data sample correspond to the eight zones. Moreover, our
panel-data sample is closer to time series data than cross-sectional data as it
contains, in particular, Jet-Fuel price and the eight regions’ air traffic and GDP
time-series. It appears thus suitable to include the lagged dependent variable
among regressors.

Using dynamic panel-data modeling, we propose the following econometric
specification to test for the influence of previously identified air traffic determi-
nants:

lrtki,t = γlrtki,t−1 + x′

i,t β + αi,t + ǫi,t (4)

with t={1980, . . . , 2007} the period on which air traffic data have been ob-
tained and i={ Central and North America, Europe, Latin America, Russia and
CIS, Africa, the Middle East, Asian countries and Oceania, China} the eight
regions considered. lrtki,t is the log of the i-th region’s air traffic (expressed in

48These arguments have already been presented in Section 4.1.1.1. See this section for more
details.
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RTK) at time t and, as usual, (αi,t + ǫi,t) is the composite error term.

x′

i,t is the vector of explanatory variables. x′

i,t= {lgdpi,t, sgrowth, csgrowth,
sair, csair, ljetprice} where lgdpi,t is the log of the i-th region’s GDP at time
t, sgrowth is a dummy variable for slow-downs in GDP activity, csgrowth is a
dummy variable for counter GDP activity shocks, sair is a dummy variable for
shocks specific to the aviation sector, csair is a dummy variable for counter-
shocks specific to the aviation sector, and ljetprice corresponds – to simplify
– to the log of the Jet-Fuel price (see below for a more detailed description
regarding the latter variable specifications).

Regarding exogenous shocks, as explained above, two kinds of variables may
be computed: (i) slow-down activity shocks, and (ii) aerial-specific shocks. For
each category, two kinds of dummy variables have been computed. The first ones
(sgrowth and sair) are equal to 1 the year the shock occurs, and 0 otherwise.
According to previous literature (Lai and Lu (2005)), air traffic may over-react
after these shocks. To test this hypothesis, a second category of dummy vari-
ables is used (csgrowth and csair) which are equal to 1 the two years following
the shock, and 0 otherwise. Following Section 4.1.1.1, sgrowth is equal to one for
the years 1982, 1991 and 1997, and sair is equal to 1 for the years 2001 and 2003.

Regarding the Jet-Fuel price variable, ljetprice, two different specifications
are investigated to uncover the influence of Jet-Fuel price on air traffic demand.
As a consequence, the ljetprice variable can be decomposed in two ways: ei-
ther ljetprice = {ljetpt}, or ljetprice = {ljetpupt−1, ljetpdownt}. ljetpt is
simply the log of the Jet-Fuel price at time t. ljetpupt−1 is the log of the
upward Jet-Fuel price lagged one period. lpjetdownt is the log of the down-
ward Jet-Fuel price at time t. The former specification (ljetprice = {ljetpt})
is the most straightforward approach, while the latter specification (ljetprice =
{ljetpupt−1, ljetpdownt}) takes into account threshold effect of Jet-Fuel price
changes (respectively above and below 300 US$)49.

This leads us to express – and estimate, see below – eq.(4) in two different
ways, depending the way Jet-Fuel price is modeling.
The first specification of eq.(4) is:

lrtki,t =γlrtki,t−1 + β1lgdpi,t + η1ljetpt

+ β2sgrowth+ β3csgrowth+ β4sair + β5csair + αi,t + ǫi,t
(5)

The second specification of eq.(4) is:

lrtki,t =γlrtki,t−1 + β1lgdpi,t + η2ljetpupt−1 + η3ljetpdownt

+ β2sgrowth+ β3csgrowth+ β4sair + β5csair + αi,t + ǫi,t
(6)

49This threshold has been fixed considering the average level of Jet-Fuel prices variation over
the whole period (see Figure 4.2). After experimenting for other thresholds, cross-product
variables were only found to be significant as such.
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Concerning the second specification of the Jet-Fuel price variable (eq.(6)),
two kinds of variables have been computed: ljetpupt−1 and ljetpdownt. As
explained in Section 4.1.1.1, above a given threshold (such as 300$/ton), Jet-
Fuel prices constitute a significant part of airline companies’ operating costs50.
Thus, Jet-Fuel prices may have a non-linear effect on air traffic: this variable
may have effectively a negative impact on air traffic, but only above a given
price threshold. To test this hypothesis, one variable is computed as a cross-
product of a dummy variable – equal to 1 when Jet-Fuel prices’ value is above
300$/ton and 0 otherwise – and of the Jet-Fuel price series. Hence computed,
the cross-product variable is equal to the Jet-Fuel price, but only when the lat-
ter is above 300$/ton. Hence, this cross-product variable takes the value of 0
whenever Jet-Fuel prices are below the threshold value of 300$/ton. Moreover,
previous literature indicates that this non-linear effect may differs depending
on the existence of an upward (or downward) Jet-Fuel price trend. Indeed, on
an upward (downward) Jet-Fuel price trend, airline companies anticipate in-
creasing (decreasing) Jet-Fuel prices. As a consequence, on an upward price
trend (above 300$/ton), airline companies purchase Jet-Fuel through forward
contracts to limit the anticipated increase in the price of Jet-Fuel. This does
not hold necessarily however on a downward price trend.

To test for this potential asymmetric non-linear effect, and similarly to the
methodology used for the cross-product variable described above, two cross-
product variables are computed. First, ljetpupt−1 is computed as a cross-
product of a dummy variable – equal to 1 when Jet-Fuel prices’ value is above
300$/ton on an upward trend (see Figure 4.2) and 0 otherwise – and of the
Jet-Fuel price series. Hence computed, the cross-product variable is equal to
the Jet-Fuel price, but only when the latter is above 300$/ton on an upward
trend. Note that this variable is lagged one period to take into account the air-
line companies’ forward contracting behavior. Second, ljetpdownt is computed
as a cross-product of a dummy variable – equal to 1 when Jet-Fuel prices’ value
is above 300$/ton on an downward trend (see Figure 4.2) and 0 otherwise –
and of the Jet-Fuel price series. Hence computed, the cross-product variable
is equal to the Jet-Fuel price, but only when the latter is above 300$/ton on
an downward trend. Contrary to ljetpupt−1, ljetpdownt is not lagged because
airline companies do not purchase forward contracts in a context of downward
Jet-Fuel prices. Note that the first letter – ‘l’ – figuring at the beginning of
ljetpupt−1 and ljetpdownt indicates that one have taken the log of these two
variables when introducing them in eq. (6).

The econometric methodology has been explained in details. The next sec-
tion presents estimates of these two specifications.

50According to ICAO (2007), the share of Jet-Fuel price in airline companies’ operating
costs has skyrocketed from about 13% in 2002 to 36% in 2008. Whereas in the meantime, the
price of a ton of Jet-Fuel has risen from about 200 (2000 constant) USD to more than 600
(2000 constant) USD, see Figure 4.2.
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4.1.1.3 Estimation results and discussion

The panel-data sample used in this paper to estimate eq.(5) and eq.(6) is
a long-panel dataset51. Moreover, the econometric specifications of eq.(5) and
eq.(6) is characterized by a dynamic structure that specify the dependent vari-
able for an individual (lrtki,t) to depend in part on its values in previous periods.
As a consequence, traditional panel-data estimation approaches (fixed and ran-
dom effects models) are not appropriate and then not presented here. Indeed,
if the lagged dependent variable is included among regressors, the fixed effects
needs to be eliminated by first-differencing rather than mean-differencing52. Our
generic econometric specification (Eq. (4)) then becomes:

∆lrtki,t = γ∆lrtki,t−1 +∆x′

i,t β +∆ǫi,t (7)

where ǫi,t is now supposed to be serially uncorrelated (this assumption is testable,
see below).

The descriptive statistics of variables used in eq. (7) are given in Table
4.153. Estimates results are presented in Table 4.2. Eq. (5) and eq. (6), in
first-differences, are estimated using the Anderson–Hsiao (Anderson and Hsiao
(1981) – column (1), Table 4.2 – and the GMM (Arellano and Bond (1991)) –
columns (2) and (3), Table 4.2 – estimators. Note that these estimates results
are only presented in reduced form.

As explained in Cameron and Trivedi (2005), Anderson and Hsiao (1981)
proposed IV estimation using lrtki,t−2

54, which is uncorrelated with ∆ǫi,t, as
an instrument for ∆lrtki,t−1 in eq. (7). The regressors xi,t are used as instru-
ments for themselves, as they are strictly exogeneous.

As explained in the previous paragraph, the first column of Table 4.2 reports
the Anderson–Hsiao estimator for eq. (5) and eq. (6) in first-differences. The
null hypothesis of the endogeneity test is ‘variables are exogenous’. According
to the P − value of this test (P − value = 0.03 < 0.05), one can not accept this
hypothesis when using this estimator.

According to column (1), no explanatory variables, except lrtki,t−1, are sta-
tistically significant: lrtki,t seems to follow an AR(1) process when modelled
with the Anderson–Hsiao estimator. This result holds whatever the economet-
ric specification of the Jet-Fuel price variable (estimates of either eq. (5) or eq.

51Long-panel datasets are characterized by a relatively small number of individuals and a
relatively long time period (N is small and T → ∞).

52For a general presentation of dynamic panel-data models, see Cameron and Trivedi (2005).
53The first-difference of a variable expressed in logarithm may be approximated by its growth

rate. This reason explains why Table 4.1 summarizes descriptive statistics of the growth rates
of the explanatory variables of air traffic.

54As indicated in the last line of Table 4.2. This line indicates, for both estimators, which
instruments have been used for ∆lrtki,t−1.
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Variable Mean (%) Std. Dev. (%) Min. (%) Max. (%)

Air traffic growth rates (RTK)

Central and North America 5.22 4.89 -8.06 14.13

Europe 6.83 6.43 -5.74 27.04

Latin America 7.90 22.91 -34.92 84.80

Russia and CIS -0.64 18.39 -39.82 39.99

Africa 5.81 23.38 -22.68 99.46

The Middle East 9.94 25.22 -31.76 85.08

Asian countries and Oceania 8.17 9.20 -12.81 35.23

China 12.30 6.91 3.02 30,00

World 6.64 5.09 -5.99 19.75

GDP growth rates (2000 constant USD)

Central and North America 3.02 1.65 -1.95 6.89

Europe 2.17 1.13 -0.69 4.26

Latin America 2.54 2.34 -2.55 6.21

Russia and CIS -2,08 16.05 -72.83 9.54

Africa 3.19 1.53 0.06 5.78

The Middle East 2.85 2.91 -2.03 9.60

Asian countries and Oceania 8.21 2.07 2.25 11.33

China 9.89 1.58 7.60 13.10

World 3.33 1.12 0.88 5.15

Jet-Fuel Price growth rate (2000 constant USD/ton)

1.66 22.98 -40.23 62.00

Table 4.1: Descriptive statistics.
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(6) lead to the same reduced form estimate as presented in column (1)). Unsur-
prisingly, the coefficient of lrtki,t−1 is positive, indicating a positive influence of
previous air traffic level of the i−th region (lrtki,t−1) on its current air traffic
level (lrtki,t).

The two last columns of Table 4.2 report the estimates results of respectively
eq. (5) – column (2), Table 4.2 – and eq. (6) – column (3), Table 4.2 – from the
(one-step) GMM estimator. This estimator is also called the Arellano–Bond
estimator after Arellano and Bond (1991), who detailed the implementation
of the estimator and proposed tests of the assumption that ǫi,t are serially
uncorrelated (Cameron and Trivedi (2005)). This estimator can be thought as
an extension to the Anderson–Hsiao estimator. Indeed, the approach of Arellano
and Bond (1991) is based on the notion that the estimator proposed by Anderson
and Hsiao (1981) does not exploit all the information available in the sample.
Compared to the former estimator, the GMM estimator proposes to make a
more efficient use of the information in the dataset by using additional lags
of the dependent variable as an instrument. By using additional instrumental
variables, the GMM estimator proposed by Arellano and Bond (1991) leads to
more efficient estimates55. For a large T (relatively to cross-sectional units), the
Arellano–Bond method generates many instruments, leading to potential poor
performance of asymptotic results56. This argument explains why the number
of instruments have been restricted to lrtki,t−2 and lrtki,t−3, as shown in the
last line of Table 4.2.

The quality of regressions presented in column (2) and (3) of Table 4.2 is
verified through two specification tests: the serial correlation tests m1 and m2
and a test of overidentifying restrictions (the Sargan Test). m1 and m2 are
tests for respectively first-order and second-order serial correlation, asymptoti-
cally N(0, 1). The null hypothesis of these tests is that Cov(∆ǫi,t,∆ǫi,t−k) = 0
for k = 1, 2 is rejected at a level of 0.05 if P − value < 0.05. If ǫi,t are serially
uncorrelated, we expect to reject at order 1 but not at order 2 (or higher orders).
According to P − values of m1 and m2 tests, this is indeed the case for both
columns (2) and (3) of Table 4.2. In each case, the P − value of m1 is equal
(or very closed) to 0.05. Thus, we reject the null at order 1 at the level of 0.05.
At order 2, ∆ǫi,t and ∆ǫi,t−2 are serially uncorrelated because P − values are
both superior to 0.05 (P − values of the m2 test are equal to 0.78 and 0.90).

Regarding the second specification test, the Sargan statistic is used to test
the validity of the overidentifying restrictions. The null hypothesis of the Sargan
Test is ‘overidentifying restrictions are valid’. The P − values of this test are
equal to 0.19 for column (2) and 0.09 for column (3). Thus the null hypothe-
sis that the population moment conditions are correct is not rejected because
P − values > 0.05.

55This may explained why the Anderson–Hsiao estimator does not pass the endogeneity
test.

56See Cameron and Trivedi (2005) for more details on this subject.
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Thus, there is no evidence either from the serial correlation tests or from the
Sargan test that reduced forms estimates results presented in columns (2) and
(3) of Table 4.2 are misspecified.

We turn now to the interpretation of these estimates. Column (2) – Table 4.2
– presents the reduced form estimate of eq. (5) in first-differences from the (one-
step) GMM estimator. As in column (1), lrtki,t−1 is statistically significant and
its coefficient is positive. Again, this indicates that the current air traffic level
of the i−th region (lrtki,t) depends positively on its previous level (lrtki,t−1).
Compared to column (1), the lgdpi,t variable is now statistically significant. Its
coefficient is positive: the more the GDP of the i−th region is growing, the more
its air traffic is growing too. The growth shocks and sectoral shocks variables are
both statistically significant and their coefficients are negative. This indicates
that air traffic (lrtki,t) effectively overreacts to (i) slow-down activity shocks
(the growth shocks variable) and (ii) (negative) aerial-specific shocks (sectoral
shocks). The P − value of the test for equality of these two latter variables (see
Table 4.2, third-to-last line, column (2)) is equal to 0.001. Thus, one cannot
group these two dummy variables into a single dummy. Both slow-down activity
shocks and aerial-specific shocks have a negative influence on air traffic, but one
should not confound these two kinds of shocks. Finally, the price of Jet-Fuel,
lagged or not (respectively ljetpt−1 and ljetpt), seems to have no influence on air
traffic, as the coefficients of these two variables are not statistically significant.
Contrary to Dresner (2006) and Graham and Shaw (2008), our eq. (5) estimate
result does not indicate a negative elasticity between ticket prices (proxied by
the Jet-Fuel price) and air traffic.

Before concluding to the non-existence of such an elasticity, one may wonder
if this latter result is not due to a wrong specification of the influence of the
Jet-Fuel price variable on air traffic. Eq. (6) proposes another way to specify
the influence of the Jet-Fuel price variable by taking into account price thresh-
olds effects (see Section 4.1.1.2 for more details). Column (3) – Table 4.2 –
presents the reduced form estimate of eq. (6) in first-differences from the (one-
step) GMM estimator. Coefficients of lrtki,t−1, lgdpi,t and ‘shocks’ variables
are not commented as the same comments than those presented in the previous
paragraph apply57. Regarding the new way to specify the influence of Jet-Fuel
prices on air traffic, ljetpupt−1 and ljetpdownt are both statistically significant.
This result tends to prove that Jet-Fuel prices have a non-linear effect on air
traffic58. Moreover the negative coefficient of ljetpdownt indicates that, above a
given price threshold, Jet-Fuel prices have a negative impact on air traffic. The
positive sign of ljetpupt−1 seems then counter-intuitive, indicating a positive
elasticity between ticket prices (proxied by the Jet-Fuel price) and air traffic.

57Note however the relatively stability of these coefficients between column (2) and column
(3), which tends to prove the robustness of our results.

58This statement is also confirmed by the P−value of the test for equality of the coefficients
of ljetpupt−1 and ljetpdownt (see Table 4.2, second last line, column (3)). This P − value is
equal to 0.001, indicating that one can not accept the null hypothesis that these two coefficients
are equal.
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Anderson-Hsiao Arellano & Bond First-Differenced
First-Differenced GMM estimator
2SLS estimator

Reduced Form Reduced Form Reduced Form
First kind of modeling Second kind of modeling

of Jet-Fuel Price of Jet-Fuel Price

(1) (2) (3)

lrtki,t−1 1.019*** 0.868*** 0.666***

(0.065) (0.112) (0.135)
lgdpi,t 0.276** 0.363*

(0.132) (0.209)
ljetpt -

ljetpt−1 -

ljetpupt−1 - 0.014*

(0.008)
ljetpdownt - -0.015***

(0.002)
growth shocks -0.059* -

(0.035)
growth counter-shocks -

sectoral shocks -0.116*** -
(0.030)

sectoral counter-shocks -

shocks (growth or sectoral) - -0.152***
(0.039)

counter-shocks (growth or sectoral) -

constant - -4.518** -2.162
(1.979) (3.392)

Endogeneity Test (P-value) 6.52 (0.03) - -

m1 (P-value) - -1.8393 (0.06) -1.8997 (0.05)
m2 (P-value) - -0.27987 (0.78) -0.1219 (0.90)

Sargan Test (P-value) - 58.68 (0.19) 63.2889 (0.09)

Test for growth shocks coeff. = sec-
toral shocks coeff. (P-value)

- 14.56 (0.001) 0.68 (0.41)

Test for ljetpup(t-1) coeff. = ljetp-
down coeff. (P-value)

- - 10.34 (0.001)

Instruments lrtki,t−2 lrtki,t−2, lrtki,t−3 lrtki,t−2, lrtki,t−3

Notes:
Sample: 8 regions; 1980-2007.
Dependent variable: lrtki,t, the log of the i-th region’s air traffic (expressed in RTK) at time t. The variables

used in the regressions are built with the logarithms of the data described in Section 4.1.1.2.
The standard errors (reported into brackets, unless otherwise indicated) are robust standard errors that permit
the underlying error ǫi,t to be heteroskedastic but do not allow for any serial correlation in ǫi,t, because then the
estimator is inconsistent.
***, ** and * indicate 1%, 5% and 10% significance levels, respectively.
The null hypothesis of the endogeneity test is ‘variables are exogenous’.
m1 and m2 are tests for first-order and second-order serial correlation, asymptotically N(0, 1). These test the
first-differenced residuals.

Sargan test is a test of the overidentifying restrictions for the GMM estimator, asymptotically χ2.

Table 4.2: Reduced form estimates results of eq. (5) and eq. (6) in first-
differences from the Anderson–Hsiao (column (1)) and the Arellano–Bond
(columns (2) and (3)) estimators.
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The following reason may explain this seemingly counter-intuitive result. Re-
call that the ljetpupt−1 variable is the log of the upward Jet-Fuel price lagged
one period. ljetpupt−1 is computed as a cross-product of a dummy variable –
equal to 1 when Jet-Fuel prices’ value is above 300$/ton on an upward trend
and zero otherwise – and of the Jet-Fuel price series. Thus, according to Figure
4.2, ljetpupt−1 was equal to the Jet-Fuel price series (lagged one) during the
period going from 2003 to 2008. This particular period is characterized by an
important increase of energy demand causing a rapidly increase of all energy
prices. Thus, the positive sign of ljetpupt−1 may actually just reflect this very
particular period.

Econometric results of eq. (5) and eq. (6) and their interpretations have
been presented in this section. As detailed in the next section, these results are
then used to build different air traffic forecasts scenarii. We present below these
air traffic forecasts.

4.1.2 In-sample prediction and air traffic forecasts

Following the discussion developed in Section 4.1.1.3, the reduced form estimate
of eq. (6) in first-differences from the (one-step) GMM estimator (Column (3),
Table 4.2) is used to generate air traffic forecasts until 2025. The modeling
presented in previous sections has been realized for eight zones. Air traffic pro-
jections are thus estimated for the following regions: Central and North Amer-
ica, Latin America, Europe, Russia and CIS, Africa, the Middle East, Asian
countries and Oceania, and China. Before presenting these forecasts, in-sample
predictions are first presented in order to assess how well our model fits histor-
ical data.

4.1.2.1 In-sample predictions

After estimating eq. (6) with a dynamic panel-data estimator, one can com-
pute the predicted values for this model. Computing predicted values allows us
to generate in-sample predictions, i.e. the values of the response variable gen-
erated by the fitted model using historical data. Because cross-sectional units
of our panel-data sample correspond to the eight regions already presented, the
modeling has been realized for each of these eight zones. The response variable
of our model is lrtki,t, the log of the i-th region’s air traffic (expressed in RTK)
at time t59 (recall eq. (6)). It is thus readily possible to compute our model’s
predicted values of (the log of) air traffic (expressed in RTK) for each of these
eight regions during the period 1981-2007.

59With, as already explained, t={1980, . . . , 2007} the period on which air traffic data have
been obtained and i={ Central and North America, Europe, Latin America, Russia and CIS,
Africa, the Middle East, Asian countries and Oceania, China} the eight regions considered.
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Predicted values estimate average values of the dependent variable for a
given value of the regressors. The precision of these estimates depends on the
‘quality’ of the underlying model used, and is measured by the variance of the
predicted values. Thus, in order to assess how well our model fits historical data,
we provide interval predictions to complement point predictions by obtaining
their bounds. An interval prediction is simply a confidence interval for the pre-
dicted values. Thus, using the variance of predicted values yields to obtain a
prediction interval for these predicted values. One then obtains an upper and
lower bounds that contain predicted values with a given probability60.

Figure 4.3 (Appendix) provides 95% interval predictions for predicted values
of (the log of) air traffic (expressed in RTK) for each of the eight regions during
the period 1981-2007. By comparing these interval predictions with (the log of)
each region’s air traffic ‘true values’, it is possible to evaluate the ‘quality’ of
our model. A well-specified model should generate reasonable in-sample predic-
tions, that is predicted values relatively close to historical data. A simple visual
inspection of Figure 4.3 yields to conclude that, globally, in-sample predicted
values of our model fits historical data quite well. Indeed, ‘true values’ are, in
most cases, inside interval predictions. Note however that our model seems to
over-estimate the ‘Latin America’ region’s air traffics, and to under-estimate the
‘Asian countries and Oceania’ region’s air traffics.

Once we have computed each region’s predicted values of air traffic, it be-
comes readily possible to re-aggregate these values at the world level. One then
obtain predicted values of air traffic (expressed in RTK) at the world level and
its 95 % interval prediction.

Figure 4.4 compares in-sample predicted values of air traffic at the world
level (bold line) with ‘true values’ of world air traffic (grey line) during the
1981-2007 period.

Figure 4.4 shows how well our model fits historical data at the world level.
In-sample predicted values are very close to historical data. The 95% Interval
Predictions (dashed lines) indicate the precision of these estimates.

The ‘quality’ of our model has been assessed. We can now present air traffic
forecasts based on this model.

4.1.2.2 Air traffic forecasts until 2025

Air traffic forecasts presented in this paper are obtained by computing out-of-
sample predictions. These out-of-sample predictions are generated by applying
the estimated regression function of eq. (6) (column (3), Table 4.2) to observa-

60See Wooldridge (2006) for more details about forming and interpreting interval predic-
tions.
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Figure 4.4: In-sample predictions and evolution of world air traffic (expressed
in RTK (billions)) between 1981 and 2007.

tions that were not used to generate the estimates.

It is thus possible to obtain different air traffic forecasts scenarii ; depending
on assumptions made on the evolution of air traffic drivers previously identi-
fied61. One needs then to use hypothetical values of the regressors to generate
air traffic forecasts. In particular, it has been already underlined that GDP
growth rate is, by far, the most important air traffic determinant. Thus, air
traffic forecasts presented below rely on a crucial assumption: the future evolu-
tion of the eight regions’ GDP growth rates. The International Monetary Fund
(IMF) provides projections of these GDP growth rates until 2014.

Three ‘air traffic forecasts’ scenarii are built on these projections:

• The ‘IMF GDP growth rates’ air traffic forecasts scenario:
This is the main air traffic forecasts scenario. GDP growth rates pro-
jections are obtained from the IMF World Economic Outlook (WEO)
Database62.
Two other air traffic forecasts scenarii are defined:

• The ‘Low GDP growth rates’ air traffic forecasts scenario:
In this second air traffic forecasts scenario, IMF GDP growth rates pro-
jections are decreased by 10 %.

• The ‘High GDP growth rates’ air traffic forecasts scenario:
Finally, in this last air traffic forecasts scenario, IMF GDP growth rates
projections are increased by 10 %.

The two latter alternative scenarii are defined in order to measure the sensi-
bility of air traffic to GDP growth rates variations. As already explained in the

61See Section 4.1.1.2, in particular eq. (6), for a complete description of these determinants.
62The IMF regularly revises projections presented in this database. Last accessed on Novem-

ber 2009.
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previous section, air traffic forecasts are computed for each of the eight regions.
By re-aggregating these forecasts, one then obtains air traffic forecasts at the
world level.

Figure 4.5 provides a visual representation of our ‘IMF GDP growth rates’
air traffic forecasts scenario – expressed in RTK – at the world level until 2025
(bold line, from 2008 to 2025) and their 95 % Interval Predictions63 (dashed
lines, from 2008 to 2025).
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Figure 4.5: World air traffic forecasts (expressed in RTK (billions)) until 2025.
‘IMF GDP growth rates’ air traffic forecasts scenario.

63Variance of in-sample predicted values and forecasts are different. As is intuitive, the
variance of the forecasts is higher than the variance of the predicted values. This explains
the progressively increasing gap between the lower bound and the upper bound of the 95 %
Interval Predictions.
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According to Figure 4.5, our model predicts first a relatively high decrease
of air traffic in 2008 and 2009 (- 3.47% between 2007 and 2008) followed by
the recovery of its positive evolution from 2010 to 2025. Negative GDP growth
rates in 2008 and 2009 – as specified in our ‘IMF GDP growth rates’ air traffic
forecasts scenario (according to IMF GDP projections) – explain the predicted
decrease of air traffic during this period.

According to our ‘IMF GDP growth rates’ air traffic forecasts scenario, world
air traffic (expressed in RTK (109)) should, overall, increase at a yearly mean
growth rate of 4.7%, rising from 637.4 to 1391.8 between 2008 and 2025 (see
next section, Table 4.3, first column, two last lines).

By comparison, the ‘Low GDP growth rates’ and ‘High GDP growth rates’
air traffic forecasts scenarii predict a yearly mean growth rate of world air traf-
fic – expressed in RTK – of 4.2% (Table 4.5, first column, last line, figure into
bracket) and 5.3% (Table 4.6, first column, last line, figure into bracket), re-
spectively. Thus, a decrease (an increase) by 10% of regions’ GDP growth rates
projections yields to a decrease (an increase) of the world air traffic yearly mean
growth rate by about 10.6% (12.8%).

Air traffic forecasts are no further commented here as it will be done later
below. As already explained, these air traffic forecasts are necessary to deduce
Jet-Fuel demand projections from these estimates. The latter are presented in
the next section.

4.2 Second step: Jet-Fuel demand projections

This section presents Jet-Fuel demand projections until 2025 for each of the
eight regions and at the world level. Jet-Fuel is not consumed for itself but to
power aircraft engines. Jet-Fuel demand depends on the demand for mobility
in air transportation. Thus, the general methodology proposed in this paper to
project Jet-Fuel demands consists first in forecasting air traffic and second in
converting these forecasts into a quantity of Jet-Fuel.

The previous section has defined (and presented) air traffic forecasts sce-
narii. The current section deals then with the second step of our methodology.
As already explained, the conversion of air traffic projections into quantities of
Jet-Fuel is accomplished using the ‘Traffic Efficiency’ method developed previ-
ously by UK DTI to support the IPCC (1999). The intuition behind this method
is that the rise of Jet-Fuel demand resulting from air traffic demand rise can be
mitigated by energy efficiency improvements. For instance, an increase of 6%
per year of air traffic does not mean a strictly corresponding increase of 6% in
Jet-Fuel demand.

Thus, one of the major tasks of this section consists in defining different
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scenarii of the expected rates, expressed per year, of EE improvements; corre-
sponding to the evolution of air traffic energy gains. To do so, results presented
in previous sections will be used.

As developed in Section 3, traffic efficiency improvements depend on: (i)
load factors improvements (aircraft are using more of their capacity); (ii) en-
ergy efficiency improvements. Load factors improvements are defined according
to results on WLF presented in Section 2. Regarding energy efficiency improve-
ments, two pieces of information are required to convert air traffic projections
into quantities of Jet-Fuel: first, value(s) of EE coefficients; second, a rule for
the evolution of EE coefficients until 2025. As it will be explained below, three
‘energy efficiency improvements’ scenarii will be defined according to the results
presented in Section 3.

The next section presents the methodology used in this paper to convert air
traffic forecasts into Jet-Fuel projections. Then, the last section presents these
projections.

4.2.1 From air traffic forecasts to Jet-Fuel demand projections: traf-
fic efficiency improvements scenarii

As explained in the introduction of this section, traffic efficiency improvements
depend on: (i) load factors improvements ; (ii) energy efficiency improvements.
One need then to define both ‘load factor’ and ‘energy efficiency’ improvements
scenarii to convert air traffic forecasts into Jet-Fuel demand projections. Note
that in the former case (load factors improvements), no technological progress
is achieved: airlines diminish their Jet-Fuel consumption by filling more their
aircrafts.

By improving their load factors, airlines hold a relatively easy way to dimin-
ish their Jet-Fuel consumption without achieving any technological progress:
they ‘just’ have to fill more their aircrafts. Regions’ Weight Load Factors (WLF)
values and their evolution during the 1980-2006 period have been presented in
great details in Section 264. Each region’s WLF value presented in Table 2.1
(third column, third line for each zone) is used to convert regions’ air traffic
forecasts expressed in RTK65 into corresponding air traffic forecasts expressed
in ATK. ATK are computed from RTK forecasts using the following equations:
RTK = WLF ∗ ATK ⇔ ATK = RTK

WLF
with WLF the percentage of an air-

craft’s available ton effectively occupied during a flight66.

Regarding the evolution of each region’s WLF until 2025, it has been chosen
to adopt the following hypotheses. Each region’s WLF is assumed to tend to

64See in particular Tables 2.1, 2.6, 2.8, 2.11, 2.13, 2.15 and Figures 2.5, 2.10, 2.12, 2.15,
2.17, 2.19.

65Again, these forecasts have been presented in the previous section.
66As already explained, because airlines never fully fill their aircrafts one have ATK >

RTK.
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75%. Thus for each region, we apply the WLF yearly mean growth rate of the
second sub-period (Table 2.1, fifth column, third line for each zone) until the
region’s WLF reaches the 75% value.

The conversion of air traffic forecasts expressed in RTK into corresponding
air traffic forecasts expressed in ATK yields to estimate how filling much more
aircrafts (until 75 % of their capacity, which is a strong but necessary assump-
tion) will curb the air traffic increase.

Once air traffic forecasts expressed in RTK have been converted into air
traffic forecasts expressed in ATK, one can use the ‘Traffic Efficiency’ method
previously explained to convert air traffic forecasts into Jet-Fuel demand pro-
jections (expressed in Ton (106).

First, each region’s EE coefficient value for the year 2006 (Table 3.1 provides
mean values of each regions’ EE coefficients for two sub-periods (1983-1996 and
1996-2006) and the whole period (1983-2006)) is used to convert regions’ air
traffic forecasts expressed in ATK into Jet-Fuel demand projections for the year
2006.

Then, one need to define the evolution of regions’ EE coefficients until 2025.
Making assumptions on the evolution of air traffic Energy Efficiency (EE) is
barely a difficult task. A number of studies exist in the literature where past
trends in energy efficiency are extrapolated to predict future trends. However
some authors, Peeters et al. (2005) for instance, argue that historic trends in
energy efficiency cannot be extrapolated. In this paper, we assume that the evo-
lution of EE in a near future is most likely comparable with its past evolution
over the last ten years (see below). This choice of extrapolating may appears
as being arbitrary. Yet, it may also be considered as rather intuitive.

Three ‘traffic efficiency improvements’ scenarii are defined according to the
results obtained in Section 3. Section 3 highlighted that i) some regions are
more energy efficient than others (EE coefficients are not the same among re-
gions, see Tables 3.1, 3.2, 3.3 and Figure 3.3) and ii) regions do not encounter
the same energy gains (EE coefficients yearly average growth rates are not the
same among regions, see Table 3.1 and Figure 3.3).

According to these results, the following three ‘traffic efficiency improve-
ments’ scenarii are defined:

• The ‘Heterogeneous energy gains’ traffic efficiency improvements scenario:

This scenario aims at reflecting the heterogeneity of energy gains observed
among regions in the past (see Table 3.1, last columns). Globally, this
scenario defines each region’s future energy gains as corresponding to its
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energy gains recorded in the second sub-period 1996-2006.

Hence, this scenario assumes that EE coefficients of the ‘Central and
North America’, the ‘Europe’, the ‘Russia and CIS’, the ‘Asian coun-
tries and Oceania’ and the ‘China’ regions will decrease at a yearly mean
growth rate of respectively 3.18%, 1.20%, 5.79%, 1.54% and 1.65% until
2025. According to Table 3.1 (fifth column), these figures correspond to
energy gains recorded in these regions during the second sub-period 1996-
2006 (see also Section 3 for more details).

The yearly mean growth rate of the ‘Latin America’ region during the
second sub-period 1996-2006 is positive and equal to 1.18%. Because a
positive EE coefficient growth rate means energy losses67, we chose not
to apply this figure to the ‘Latin America’ region. Instead, we chose to
suppose that the EE coefficient of the ‘Latin America’ region will decrease
at a yearly mean growth rate of 1.63% until 2025. The latter figure cor-
responds to energy gains recorded in this region during the whole period
1983-2006 (see Table 3.1, sixth column).

Finally, EE coefficients of the ‘Africa’ and the ‘Middle East’ regions are
supposed to decrease at a yearly mean growth rate of 4.2% until 2025.
Contrary to other regions, this figure does not correspond to energy gains
recorded in these regions during the second sub-period 1996-2006 (which
are respectively equal to -7.22% and -8.68% per year; see Table 3.1, fifth
column). The latter figures are effectively judged as being too high to be
used as an energy gain hypothesis until 2025. -4.20% is the international
travels EE coefficient yearly mean growth rate of the ‘Middle East’ region
during the whole period 1983-2006 (see Table 3.1, sixth column). Except
for the second sub-period 1996-2006, -4.20% corresponds to the highest
energy gains recorded in the ‘Africa’ and the ‘Middle East’ regions.

• The ‘Homogeneous energy gains’ traffic efficiency improvements scenario:

This alternative scenario is drawn to conduct sensitive analysis. It aims at
testing the interest of having defined heterogeneous energy gains among
the eight regions, as defined in the ‘Heterogeneous energy gains’ traffic
efficiency improvements scenario.

67A negative sign means an energy efficiency improvement hypothesis as EEi,t =
Tjeti,t
ATKi,t

with EEi,t the abbreviation for EE coefficient in zone i at time t. Thus defined, EE may
be interpreted as the quantity of Jet-Fuel (Tjet, expressed in ton of Jet-Fuel) required to
power the transportation of one ton over one kilometer (ATK). A decrease of EE coefficients
means then that quantities of Jet-Fuel required to power the transportation of one ton over
one kilometer have decreased.
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This scenario assumes homogeneous energy gains among regions. More
precisely, it assumes that each region’s EE coefficient will decrease at a
yearly mean growth rate of 2.61% until 2025. According to Table 3.1 (fifth
column), this figure corresponds to energy gains recorded at the world level
during the second sub-period 1996-2006.

• The ‘Green energy gains’ traffic efficiency improvements scenario:

Finally, a third scenario is defined in which regions’ energy gains improve-
ments are supposed to be widely important. This scenario defines each
region’s future energy gains as being equal to its highest energy gains im-
provements recorded during either the first sub-period 1983-1996, or the
second sub-period 1996-2006, or the whole period 1983-2006.

Hence, this scenario assumes that EE coefficients of the ‘Central and
North America’, the ‘Europe’, the ‘Latin America’, the ‘Russia and CIS’,
the ‘Africa’, the ‘Middle East’, the ‘Asian countries and Oceania’ and the
‘China’ regions will decrease at a yearly mean growth rate of respectively
3.18%, 2.97%, 2.73%, 5.79%, 7.22%, 8.68%, 2.88% and 1.65% until 2025.

The methodology used in this paper to convert air traffic forecasts into Jet-
Fuel projections has been precisely detailed. Converting first RTK forecasts into
corresponding ATK forecasts and second ATK forecasts into Jet-Fuel demand
projections, allows to disentangle the effect of both load factor and energy effi-
ciency improvements on mitigating the rise of Jet-Fuel demand68.
Moreover, this section defined one load factor improvements (strong) hypothesis
and three ‘traffic efficiency improvements’ scenarii. Combined with ‘air traffic
forecasts’ scenarii, it allows us to obtain various Jet-Fuel demand projections.
Next section presents these results.

4.2.2 Jet-Fuel demand projections: results

This section presents Jet-Fuel demand projections both at the world and re-
gional levels. Previous sections have presented i) three air traffic forecasts sce-
narii (in Section 4.1.2.2) and ii) three traffic efficiency improvements scenarii
(in Section 4.2.1). Combining these scenarii allows us to generate nine ‘Jet-Fuel
demand projection’ scenarii. As summarized in Figure 4.6, these nine scenarii
are synthesized in Tables going from 4.3 to 4.11:

68See also Section 3 for more details.
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Note: The ‘IMF GDP growth rates’ air traffic forecasts scenario combined with the
‘Heterogeneous energy gains’ traffic efficiency improvements scenario corresponds to the
’Business As Usual ’ Jet-Fuel demand projection scenario. This scenario is summarized in
Table 4.3, as indicated.

The term ‘Heterogeneous’ used to define one of the three ‘Traffic efficiency improvements’ sce-
narii reflects the fact that this scenario assumes heterogeneous energy efficiency improvements
among regions, as opposed to the ‘Homogeneous’ one. See section 4.2.1 for more details.

Figure 4.6: The nine ‘Jet-Fuel demand projections scenarii .
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Instead of commenting in great details each of these nine Jet-Fuel demand
projections scenarii, it appears more attractive first to focus our analysis on the
most likely Jet-Fuel demand projections scenario (thereafter called the ‘Business
As Usual ’ Jet-Fuel demand projection scenario, see below) and second to lead
sensitive analysis by using some other ‘Jet-Fuel demand projection’ scenarii
results69.

4.2.2.1 Analysis of the ‘Business As Usual ’ Jet-Fuel demand projec-
tion scenario

Combining the ‘IMF GDP growth rates’ air traffic forecasts scenario with
the ‘Heterogeneous energy gains’ traffic efficiency improvements scenario yields
to our ‘Business As Usual ’ Jet-Fuel demand projection scenario. Results of this
scenario are summarized in Table 4.3. As explained in the notes of this Table,
the first two columns present 2008 and 2025 air traffic forecasts expressed in
RTK (first column) and ATK (second column). The other three columns con-
cern Jet-Fuel projections.

Air traffic forecasts and Jet-Fuel demand projections first are analyzed at
the world level. Second, results for each of the eight regions are detailed.

69Scenarii not commented are left to the reader. They are presented in Appendix (Tables
4.7 to 4.11).
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RTK (109) Corresponding Jet Fuel-Ton (106) % variation Mean growth

Regions (mean growth ATK (109) (consumption of Jet-Fuel rate per year
(Energy gains rate per year) (mean growth of the region-%) (2008-2025) of Jet-Fuel
hypothesis) rate per year) (2008-2025)

2008 2025 2008 2025 2008 2025

Central and North 246.2 405.9 403.9 627.5 86.96 77.98 -10% -0.6%
America (-3.18%) (3.0%) (2.6%) 37.9% 24.6%

Europe 163.5 310.0 235.2 413.1 51.61 73.83 43% 2.2%
(-1.20%) (3.9%) (3.5%) 22.5% 23.3%

Latin America 28.5 64.7 47.1 89.3 17.42 24.97 43% 2.2%
(-1.63%) (5.0%) (3.9%) 7.6% 7.9%

Russia and CIS 9.6 21.1 15.4 28.1 9.03 6.00 -34% -2.2%
(-5.79%) (4.9%) (3.8%) 3.9% 1.9%

Africa 9.9 30.0 17.3 47.6 7.73 10.27 33% 1.7%
(-4.20%) (6.7%) (6.2%) 3.4% 3.2%

The Middle East 24.1 48.7 39.9 74.3 7.91 7.11 -10% -0.3%
(-4.20%) (4.5%) (4.0%) 3.5% 2.2%

Asian countries and 98.6 296.4 158.2 465.2 33.62 75.92 126% 5.2%
Oceania (-1.54%) (6.9%) (6.8%) 14.7% 24.0%

China 56.9 215.0 82.8 296.7 15.10 40.77 170% 6.1%
(-1.65%) (8.2%) (7.9%) 6.6% 12.9%

World 637.4 1391.8 999.8 2041.9 229.37 316.87 38% 1.9%
(-2.22%)* (4.7%) (4.3%) 100% 100%

Notes:
The first two columns present 2008 and 2025 air traffic forecasts expressed in RTK (first column)
and ATK (second column).
ATK are computed from RTK forecasts using the following equations: RTK = WLF × ATK ⇔

ATK = RTK
WLF

with WLF the percentage of an aircraft’s available ton effectively occupied during
a flight. Because airlines never fully fill their aircrafts, ATK > RTK (see Section 2.1 for more
details). Assumptions on the evolution of WLF between 2008 and 2025 are detailed in Section 4.2.
In the first two columns, figures into brackets represent yearly mean growth rate of air traffic
forecasts between 2008 and 2025. Note that for each zone and at the world level, the yearly mean
growth rate of air traffic forecasts expressed in ATK is always inferior to the yearly mean growth
rate of air traffic forecasts expressed in RTK.

The other three columns concern Jet-Fuel forecasts.
The third column presents 2008 and 2025 Jet-Fuel forecasts expressed in Ton (106). For each
region, Jet-Fuel forecasts are computed from ATK using i) Energy Efficiency (EE) coefficients
presented in Section 3 and ii) a regional energy gains hypothesis. Energy gains hypothesis are
indicated into brackets under each region’s name. These figures correspond to the EE coefficient
yearly mean growth rate hypothesis. A negative sign means an energy efficiency improvement

hypothesis as EEi,t =
Tjeti,t
ATKi,t

with EEi,t the abbreviation for EE coefficient in zone i at time

t. Thus defined, EE may be interpreted as the quantity of Jet-Fuel (Tjet, expressed in ton of
Jet-Fuel) required to power the transportation of one ton over one kilometer (ATK). A decrease of
EE coefficients means then that quantities of Jet-Fuel required to power the transportation of one
ton over one kilometer have decreased.
In the third column, figures expressed in % terms indicate the share of each region’s Jet-Fuel
consumption in 2008 and 2025.
The fourth and the fifth column indicate, respectively, the % variation and the corresponding
yearly mean growth rate of Jet-Fuel forecasts between 2008 and 2025.
* This figure corresponds to the world level energy gains (per year until 2025) resulting from
regional energy gains hypothesis as defined in the ‘Heterogeneous energy gains’ traffic efficiency
improvements scenario.

Table 4.3:
Air traffic (expressed in 109 RTK and 109 ATK) and Jet-Fuel (expressed in Ton

(106)) forecasts for the years 2008 and 2025. Forecasts are presented at the world

level (last line) and for each region (other lines).

‘IMF GDP growth rates’ air traffic forecasts scenario combined with
‘Heterogeneous energy gains’ traffic efficiency improvements sce-

nario; i.e. the ‘Business As Usual ’ Jet-Fuel demand projection scenario.
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Analysis at the worldwide level
According to Table 4.3 (first column, two last lines), world air traffic (ex-

pressed in RTK (109)) will, overall, increase at a yearly mean growth rate of
4.7%, rising from 637.4 to 1391.8 RTK (109) between 2008 and 2025. Air trans-
port sector should then remain one of the fastest growing sectors in the near
future.

Corresponding ATK (109)70 are projected to go from 999.8 ATK (109) in
2008 to 2041.9 ATK (109) in 2025 (Table 4.3, second column, second to last
line). This increase corresponds to a mean growth rate of about 4.3% per year
(Table 4.3, second column, last line, figure into brackets). Hence, using more
aircraft capacities will curb world air traffic growth rates by about 8.5% 71.

The third column (Table 4.3) presents 2008 and 2025 Jet-Fuel projections
expressed in Ton (106). For each region, Jet-Fuel forecasts are computed from
air traffic forecasts expressed in ATK (Table 4.3, second column) using i) En-
ergy Efficiency (EE) coefficients72 and ii) regional energy gains hypothesis as
defined in the ‘Heterogeneous energy gains’ traffic efficiency improvements sce-
nario. Energy gains hypothesis corresponding to this scenario are indicated
into brackets under each region’s name. Each figure corresponds to the EE co-
efficient yearly mean growth rate hypothesis of the region under consideration.
As already explained, a negative sign means an energy efficiency improvement
hypothesis73.

These regional energy gains hypothesis yield, at the world level, to energy
gains of about 2.2% per year until 2025 (Table 4.3, figure into brackets under
the ‘World’ region). World Jet-Fuel demand is projected to grow by about 38%
between 2008 and 2025 (Table 4.3, fourth column, last line), rising from 229.37
Ton (106) in 2008 to 316.87 Ton (106) in 2025(Table 4.3, third column, second
to last lines) at a mean growth rate of about 1.9% per year (Table 4.3, last
column, last line).

Analysis at the regional level
We turn now to the analysis of air traffic and Jet-Fuel demand projections

at the regional level. The results show a wide heterogeneity among regions.

70As already explained, ATK are computed from RTK forecasts using the following equa-
tions: RTK = WLF × ATK ⇔ ATK =

RTK
WLF

with WLF the percentage of an aircraft’s
available ton effectively occupied during a flight. Because airlines never fully fill their air-
crafts, ATK > RTK (see Section 2.1 for more details).

71According to load factor improvement hypothesis defined in Section 4.2.1.
72Energy Efficiency (EE) coefficients are presented in Section 3. See also, Appendix, Table

3.1.
73Indeed, EEi,t =

Tjeti,t
ATKi,t

with EEi,t the abbreviation for EE coefficient in zone i at time t.

Thus defined, EE may be interpreted as the quantity of Jet-Fuel (Tjet, expressed in ton of Jet-
Fuel) required to power the transportation of one ton over one kilometer (ATK). A decrease
of EE coefficients means then that quantities of Jet-Fuel required to power the transportation
of one ton over one kilometer have decreased.
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Regarding air traffic forecasts, RTK growth rates range from 3% per year
for Central and North America to 8.2% per year for China (Table 4.3, first
column, figures into brackets). The regions having the highest degree of air
transport market maturity (Central and North America and Europe) are also
those recording the lowest air traffic growth rates. These results confirm the
sensibility of air traffic drivers to the region’s aviation sector maturity. Note
that the two highest yearly mean growth rates are expected to arise in the two
Asians regions74, confirming the important growth perspectives of the aviation
sector in Asia.

Air traffic is expected to rise whatever the region under consideration. This
is not the case anymore when analyzing Jet-Fuel demand projections. Indeed,
three of the eight regions are expected to encounter a decrease of their Jet-Fuel
demand between 2008 and 2025. These regions are Central and North Amer-
ica, Russia & CIS and The Middle East where Jet-Fuel demand is expected to
decrease by, respectively, 10% (going from 86.96 Ton (106) to 77.98 Ton (106)),
34% (going from 9.03 Ton (106) to 6 Ton (106)) and 10% (going from 7.91 Ton
(106) to 7.11 Ton (106)) between 2008 and 2025 (Table 4.3, third and fourth
columns).

As in the case of air traffic, the two fastest Jet-Fuel demand growing re-
gions are China and Asian countries & Oceania. The former Jet-Fuel demand
is expected to grow by about 170 % whereas the latter Jet-Fuel demand will
increase by 126 % between 2008 and 2025 (Table 4.3, third and fourth columns).

Some regions’ Jet-Fuel demands are expected to decrease whereas some oth-
ers are projected to increase. These opposite developments have important
consequences on the evolution of each region’s weight in total Jet-Fuel con-
sumption between 2008 and 2025. In the third column of Table 4.3, figures
expressed in % terms indicate the share of each region’s Jet-Fuel consumption
in 2008 and 202575. According to these figures, the Jet-Fuel consumption share
of Europe, Latin America and Africa should remain relatively stable between
2008 and to 2025 with a share, respectively, is equal to 23.3%, 7.9%, and 3.2%.
Three regions are expected to record a decrease of their Jet-Fuel’s share during
the period: Central and North America (going from 37.9% to 24.6%), Russia
& CIS (going from 3.9% to 1.9%) and the Middle East (going from 3.5% to
2.2%). The most notable decrease is, of course the Central and North America
decrease, corresponding to a fall of more than 35%. On the contrary, the weight
of China and Asian countries & Oceania should increase, going from 6.6% to
12.9% and from 14.7% to 24.0%, respectively. Overall, the Asian region’s share

74Air traffic (expressed in RTK) mean growth rates of China and Asian countries & Oceania
are equal to 8.2% per year and 6.9% per year, respectively.

75For instance, in 2008, the ‘Central and North America’ region’s Jet-Fuel consumption
corresponds to 37.9% of the world Jet-Fuel consumption (Table 4.3, third column, second
line).
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(Asian countries & Oceania + China), is expected to go from 21.3% in 2008 to
about 37% in 2025, and thus to surpass the ‘Central and North America’ region
for the first time ever.

Figure 4.7 illustrates these comments by proposing an alternative view of
the share of each region’s Jet-Fuel consumption in 2008 and 2025.
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Regular World Map

2008 2025 ’Business as usual ’ scenario

Note: These cartograms size the geographical zones according to their relative weight in
world Jet-Fuel consumption (expressed in Ton), offering an alternative view to a regular map
of their projected evolution from 2008 to 2025. Maps generated using ScapeToad.

Projections realized according to the ‘IMF GDP growth rates’ air traffic forecasts scenario
combined with the ‘Heterogeneous energy gains’ traffic efficiency improvements scenario, i.e.
the ’Business As Usual ’ Jet-Fuel demand projection scenario.

Figure 4.7: An alternative view of the projected evolution of the share of each
region’s Jet-Fuel consumption in 2008 and 2025.
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4.2.2.2 Traffic efficiency improvements yield to reduce the effect of air
traffic rise on the Jet-Fuel demand increase

It has been already explained how the rise of Jet-Fuel demand resulting from
air traffic demand rise can be mitigated by traffic efficiency improvements.

The comparison of yearly mean growth rates of both world air traffic ex-
pressed in RTK, + 4.7% per year until 2025, and world Jet-Fuel consumption,
+ 1.9% per year until 2025 (see Table 4.3, first and third columns, last line),
effectively highlights the role played by traffic efficiency improvements on re-
ducing the effect of air traffic rise on the Jet-Fuel demand increase.

According to our ‘Heterogeneous energy gains’ traffic efficiency improve-
ments scenario, Jet-Fuel demand projections are hence mitigated by about 60%
thanks to traffic efficiency improvements.

Figure 4.8 illustrates this argument:
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From 1981 to 2007: bold line: Jet-Fuel demand time series (IEA data).
From 2007 to 2025: black line: Jet-Fuel demand projections with traffic efficiency im-
provements (+1.9% per year); dashed line: Jet-Fuel demand projections with load factor
improvements but no energy gains (+ 4.3% per year); dotted line: Jet-Fuel demand
projections with no traffic efficiency improvements (+ 4.7% per year).

Projections realized according to the ‘IMF GDP growth rates’ air traffic forecasts scenario

combined with the ‘Heterogeneous energy gains’ traffic efficiency improvements scenario, i.e.

the ’Business As Usual ’ Jet-Fuel demand projection scenario.

Figure 4.8: Illustration of the evolution of world Jet-Fuel demand forecasts
(Ton (106)) with and without traffic efficiency improvements.

Moreover, converting first RTK forecasts into corresponding ATK forecasts
and second ATK forecasts into Jet-Fuel demand projections allows us to dis-
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entangle the effect of both load factor and energy efficiency improvements on
mitigating the rise of Jet-Fuel demand. Indeed, by comparing yearly mean
growth rates of world air traffic expressed in both RTK (+ 4.7% per year until
2025) and corresponding ATK (+ 4.3% per year until 2025), it has been al-
ready highlighted that load factor improvements should be able to curb world
air traffic yearly mean growth rates by about 8.5%. It comes then that load
factor improvements and energy gains correspond to, respectively, about 14%
and 86% of traffic efficiency improvements76.

4.2.2.3 Sensitive analysis

Results of the ‘Business As Usual ’ Jet-Fuel demand projection scenario have
just been analyzed in great details. Recall that these results have been obtained
by combining the ‘IMF GDP growth rates’ air traffic forecasts scenario with
the ‘Heterogeneous energy gains’ traffic efficiency improvements scenario. It is
important to assess the sensitivity of our results to these scenarii.

To do so, this section investigates two other Jet-Fuel demand projection sce-
narii.
The first one combines the ‘IMF GDP growth rates’ air traffic forecasts scenario
with the ‘Homogeneous energy gains’ traffic efficiency improvements scenario.
The second one combines the ‘Low GDP growt rates’ air traffic forecasts scenario
with the ‘Heterogeneous energy gains’ traffic efficiency improvements scenario.

Results of these two alternative Jet-Fuel demand projections scenarii are
briefly commented below.

Traffic efficiency heterogeneity among regions has to be taken into
account

According to the ‘Business As Usual ’ Jet-Fuel demand projection scenario
analyzed in the previous sections (and summarized in Table 4.3), Latin America
and Russi & CIS are projected to record the same yearly mean growth rate of
air traffic (about 5% per year, see Table 4.3, first column). When regarding
their projected Jet-Fuel demand however, Latin America is expected to record
a rise of 43% whereas the Jet-Fuel demand of the ‘Russia and CIS’ region should
decrease by about 34%. These opposite results are explained by the regional
traffic efficiency improvements hypothesis: Latin America is expected to be less
energy efficient than the ‘Russia and CIS’ region from 2008 to 202577. This
result highlights the importance of taking into account traffic efficiency hetero-
geneity among regions.

76This repartition holds as long as traffic efficiency improvements hypothesis are defined
such as in the ‘Heterogeneous energy gains’ traffic efficiency improvements scenario.

77Indeed, the yearly mean growth rate of EE coefficients is supposed to be equal to -1.63%
per year in Latin America and to -5.79% per year in Russia and CIS.
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To illustrate more in depth this statement, it has been chosen to combine the
‘IMF GDP growth rates’ air traffic forecasts scenario with the ‘Homogeneous en-
ergy gains’ traffic efficiency improvements scenario. Compared to the ‘Business
As Usual ’ Jet-Fuel demand projection scenario, only the traffic efficiency im-
provements hypothesis have been shifted. Recall that the ‘Homogeneous energy
gains’ traffic efficiency improvements scenario assumes homogeneous energy
gains among regions. More precisely, it assumes that each region’s EE coeffi-
cient will decrease at a yearly mean growth rate of 2.61% until 2025. According
to Table 3.1 (fifth column), this figure corresponds to energy gains recorded at
the world level during the second sub-period 1996-2006.

This second Jet-Fuel demand projection scenario aims at testing the interest
of having defined heterogeneous energy gains among the eight regions such as
defined in the ‘Heterogeneous energy gains’ traffic efficiency improvements sce-
nario (and thus the ‘Business As Usual ’ Jet-Fuel demand projection scenario).
Indeed, if the analysis of EE coefficients had not been conducted at the regional
level but only at the world level, the ‘Homogeneous energy gains’ traffic effi-
ciency improvements scenario would have been our reference scenario for the
evolution of traffic efficiency improvements.

Table 4.4 shows the results, which are briefly commented. At the regional
level, all regions are now expected to record a rise of Jet-Fuel demand between
2008 and 2025 (Table 4.4, fourth column). However, the homogeneous traf-
fic efficiency hypothesis among regions yields to ‘over-estimate’ the role played
by traffic efficiency improvements on mitigating the world Jet-Fuel demand in-
crease. Indeed, world Jet-Fuel demand is now expected to grow by about 29%
between 2008 and 2025 (Table 4.4, fourth column, last line), rising from 228.71
Ton (106) in 2008 to 294.59 Ton (106) in 2025 (Table 4.4, third column, second
to last lines) at a mean growth rate of about 1.5% per year (Table 4.4, last
column, last line).
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RTK (109) Corresponding Jet fuel-Ton (106) % variation Mean growth

Regions (mean growth ATK (109) (consumption of Jet-Fuel rate per year
(Energy gains rate per year) (mean growth of the region-%) (2008-2025) of Jet-Fuel
hypothesis) rate per year) (2008-2025)

2008 2025 2008 2025 2008 2025

Central and North 246.2 405.9 403.9 627.5 87.98 87.18 -1% -0.1%
America (-2.61%) (3.0%) (2.6%) 38.5% 29.6%

Europe 163.5 310.0 235.2 413.1 50.15 56.19 12% 0.8%
(-2.61%) (3.9%) ( 3.5%) 21.9% 19.1%

Latin America 28.5 64.7 47.1 89.3 17.07 20.65 21% 1.2%
(-2.61%) (5.0%) (3.9%) 7.5% 7.0%

Russia and CIS 9.6 21.1 15.4 28.1 9.65 11.28 17% 1.1%
(-2.61%) (4.9%) (3.8%) 4.2% 3.8%

Africa 9.9 30.0 17.3 47.6 7.98 14.04 76% 3.4%
(-2.61%) (6.7%) (6.2%) 3.5% 4.8%

The Middle East 24.1 48.7 39.9 74.3 8.18 9.72 19% 1.3%
(-2.61%) (4.5%) (4.0%) 3.6% 3.3%

Asian countries and 98.6 296.4 158.2 465.2 32.89 61.69 88% 4.0%
Oceania (-2.61%) 6.9% 6.8% 14.4% 20.9%

China 56.9 215.0 82.8 296.7 14.80 33.84 129% 5.1%
(-2.61%) (8.2%) (7.9%) 6.5% 11.5%

World 637.4 1391.8 999.8 2041.9 228.71 294.59 29% 1.5%
(-2.61%) (4.7%) (4.3%) 100% 100%

Notes:
The first two columns present 2008 and 2025 air traffic forecasts expressed in RTK (first column)
and ATK (second column).
ATK are computed from RTK forecasts using the following equations: RTK = WLF × ATK ⇔

ATK = RTK
WLF

with WLF the percentage of an aircraft’s available ton effectively occupied during
a flight. Because airlines never fully fill their aircrafts, ATK > RTK (see Section 2.1 for more
details). Assumptions on the evolution of WLF between 2008 and 2025 are detailed in Section 4.2.
In the first two columns, figures into brackets represent yearly mean growth rate of air traffic
forecasts between 2008 and 2025. Note that for each zone and at the world level, the yearly mean
growth rate of air traffic forecasts expressed in ATK is always inferior to the yearly mean growth
rate of air traffic forecasts expressed in RTK.

The other three columns concern Jet-Fuel forecasts.
The third column presents 2008 and 2025 Jet-Fuel forecasts expressed in Ton (106). For each
region, Jet-Fuel forecasts are computed from ATK using i) Energy Efficiency (EE) coefficients
presented in Section 3 and ii) a regional energy gains hypothesis. Energy gains hypothesis are
indicated into brackets under each region’s name. These figures correspond to the EE coefficient
yearly mean growth rate hypothesis. A negative sign means an energy efficiency improvement

hypothesis as EEi,t =
Tjeti,t
ATKi,t

with EEi,t the abbreviation for EE coefficient in zone i at time

t. Thus defined, EE may be interpreted as the quantity of Jet-Fuel (Tjet, expressed in ton of
Jet-Fuel) required to power the transportation of one ton over one kilometer (ATK). A decrease of
EE coefficients means then that quantities of Jet-Fuel required to power the transportation of one
ton over one kilometer have decreased.
In the third column, figures expressed in % terms indicate the share of each region’s Jet-Fuel
consumption in 2008 and 2025.
The fourth and the fifth column indicate, respectively, the % variation and the corresponding
yearly mean growth rate of Jet-Fuel forecasts between 2008 and 2025.

Table 4.4:
Air traffic (expressed in 109 RTK and 109 ATK) and Jet-Fuel (expressed in Ton (106))

forecasts for the years 2008 and 2025. Forecasts are presented at the world level (last

line) and for each regions (other lines).

‘IMF GDP growth rates’ air traffic forecasts scenario combined with
‘Homogeneous energy gains’ traffic efficiency improvements scenario.
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Analyzing the sensitivity of Jet-Fuel demand projections to the
rise of air traffic

Tables 4.5 and 4.6 summarize the following two Jet-Fuel demand projections
scenarii. The first one combines the ‘Low GDP growth rates’ air traffic forecasts
scenario with the ‘Heterogeneous energy gains’ traffic efficiency improvements
scenario (Table 4.5). The second one combines the ‘High GDP growth rates’ air
traffic forecasts scenario with the ‘Heterogeneous energy gains’ traffic efficiency
improvements scenario (Table 4.6).

Compared to the ‘Business As Usual ’ Jet-Fuel demand projection scenario,
traffic efficiency improvements hypothesis remain the same. On the other hand,
GDP growth rates projections hypothesis are now different78. These two alter-
native Jet-Fuel demand projections scenarii are then compared with the ‘Busi-
ness As Usual ’ Jet-Fuel demand projection scenario in order to analyze the
sensitivity of Jet-Fuel demand projections to the rise of air traffic. Let us focus
our comments at the world level.

78As explained in Section 4.1.2.2, IMF GDP growth rates projections are decreased (in-
creased) by 10 % in the ‘Low GDP growth rates’ (‘High GDP growth rates’) air traffic forecasts
scenario.
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RTK (109) Corresponding Jet fuel-Ton (106) % variation Mean growth

Regions (mean growth ATK (109) (consumption of Jet-Fuel rate per year
(Energy gains rate per year) (mean growth of the region-%) (2008-2025) of Jet-Fuel
hypothesis) rate per year) (2008-2025)

2008 2025 2008 2025 2008 2025

Central and North 246.1 391.2 403.8 604.8 86.92 75.17 -14% -0.9%
America (-3.18%) (2.8%) (2.4%) 37.9% 26.0%

Europe 163.3 287.7 235.0 383.5 51.56 68.53 33% 1.8%
(-1.20%) (3.5%) (3.0%) 22.5% 23.7%

Latin America 28.5 62.7 47.1 86.5 17.40 24.20 39% 2.0%
(-1.63%) (4.8%) (3.7%) 7.6% 8.4%

Russia and CIS 9.6 19.1 15.3 25.4 9.01 5.42 -40% -2.8%
(-5.79%) (4.2%) (3.2%) 3.9% 1.9%

Africa 9.9 27.6 17.2 43.8 7.71 9.45 23% 1.2%
(-4.20%) (6.2%) (5.6%) 3.4% 3.3%

The Middle East 24.0 42.3 39.7 64.6 7.88 6.18 -22% -1.1%
(-4.20%) (3.7%) (3.2%) 3.4% 2.1%

Asian countries and 98.3 253.8 157.7 398.4 33.51 65.01 94% 4.2%
Oceania (-1.54%) (6.0%) (5.8%) 14.6% 22.5%

China 56.7 184.4 82.5 254.5 15.05 34.97 132% 5.2%
(-1.65%) (7.3%) (6.9%) 6.6% 12.1%

World 636.5 1268.9 998.4 1861.5 229.05 288.92 26% 1.4%
(-2.22%)* (4.2%) (3.8%) 100% 100%

Notes:
The first two columns present 2008 and 2025 air traffic forecasts expressed in RTK (first column)
and ATK (second column).
ATK are computed from RTK forecasts using the following equations: RTK = WLF × ATK ⇔

ATK = RTK
WLF

with WLF the percentage of an aircraft’s available ton effectively occupied during
a flight. Because airlines never fully fill their aircrafts, ATK > RTK (see Section 2.1 for more
details). Assumptions on the evolution of WLF between 2008 and 2025 are detailed in Section 4.2.
In the first two columns, figures into brackets represent yearly mean growth rate of air traffic
forecasts between 2008 and 2025. Note that for each zone and at the world level, the yearly mean
growth rate of air traffic forecasts expressed in ATK is always inferior to the yearly mean growth
rate of air traffic forecasts expressed in RTK.

The other three columns concern Jet-Fuel forecasts.
The third column presents 2008 and 2025 Jet-Fuel forecasts expressed in Ton (106). For each
region, Jet-Fuel forecasts are computed from ATK using i) Energy Efficiency (EE) coefficients
presented in Section 3 and ii) a regional energy gains hypothesis. Energy gains hypothesis are
indicated into brackets under each region’s name. These figures correspond to the EE coefficient
yearly mean growth rate hypothesis. A negative sign means an energy efficiency improvement

hypothesis as EEi,t =
Tjeti,t
ATKi,t

with EEi,t the abbreviation for EE coefficient in zone i at time

t. Thus defined, EE may be interpreted as the quantity of Jet-Fuel (Tjet, expressed in ton of
Jet-Fuel) required to power the transportation of one ton over one kilometer (ATK). A decrease of
EE coefficients means then that quantities of Jet-Fuel required to power the transportation of one
ton over one kilometer have decreased.
In the third column, figures expressed in % terms indicate the share of each region’s Jet-Fuel
consumption in 2008 and 2025.
The fourth and the fifth column indicate, respectively, the % variation and the corresponding
yearly mean growth rate of Jet-Fuel forecasts between 2008 and 2025.
* This figure corresponds to the world level energy gains (per year until 2025) resulting from
regional energy gains hypothesis as defined in the ‘Heterogeneous energy gains’ traffic efficiency
improvements scenario.

Table 4.5:
Air traffic (expressed in 109 RTK and 109 ATK) and Jet-Fuel (expressed in Ton

(106)) forecasts for the years 2008 and 2025. Forecasts are presented at the world

level (last line) and for each regions (other lines).

‘Low GDP growth rates’ air traffic forecasts scenario combined with
‘Heterogeneous energy gains’ traffic efficiency improvements sce-

nario.
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RTK (109) Corresponding Jet fuel-Ton (106) % variation Mean growth

Regions (mean growth ATK (109) (consumption of Jet-Fuel rate per year
(Energy gains rate per year) (mean growth of the region-%) (2008-2025) of Jet-Fuel
hypothesis) rate per year) (2008-2025)

2008 2025 2008 2025 2008 2025

Central and North 246.3 421.0 404.1 650.9 86.99 80.89 -7% -0.4%
America (-3.18%) (3.2%) (2.8%) 37.9% 23.2%

Europe 163.7 333.7 235.4 444.8 51.66 79.49 54% 2.7%
(-1.20%) (4.4%) (3.9%) 22.5% 22.8%

Latin America 28.6 66.8 47.1 92.2 17.43 25.77 48% 2.4%
(-1.63%) (5.2%) (4.1%) 7.6% 7.4%

Russia and CIS 9.6 23.4 15.4 31.1 9.06 6.65 -27% -1.6%
(-5.79%) (5.5%) (4.4%) 3.9% 1.9%

Africa 10.0 32.7 17.3 51.8 7.74 11.16 44% 2.2%
(-4.20%) (7.2%) (6.7%) 3.4% 3.2%

The Middle East 24.2 56.0 40.1 85.4 7.94 8.17 3% 0.5%
(-4.20%) (5.4%) (4.9%) 3.5% 2.3%

Asian countries and 98.9 345.7 158.7 542.6 33.72 88.55 163% 6.1%
Oceania (-1.54%) (7.9%) (7.8%) 14.7% 25.4%

China 57.1 250.3 83.0 345.4 15.14 47.47 214% 7.0%
(-1.65%) (9.2%) (8.8%) 6.6% 13.6%

World 638.3 1529.5 1001.2 2244.2 229.68 348.15 52% 2.5%
(-2.22%)* (5.3%) (4.9%) 100% 100%

Notes:
The first two columns present 2008 and 2025 air traffic forecasts expressed in RTK (first column)
and ATK (second column).
ATK are computed from RTK forecasts using the following equations: RTK = WLF × ATK ⇔

ATK = RTK
WLF

with WLF the percentage of an aircraft’s available ton effectively occupied during
a flight. Because airlines never fully fill their aircrafts, ATK > RTK (see Section 2.1 for more
details). Assumptions on the evolution of WLF between 2008 and 2025 are detailed in Section 4.2.
In the first two columns, figures into brackets represent yearly mean growth rate of air traffic
forecasts between 2008 and 2025. Note that for each zone and at the world level, the yearly mean
growth rate of air traffic forecasts expressed in ATK is always inferior to the yearly mean growth
rate of air traffic forecasts expressed in RTK.

The other three columns concern Jet-Fuel forecasts.
The third column presents 2008 and 2025 Jet-Fuel forecasts expressed in Ton (106). For each
region, Jet-Fuel forecasts are computed from ATK using i) Energy Efficiency (EE) coefficients
presented in Section 3 and ii) a regional energy gains hypothesis. Energy gains hypothesis are
indicated into brackets under each region’s name. These figures correspond to the EE coefficient
yearly mean growth rate hypothesis. A negative sign means an energy efficiency improvement

hypothesis as EEi,t =
Tjeti,t
ATKi,t

with EEi,t the abbreviation for EE coefficient in zone i at time

t. Thus defined, EE may be interpreted as the quantity of Jet-Fuel (Tjet, expressed in ton of
Jet-Fuel) required to power the transportation of one ton over one kilometer (ATK). A decrease of
EE coefficients means then that quantities of Jet-Fuel required to power the transportation of one
ton over one kilometer have decreased.
In the third column, figures expressed in % terms indicate the share of each region’s Jet-Fuel
consumption in 2008 and 2025.
The fourth and the fifth column indicate, respectively, the % variation and the corresponding
yearly mean growth rate of Jet-Fuel forecasts between 2008 and 2025.
* This figure corresponds to the world level energy gains (per year until 2025) resulting from
regional energy gains hypothesis as defined in the ‘Heterogeneous energy gains’ traffic efficiency
improvements scenario.

Table 4.6:
Air traffic (expressed in 109 RTK and 109 ATK) and Jet-Fuel (expressed in Ton (106))

forecasts for the years 2008 and 2025. Forecasts are presented at the world level (last

line) and for each regions (other lines).

‘High GDP growth rates’ air traffic forecasts scenario combined with
‘Heterogeneous energy gains’ traffic efficiency improvements sce-

nario.
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As already developed in Section 4.1.2.2, the ‘IMF GDP growth rates’ air
traffic forecasts scenario yields to an increase of world air traffic projections
(expressed in RTK (109)) at a yearly mean growth rate of 4.7%, rising from
637.4 to 1391.8 between 2008 and 2025 (Table 4.3, first column, two last lines).
By comparison, the ‘Low GDP growth rates’ and ‘High GDP growth rates’ air
traffic scenarii predict a yearly mean growth rate of world air traffic – expressed
in RTK – of 4.2% (Table 4.5, first column, last line, figure into bracket) and
5.3% (Table 4.6, first column, last line, figure into bracket), respectively.

Regarding Jet-Fuel demand projections, the ‘Business As Usual ’ Jet-Fuel
demand projection scenario predicts a yearly mean growth rate of 1.9% per
year until 2025 (Table 4.3, last column, last line) at the world level. By com-
parison, Tables 4.5 and 4.6 predict a yearly mean growth rate of world Jet-Fuel
demand of 1.4% and 2.5%, respectively (last column, last line).

Thus, a decrease (an increase) by 10% of regions’ GDP growth rates pro-
jections yields to a decrease (an increase) of the world air traffic yearly mean
growth rate by about 10.6% (12.8%). Variations in GDP growth rates projec-
tion hypothesis (and thus a variation of air traffic forecasts) have even a greater
impact on Jet-Fuel demand projections. Indeed, by comparing the different
yearly mean growth rates of world Jet-Fuel demand projections presented in
Tables 4.3, 4.5 and 4.6, one may conclude that a decrease (an increase) by 10%
of regions’ GDP growth rates projections yields to a decrease (an increase) of the
world air traffic yearly mean growth rate by about 26% (32%), ceteris paribus.

These results highlight the high sensitivity of Jet-Fuel demand projections
to variations of both economic activity projections and air traffic forecasts.
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5 Conclusion

The two major contributions of this article are to provide i) air traffic and ii)
Jet-Fuel demand projections at both worldwide and regional levels until 2025.
This assessment appears central in a scarce energy resources context, as air traf-
fic is expected to rise strongly in the near future.

The general methodology followed in this paper may be decomposed into
three steps. First, the relationship between air traffic and its main fundamentals
has to be estimated using econometric methods. Second, econometric results
are used to provide various air traffic forecasts. Third, air traffic forecasts are
converted into corresponding quantities of Jet-Fuel. Indeed, Jet-Fuel is not con-
sumed for itself but to power aircraft engines, which depend on the demand for
mobility in air transportation. Thus, Jet-Fuel forecasts are not based directly
on Jet-Fuel consumptions time series, but need to be computed from air traffic
forecasts.

Concerning the first step (modeling of the demand for mobility in the avi-
ation sector), air traffic forecasts are estimated using panel-data econometric
methods. According to the literature79, air traffic drivers are mainly i) GDP
growth rates - by far its most important driver; ii) ticket prices - which may be
proxied by Jet-Fuel prices for instance; iii) alternative transport modes - such
as train; and iv) some external shocks such as the 09/11 terrorist attacks. The
influence of these drivers depends on air transport market maturity. To take
into account the latter criteria, the modeling is realized for eight zones 80, by
using dynamic panel-data models.

Once estimated from historical data, the model is then used to generate air
traffic forecasts (the second step of the methodology). It is thus possible to
obtain different air traffic forecasts scenarii ; depending on assumptions made
on the evolution of air traffic drivers previously identified. These air traffic pro-
jections are required for estimating the demand for Jet-Fuel.

Regarding the third step (forecasting Jet-Fuel demand), the conversion of
air traffic projections into quantities of Jet-Fuel is accomplished using the ‘Traf-
fic Efficiency ’ method developed previously by UK DTI to support the IPCC
(IPCC (1999)). This methodology allows obtaining coefficients to convert one
amount of air transport into one amount of Jet-Fuel. The intuition behind this
method may be summarized as follows. The rise of Jet-Fuel demand resulting
from air traffic demand rise can be mitigated by energy efficiency improvements.

79See in particular DfT (2009), ECI (2006), Eyers et al. (2004), Gately (1988), IPCC
(1999), Macintosh and Wallace (2009), Mayor and Tol (2010), RCEP (2002), Vedantham and
Oppenheimer (1994, 1998), Wickrama et al. (2003).

80Projections are thus estimated for the following regions: Central and North America, Latin
America, Europe, Russia and CIS, Africa, the Middle East, Asian countries and Oceania. The
eighth region is China, in order to have a specific focus on this rapidly developing country.
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Thus, one of the major tasks when forecasting Jet-Fuel demand consists in exam-
ining the expected rates, expressed per year, of energy efficiency improvements
in the aviation sector. One of our major contribution consists in proposing a
new methodology to obtain energy efficiency coefficients and their improvements
estimates based on modeling at the macro-level. These coefficients are obtained
by directly comparing the evolution of both Jet-Fuel consumption and air traf-
fic time series from 1983 to 2006. As straightforward as it may look like, this
methodology has not been implemented before to our best knowledge81.

Our results may be summarized as follows. First, we provide detailed de-
scriptive statistics on air traffic, using air traffic data from the ICAO during
1980-2007. This section highlights the strongly rising trends in the evolution
of worldwide air traffic, along with changes in the composition of air traffic by
zone. Our analysis reveals that, while the share of Europe and North Amer-
ica in air traffic remains relatively stable over the period, China is becoming
a major player in air transportation. Indeed, its share in total air traffic has
skyrocketed, going from 4.74% in 1996 to 8.57% in 2006. We provide also de-
tailed descriptive statistics on domestic vs. international air traffic and freight
vs. passengers’ air traffic. We show that at the world level, domestic air traffic
has increased at the rate of 4% per year on average, which corresponds to a
less dynamic development than the aggregated (domestic+ international) air
traffic (6.44%). Besides, we document that at the world level, freight traffic has
increased at the rate of 9.14% per year on average, fostered by world economic
and trade growth. This development is stronger than passengers’ air traffic,
which increased at the rate of 6.04% per year on average.

Second, our ’macro-level ’ methodology allows obtaining ’aggregated’ energy
efficiency coefficients and their growth rates from 1980 to 2006. We notice that
each of the eight regions have registered traffic efficiency improvements during
the whole period at the aggregated (domestic + international) level. At the
world level, energy efficiency improvements have been equal to 2.88% per year
during the whole period. Aggregated (domestic + international) energy effi-
ciency ratios are negative for four regions (Central and North America, Europe,
China, Asia and Oceania), and positive for the four others (Latin America,
Africa, Russia and CIS, the Middle East). This result means that, for aggre-
gated (domestic + international) travels, the former regions are on average more
energy efficient during the whole period than the world’s benchmark. On the
contrary, the four latter regions are less energy efficient than the world’s average
during 1983-2006. At the world level, domestic energy efficiency appears to be
lower than the international one. This comment applies in all regions: domestic
air traffic efficiency appears to be inferior to international air traffic efficiency
whatever the region considered. This result confirms the intuition that domestic
air travels are more energy intensive than international air travels. One of the

81Peeters et al. (2005) and Owen (2008) already had the same intuition than ours but they
did not apply the methodology at the same level of detail.
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main reasons advanced in previous literature is that domestic flights are more
energy intensive due to more frequent take-off and landing. These remarks lead
to the following stylized fact: even if both international and domestic air travels
have encountered energy efficiency improvements from 1983 to 2006, interna-
tional air travels appear to be less energy intensive than domestic air travels.

Third, we provide an econometric analysis of the demand for mobility in the
aviation sector and Jet-Fuel demand forecasts. In the first step of our econo-
metric analysis, the influence of air traffic determinants previously presented is
estimated using the Arellano-Bond estimator. GDP appears to have a positive
influence on air traffic whereas the influence of Jet-Fuel price - above a given
threshold - is negative. Exogenous shocks can also have a (negative) impact on
air traffic growth rates. Last but not least, the dynamic panel-data modeling
leads us to conclude that the magnitude of the influence of air traffic drivers
differs from region to region. Thus, air traffic forecasts differ between regions.
Various air traffic forecasts scenarii are developed. According to our ’Business
As Usual ’ scenario, air traffic is set to experience rapid growth until 2025. Our
results suggest that air traffic (expressed in RTK) will grow at an average growth
rate of 4.7 per year between 2008 and 2025 at the worldwide level (ranging from
3% /yr (Central and North America) to 8.2 % /yr (China), at the regional level).
Energy efficiency coefficients and their growth rates (corresponding to the evo-
lution of energy gains) obtained by the ’macro-level ’ methodology proposed in
this paper are then applied to these air traffic forecasts to deduce the evolution
of Jet-Fuel demand until 2025. These air traffic energy gains results lead us to
forecast an increase of Jet-Fuel demand by about 40% between 2008 and 2025
at the world level, corresponding to a yearly average growth rate of about 2%.

These Jet-Fuel demand projections are based on the ’Business As Usual ’
scenario. In particular, it has been assumed that the relatively high energy
gains observed during the last 30 years will continue to apply in a near future.
When comparing our projections of Jet-Fuel demand (+ 2% per year at the
world level) with our air traffic forecasts (+ 4.7% per year at the world level),
technological progress appears to be an important way of mitigating the impact
of the rise of air traffic on Jet-Fuel demand . Nevertheless, if the aviation
sector continues to be one of the fastest growing sectors of the global economy
(Whitelegg (2004)), technological progress would not be sufficient to completely
annihilate its impact on the rise of Jet-Fuel demand. Thus, Jet-Fuel demand
is unlikely to diminish unless there is a radical shift in technology or air travel
demand is restricted.
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APPENDIX

Note to the reader:
China starts declaring some of its air traffic data in 1993. Russia and CIS
presents some inconsistency in the data until 1991. Thus, some statistics must
be interpreted with great care.
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Figure 2.12: Evolution of each zone’s international Weight Load Factor (solid
line) compared to world’s international Weight Load Factor (dashed line).
Source: Authors, from ICAO data.
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Figure 2.13: Repartition of freight (top) and passengers (bottom) air traffic
(expressed in RTK) by zone in 1983 (left panel), 1996 (middle panel) and 2007
(right panel).
Source: Authors, from ICAO data.
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Figure 2.15: Evolution of each zone’s freight Weight Load Factor (solid line)
compared to world’s Weight Load Factor (dashed line) (1983-2007).
Source: Authors, from ICAO data.
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Figure 2.17: Evolution of each zone’s passengers’ Weight Load Factor (solid
line) compared to world’s passengers’ Weight Load Factor (dashed line)
(1983-2007).
Source: Authors, from ICAO data.
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Figure 2.18: Evolution of passenger’s air traffic (expressed in RPK (billions))
by zone during 1983-2007.
Source: Authors, from ICAO data.
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Figure 2.19: Evolution of each zone’s passengers’ Load Factor (solid line)
compared to world’s passengers’ Load Factor (dashed line) (1983-2007).
Source: Authors, from ICAO data.
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Mean values Yearly average growth rates
1983 1996 2006 Sub-periods Whole period

1983-1996 1996-2006 1983-2006

Central and RTK 61.79 148.68 223.90 7.06% 4.31% 5.87%
North ATK 109.97 255.69 369.31 6.77% 3.79% 5.47%
America WLF 56.18% 58.15% 60.63% 0.27% 0.46% 0.35%

Mtoe 46.725 86.065 89.983 4.89% 0.49% 2.98%

Europe RTK 32.37 99.64 161.46 8.32% 5.17% 6.95%
ATK 51.61 145.63 234.42 7.88% 4.44% 6.38%
WLF 62.73% 68.42% 68.88% 0.70% 0.13% 0.45%
Mtoe 20.551 39.193 55.909 5.09% 3.62% 4.45%

Latin RTK 4.33 11.41 13.56 7.86% 5.76% 6.94%
America ATK 8.34 21.31 21.69 7.63% 2.85% 5.55%

WLF 51.98% 53.54% 62.52% 0.32% 2.01% 1.06%
Mtoe 4.934 7.687 8.797 3.58% 1.66% 2.74%

Russia and RTK 19.05 4.22 11.03 -9.24% 10.88% -0.49%
CIS ATK 23.08 8.15 18.34 -6.08% 9.24% 0.58%

WLF 82.54% 51.83% 60.14% -3.35% 1.62% -1.19%
Mtoe 25.265 10.412 12.901 -6.19% 2.24% -2.53%

Africa RTK 3.69 3.18 9.96 0.32% 14.80% 6.62%
ATK 7.16 6.15 17.26 0.70% 14.00% 6.48%
WLF 51.61% 51.70% 57.71% 0.09% 1.13% 0.54%
Mtoe 4.453 6.732 8.923 3.31% 2.96% 3.16%

The Middle RTK 4.97 9.58 28.70 8.89% 13.02% 10.69%
East ATK 9.27 15.35 49.04 8.34% 13.93% 10.77%

WLF 53.63% 62.42% 58.52% 1.34% -0.62% 0.49%
Mtoe 5.258 8.728 11.247 4.38% 2.59% 3.60%

Asian RTK 21.63 75.79 114.13 10.61% 4.35% 7.89%
countries and ATK 33.19 123.20 183.96 11.06% 4.16% 8.06%
Oceania WLF 65.19% 61.52% 62.04% -0.40% 0.13% -0.17%

Mtoe 13.187 33.460 42.779 7.45% 2.52% 5.31%

China RTK 1.76 17.52 52.72 21.16% 11.89% 17.13%
ATK 2.49 26.33 77.36 22.15% 11.52% 17.52%
WLF 70.46% 66.54% 68.15% -0.42% 0.31% -0.10%
Mtoe 1.246 6.225 15.475 13.33% 10.03% 11.90%

World RTK 149.63 370.05 615.49 7.28% 5.34% 6.44%
ATK 245.16 601.84 971.41 7.19% 4.97% 6.22%
WLF 61.03% 61.49% 63.36% 0.07% 0.33% 0.18%
Mtoe 121.621 198.502 246.013 3.88% 2.20% 3.15%

Table 2.1: Air traffic (expressed in RTK and ATK (billions)), Weight Load
Factor and Jet-Fuel consumption (expressed in Mtoe) for each zone during 1983-
2006.
Source: Authors, from ICAO and IEA data.
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Mean values
1983 1996 2006

Central and RTK 41.29% 40.18% 36.38%
North ATK 44.86% 42.49% 38.02%
America Mtoe 38.42% 43.36% 36.58%

Europe RTK 21.64% 26.93% 26.23%
ATK 21.05% 24.20% 24.13%
Mtoe 16.90% 19.74% 22.73%

Latin RTK 2.90% 3.08% 2.20%
America ATK 3.40% 3.54% 2.23%

Mtoe 4.06% 3.87% 3.58%

Russia and RTK 12.74% 1.14% 1.79%
CIS ATK 9.42% 1.36% 1.89%

Mtoe 20.77% 5.25% 5.24%

Africa RTK 2.47% 0.86% 1.62%
ATK 2.92% 1.02% 1.78%
Mtoe 3.66% 3.39% 3.63%

The Middle RTK 3.32% 2.59% 4.66%
East ATK 3.78% 2.55% 5.05%

Mtoe 4.32% 4.40% 4.57%

Asian RTK 14.46% 20.48% 18.54%
countries and ATK 13.54% 20.47% 18.94%
Oceania Mtoe 10.84% 16.86% 17.39%

China RTK 1.18% 4.74% 8.57%
ATK 1.02% 4.38% 7.96%
Mtoe 1.02% 3.14% 6.29%

Table 2.2: World repartition of air traffic (expressed in RTK and ATK) and
Jet-Fuel consumption (expressed in Mtoe) by zone (1983–2006).
Source: Authors, from ICAO and IEA data.
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Mean values
1983 1996 2007

Central and Passengers (RTK) 90.88% 86.62% 81.51%
North Freight (RTK) 9.12% 13.38% 18.49%
America

Passengers (ATK) 92.34% 87.35% 81.75%
Freight (ATK) 7.66% 12.65% 18.25%

Europe Passengers (RTK) 92.47% 91.55% 88.36%
Freight (RTK) 7.53% 8.45% 11.64%

Passengers (ATK) 92.72% 91.84% 88.33%
Freight (ATK) 7.28% 8.16% 11.67%

Latin Passengers (RTK) 88.92% 88.11% 89.73%
America Freight (RTK) 11.08% 11.89% 10.27%

Passengers (ATK) 90.78% 89.90% 91.52%
Freight (ATK) 9.22% 10.10% 8.48%

Russia and Passengers (RTK) 100.00% 99.48% 91.85%
CIS Freight (RTK) 0.00% 0.52% 8.15%

Passengers (ATK) 100.00% 99.37% 91.56%
Freight (ATK) 0.00% 0.63% 8.44%

Africa Passengers (RTK) 96.11% 97.87% 96.62%
Freight (RTK) 3.89% 2.13% 3.38%

Passengers (ATK) 96.81% 97.57% 96.98%
Freight (ATK) 3.19% 2.43% 3.02%

The Middle Passengers (RTK) 86.19% 85.43% 88.02%
East Freight (RTK) 13.81% 14.57% 11.98%

Passengers (ATK) 85.43% 86.88% 88.16%
Freight (ATK) 14.57% 13.12% 11.84%

Asian Passengers (RTK) 88.82% 85.56% 84.11%
countries and Freight (RTK) 11.18% 14.44% 15.89%
Oceania

Passengers (ATK) 89.95% 86.41% 84.71%
Freight (ATK) 10.05% 13.59% 15.29%

China Passengers (RTK) 84.71% 85.63% 85.03%
Freight (RTK) 15.29% 14.37% 14.97%

Passengers (ATK) 86.07% 88.22% 84.82%
Freight (ATK) 13.93% 11.78% 15.18%

World Passengers (RTK) 91.93% 87.94% 85.07%
Freight (RTK) 8.07% 12.06% 14.93%

Passengers (ATK) 92.57% 88.63% 85.22%
Freight (ATK) 7.43% 11.37% 14.78%

Table 2.3: Repartition of air traffic (expressed in RTK and ATK) within each
zone (1983-2007): passenger vs. freight.
Source: Authors, from ICAO data.
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Mean values
1983 1996 2006

Central and Domestic (RTK) 67.21% 63.36% 56.16%
North International (RTK) 32.79% 36.64% 43.84%
America

Domestic (ATK) 69.02% 64.40% 56.58%
International (ATK) 30.98% 35.60% 43.42%

Domestic (Mtoe) 81.74% 76.89% 77.35%
International (Mtoe) 18.26% 23.11% 22.65%

Europe Domestic (RTK) 8.05% 6.86% 5.09%
International (RTK) 91.95% 93.14% 94.91%

Domestic (ATK) 8.63% 8.15% 5.78%
International (ATK) 91.37% 91.85% 94.22%

Domestic (Mtoe) 24.90% 20.49% 18.83%
International (Mtoe) 75.10% 79.51% 81.17%

Latin Domestic (RTK) 32.33% 30.43% 40.93%
America International (RTK) 67.67% 69.57% 59.07%

Domestic (ATK) 30.99% 31.67% 42.20%
International (ATK) 69.01% 68.33% 57.80%

Domestic (Mtoe) 55.06% 53.86% 43.28%
International (Mtoe) 44.94% 46.14% 56.72%

Russia and Domestic (RTK) 93.37% 31.47% 28.47%
CIS International (RTK) 6.63% 68.53% 71.53%

Domestic (ATK) 91.72% 27.87% 26.20%
International (ATK) 8.28% 72.13% 73.80%

Domestic (Mtoe) 0.00% 47.89% 47.08%
International (Mtoe) 100.00% 52.11% 52.92%

Africa Domestic (RTK) 15.96% 8.90% 10.80%
International (RTK) 84.04% 91.10% 89.20%

Domestic (ATK) 14.65% 8.82% 9.70%
International (ATK) 85.35% 91.18% 90.30%

Domestic (Mtoe) 20.26% 32.04% 35.55%
International (Mtoe) 79.74% 67.96% 64.45%

The Middle Domestic (RTK) 16.69% 5.70% 4.98%
East International (RTK) 83.31% 94.30% 95.02%

Domestic (ATK) 15.25% 4.94% 5.18%
International (ATK) 84.75% 95.06% 94.82%

Domestic (Mtoe) 10.05% 9.25% 7.31%
International (Mtoe) 89.95% 90.75% 92.69%

Asian Domestic (RTK) 9.65% 14.38% 12.90%
countries and International (RTK) 90.35% 85.62% 87.10%
Oceania

Domestic (ATK) 11.28% 18.58% 15.72%
International (ATK) 88.72% 81.42% 84.28%

Domestic (Mtoe) 30.28% 31.30% 23.27%
International (Mtoe) 69.72% 68.70% 76.73%

China Domestic (RTK) 0.00% 25.15% 37.96%
International (RTK) 100.00% 74.85% 62.04%

Domestic (ATK) n.a. 27.74% 37.77%
International (ATK) 100.00% 72.26% 62.23%

Domestic (Mtoe) 35.04% 43.63% 55.22%
International (Mtoe) 64.96% 56.37% 44.78%

World Domestic (RTK) 44.67% 32.96% 29.23%
International (RTK) 55.33% 67.04% 70.77%

Domestic (ATK) 45.00% 36.07% 30.76%
International (ATK) 55.00% 63.93% 69.24%

Domestic (Mtoe) 42.66% 50.12% 45.73%
International (Mtoe) 57.34% 49.88% 54.27%

Table 2.4: Repartition of air traffic (expressed in RTK and ATK) and
Jet-Fuel consumption (expressed in Mtoe) within each zone (1983-2006):
domestic vs. international.
Source: Authors, from ICAO and IEA data.
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Mean values
1983 1996 2007

Central and Domestic (RTK) 62.13% 77.23% 66.39%
North International (RTK) 24.47% 21.96% 21.85%
America

Domestic (ATK) 68.80% 75.86% 66.52%
International (ATK) 25.27% 23.66% 23.16%

Europe Domestic (RTK) 3.90% 5.61% 4.56%
International (RTK) 35.95% 37.41% 34.92%

Domestic (ATK) 4.04% 5.47% 4.37%
International (ATK) 34.98% 34.76% 32.67%

Latin Domestic (RTK) 2.10% 2.85% 5.36%
America International (RTK) 3.55% 3.20% 2.49%

Domestic (ATK) 2.34% 3.11% 5.51%
International (ATK) 4.27% 3.78% 2.66%

Russia and Domestic (RTK) 26.62% 1.09% 1.72%
CIS International (RTK) 1.53% 1.17% 1.55%

Domestic (ATK) 19.19% 1.05% 1.55%
International (ATK) 1.42% 1.53% 1.70%

Africa Domestic (RTK) 0.88% 0.23% 0.48%
International (RTK) 3.76% 1.17% 1.62%

Domestic (ATK) 0.95% 0.25% 0.45%
International (ATK) 4.54% 1.46% 1.87%

The Middle Domestic (RTK) 1.24% 0.45% 0.72%
East International (RTK) 5.00% 3.64% 6.75%

Domestic (ATK) 1.28% 0.35% 0.76%
International (ATK) 5.83% 3.79% 7.30%

Asian Domestic (RTK) 3.13% 8.94% 8.74%
countries and International (RTK) 23.61% 26.16% 22.46%
Oceania

Domestic (ATK) 3.39% 10.55% 10.66%
International (ATK) 21.84% 26.07% 22.53%

China Domestic (RTK) 0.00% 3.61% 12.03%
International (RTK) 2.13% 5.29% 8.35%

Domestic (ATK) 0.00% 3.37% 10.18%
International (ATK) 1.85% 4.95% 8.11%

Table 2.5: World repartition of domestic and international air traffic
(expressed in RTK and ATK) by zone (1983–2007).
Source: Authors, from ICAO data.
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Mean values Yearly average growth rates
1983 1996 2007 Sub-periods Whole period

1983-1996 1996-2007 1983-2007

Central and RTK 41.52 94.20 127.26 6.50% 2.77% 4.78%
North ATK 75.90 164.65 211.23 6.14% 2.29% 4.36%
America

WLF 54.71% 57.21% 60.25% 0.34% 0.47% 0.40%

Europe RTK 2.60 6.83 8.74 7.70% 2.26% 5.17%
ATK 4.45 11.87 13.88 7.83% 1.43% 4.85%

WLF 58.52% 57.60% 63.00% -0.12% 0.82% 0.31%

Latin RTK 1.40 3.47 10.27 7.22% 10.37% 8.65%
America ATK 2.58 6.75 17.49 7.66% 9.04% 8.29%

WLF 54.23% 51.44% 58.75% -0.40% 1.21% 0.33%

Russia and RTK 17.79 1.33 3.28 -18.08% 8.58% -6.79%
CIS ATK 21.17 2.27 4.91 -15.77% 7.25% -5.91%

WLF 84.02% 58.52% 66.98% -2.74% 1.23% -0.94%

Africa RTK 0.59 0.28 0.91 -5.50% 11.29% 1.85%
ATK 1.05 0.54 1.44 -4.95% 9.31% 1.34%

WLF 56.22% 52.14% 63.52% -0.58% 1.81% 0.51%

The Middle RTK 0.83 0.54 1.37 -3.16% 8.77% 2.13%
East ATK 1.41 0.75 2.41 -4.69% 11.11% 2.25%

WLF 58.69% 72.12% 57.09% 1.60% -2.10% -0.12%

Asian RTK 2.08 10.90 16.74 13.55% 3.98% 9.06%
countries and ATK 3.74 22.89 33.85 14.95% 3.62% 9.61%
Oceania

WLF 55.82% 47.61% 49.48% -1.22% 0.35% -0.50%

China RTK - 4.40 23.06 - 16.24% -
ATK - 7.30 32.32 - 14.48% -

WLF - 60.31% 71.35% - 1.54% -

World RTK 66.84 121.98 191.68 4.74% 4.19% 4.49%
ATK 110.33 217.06 317.55 5.34% 3.52% 4.50%

WLF 60.58% 56.20% 60.36% -0.58% 0.65% -0.02%

Table 2.6: Domestic air traffic (expressed in RTK and ATK (billions)) and
Weight Load Factor for each zone during 1983-2007.
Source: Authors, from ICAO data.
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Mean values
1983 1996 2007

Central and Passengers (RTK) 93.51% 87.38% 85.63%
North Freight (RTK) 6.49% 12.62% 14.37%
America

Passengers (ATK) 94.62% 87.95% 85.50%
Freight (ATK) 5.38% 12.05% 14.50%

Europe Passengers (RTK) 95.77% 98.53% 98.72%
Freight (RTK) 4.23% 1.47% 1.28%

Passengers (ATK) 95.66% 98.21% 98.36%
Freight (ATK) 4.34% 1.79% 1.64%

Latin Passengers (RTK) 90.37% 89.38% 95.21%
America Freight (RTK) 9.63% 10.62% 4.79%

Passengers (ATK) 91.20% 91.19% 95.48%
Freight (ATK) 8.80% 8.81% 4.52%

Russia and Passengers (RTK) 100.00% 99.65% 100.00%
CIS Freight (RTK) 0.00% 0.35% 0.00%

Passengers (ATK) 100.00% 99.62% 99.99%
Freight (ATK) 0.00% 0.38% 0.01%

Africa Passengers (RTK) 99.30% 99.93% 97.69%
Freight (RTK) 0.70% 0.07% 2.31%

Passengers (ATK) 99.01% 99.93% 97.62%
Freight (ATK) 0.99% 0.07% 2.38%

The Middle Passengers (RTK) 97.87% 100.00% 99.53%
East Freight (RTK) 2.13% 0.00% 0.47%

Passengers (ATK) 96.77% 99.99% 98.86%
Freight (ATK) 3.23% 0.01% 1.14%

Asian Passengers (RTK) 98.66% 99.65% 99.89%
countries and Freight (RTK) 1.34% 0.35% 0.11%
Oceania

Passengers (ATK) 98.26% 99.63% 99.89%
Freight (ATK) 1.74% 0.37% 0.11%

China Passengers (RTK) - 100.00% 99.09%
Freight (RTK) - 0.00% 0.91%

Passengers (ATK) - 100.00% 98.85%
Freight (ATK) - 0.00% 1.15%

World Passengers (RTK) 95.53% 89.83% 90.01%
Freight (RTK) 4.47% 10.17% 9.99%

Passengers (ATK) 95.81% 90.44% 89.88%
Freight (ATK) 4.19% 9.56% 10.12%

Table 2.7: Repartition of domestic air traffic (expressed in RTK and ATK)
within each zone (1983-2007): passenger vs. freight.
Source: Authors, from ICAO data.
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Mean values Yearly average growth rates
1983 1996 2007 Sub-periods Whole period

1983-1996 1996-2007 1983-2007

Central and RTK 20.26 54.47 102.39 7.90% 5.90% 6.98%
North ATK 34.07 91.03 166.79 7.85% 5.66% 6.84%
America

WLF 59.47% 59.84% 61.39% 0.05% 0.23% 0.13%

Europe RTK 29.76 92.80 163.64 9.14% 5.29% 7.36%
ATK 47.15 133.76 235.25 8.35% 5.27% 6.93%

WLF 63.12% 69.38% 69.56% 0.73% 0.02% 0.41%

Latin RTK 2.93 7.93 11.67 7.95% 3.57% 5.92%
America ATK 5.75 14.56 19.12 7.40% 2.51% 5.13%

WLF 50.97% 54.51% 61.04% 0.52% 1.03% 0.75%

Russia and RTK 1.26 2.89 7.27 6.59% 8.72% 7.56%
CIS ATK 1.91 5.88 12.23 9.04% 6.89% 8.04%

WLF 66.11% 49.24% 59.40% -2.24% 1.72% -0.45%

Africa RTK 3.10 2.89 7.61 -0.54% 9.18% 3.80%
ATK 6.11 5.60 13.45 -0.67% 8.28% 3.34%

WLF 50.82% 51.66% 56.57% 0.13% 0.83% 0.45%

The Middle RTK 4.14 9.03 31.64 6.18% 12.07% 8.84%
East ATK 7.85 14.59 52.58 4.88% 12.36% 8.24%

WLF 52.72% 61.91% 60.18% 1.24% -0.26% 0.55%

Asian RTK 19.54 64.89 105.28 9.67% 4.50% 7.27%
countries and ATK 29.45 100.30 162.19 9.89% 4.47% 7.37%
Oceania

WLF 66.38% 64.70% 64.91% -0.20% 0.03% -0.09%

China RTK 1.76 13.11 39.12 16.70% 10.44% 13.79%
ATK 2.49 19.02 58.39 16.90% 10.73% 14.03%

WLF 70.46% 68.93% 66.99% -0.17% -0.26% -0.21%

World RTK 82.79 248.06 468.64 8.81% 5.95% 7.49%
ATK 134.83 384.78 720.05 8.40% 5.86% 7.23%

WLF 61.41% 64.47% 65.09% 0.38% 0.09% 0.24%

Table 2.8: International air traffic (expressed in RTK and ATK (billions)) and
Weight Load Factor for each zone during 1983-2007.
Source: Authors, from ICAO data.
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Mean values
1983 1996 2007

Central and Passengers (RTK) 85.49% 85.30% 76.39%
North Freight (RTK) 14.51% 14.70% 23.61%
America

Passengers (ATK) 87.28% 86.27% 77.00%
Freight (ATK) 12.72% 13.73% 23.00%

Europe Passengers (RTK) 92.18% 91.04% 87.81%
Freight (RTK) 7.82% 8.96% 12.19%

Passengers (ATK) 92.45% 91.28% 87.74%
Freight (ATK) 7.55% 8.72% 12.26%

Latin Passengers (RTK) 88.22% 87.55% 84.91%
America Freight (RTK) 11.78% 12.45% 15.09%

Passengers (ATK) 90.59% 89.30% 87.90%
Freight (ATK) 9.41% 10.70% 12.10%

Russia and Passengers (RTK) 100.00% 99.39% 88.17%
CIS Freight (RTK) 0.00% 0.61% 11.83%

Passengers (ATK) 100.00% 99.27% 88.17%
Freight (ATK) 0.00% 0.73% 11.83%

Africa Passengers (RTK) 95.50% 97.67% 96.50%
Freight (RTK) 4.50% 2.33% 3.50%

Passengers (ATK) 96.43% 97.34% 96.91%
Freight (ATK) 3.57% 2.66% 3.09%

The Middle Passengers (RTK) 83.85% 84.55% 87.52%
East Freight (RTK) 16.15% 15.45% 12.48%

Passengers (ATK) 83.39% 86.20% 87.67%
Freight (ATK) 16.61% 13.80% 12.33%

Asian Passengers (RTK) 87.77% 83.19% 81.60%
countries and Freight (RTK) 12.23% 16.81% 18.40%
Oceania

Passengers (ATK) 88.89% 83.40% 81.54%
Freight (ATK) 11.11% 16.60% 18.46%

China Passengers (RTK) 84.71% 80.80% 76.74%
Freight (RTK) 15.29% 19.20% 23.26%

Passengers (ATK) 86.07% 83.69% 77.06%
Freight (ATK) 13.93% 16.31% 22.94%

World Passengers (RTK) 89.03% 87.01% 83.05%
Freight (RTK) 10.97% 12.99% 16.95%

Passengers (ATK) 89.93% 87.61% 83.17%
Freight (ATK) 10.07% 12.39% 16.83%

Table 2.9: Repartition of international air traffic (expressed in RTK and
ATK) within each zone (1983-2007): passenger vs. freight.
Source: Authors, from ICAO data.
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Mean values
1983 1996 2007

Central and Freight (RTK) 46.67% 44.59% 43.07%
North Passengers (RTK) 40.82% 39.58% 33.32%
America

Freight (ATK) 46.24% 47.26% 45.00%
Passengers (ATK) 44.75% 41.87% 34.95%

Europe Freight (RTK) 20.20% 18.86% 20.35%
Passengers (RTK) 21.76% 28.03% 27.12%

Freight (ATK) 20.62% 17.36% 18.96%
Passengers (ATK) 21.09% 25.08% 24.89%

Latin Freight (RTK) 3.98% 3.04% 2.29%
America Passengers (RTK) 2.80% 3.09% 3.51%

Freight (ATK) 4.23% 3.15% 2.03%
Passengers (ATK) 3.34% 3.59% 3.79%

Russia and Freight (RTK) 0.00% 0.05% 0.87%
CIS Passengers (RTK) 13.85% 1.29% 1.73%

Freight (ATK) 0.00% 0.08% 0.94%
Passengers (ATK) 10.17% 1.52% 1.78%

Africa Freight (RTK) 1.19% 0.15% 0.29%
Passengers (RTK) 2.58% 0.96% 1.47%

Freight (ATK) 1.26% 0.22% 0.29%
Passengers (ATK) 3.06% 1.13% 1.63%

The Middle Freight (RTK) 5.69% 3.13% 4.01%
East Passengers (RTK) 3.12% 2.52% 5.17%

Freight (ATK) 7.42% 2.94% 4.25%
Passengers (ATK) 3.49% 2.50% 5.48%

Asian Freight (RTK) 20.03% 24.53% 19.67%
countries and Passengers (RTK) 13.97% 19.93% 18.27%
Oceania

Freight (ATK) 18.32% 24.46% 19.55%
Passengers (ATK) 13.16% 19.96% 18.78%

China Freight (RTK) 2.23% 5.64% 9.44%
Passengers (RTK) 1.08% 4.61% 9.41%

Freight (ATK) 1.91% 4.53% 8.98%
Passengers (ATK) 0.95% 4.36% 8.70%

Table 2.10: World repartition of freight and passenger air traffic (expressed
in RTK and ATK) by zone (1983–2007).
Source: Authors, from ICAO data.
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Mean values Yearly average growth rates
1983 1996 2007 Sub-periods Whole period

1983-1996 1996-2007 1983-2007

Central and RTK 5.63 19.89 42.46 10.19% 7.13% 8.78%
North ATK 8.42 32.34 68.99 10.91% 7.13% 9.16%
America

WLF 66.90% 61.52% 61.54% -0.64% 0.00% -0.35%

Europe RTK 2.43 8.41 20.06 10.00% 8.22% 9.18%
ATK 3.75 11.87 29.07 9.26% 8.48% 8.90%

WLF 64.92% 70.85% 69.00% 0.67% -0.24% 0.25%

Latin RTK 0.48 1.35 2.25 8.31% 4.72% 6.65%
America ATK 0.76 2.15 3.10 8.23% 3.39% 5.98%

WLF 62.49% 63.04% 72.61% 0.07% 1.29% 0.63%

Russia and RTK - 0.02 0.86 - 39.45% -
CIS ATK - 0.05 1.44 - 35.40% -

WLF - 42.96% 59.40% - 2.99% -

Africa RTK 0.14 0.067 0.28 -5.64% 14.07% 2.93%
ATK 0.22 0.14 0.45 -3.21% 10.53% 2.86%

WLF 62.94% 45.21% 63.93% -2.51% 3.20% 0.07%

The Middle RTK 0.68 1.39 3.95 5.60% 9.94% 7.57%
East ATK 1.35 2.01 6.51 3.12% 11.25% 6.77%

WLF 50.84% 69.31% 60.79% 2.41% -1.19% 0.75%

Asian RTK 2.41 10.94 19.38 12.32% 5.33% 9.06%
countries and ATK 3.33 16.73 29.97 13.21% 5.44% 9.58%
Oceania

WLF 72.49% 65.40% 64.67% -0.79% -0.10% -0.47%

China RTK 0.26 2.51 9.30 18.77% 12.62% 15.91%
ATK 0.34 3.10 13.77 18.32% 14.51% 16.56%

WLF 77.31% 81.17% 67.59% 0.38% -1.65% -0.56%

World RTK 12.07 44.62 98.57 10.58% 7.47% 9.14%
ATK 18.20 68.42 153.32 10.72% 7.61% 9.28%

WLF 66.29% 65.21% 64.29% -0.13% -0.13% -0.13%

Table 2.11: Freight traffic (expressed in RTK and ATK (billions)) and Weight
Load Factor for each zone during 1983-2007.
Source: Authors, from ICAO data.
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Mean values
1983 1996 2007

Central and Domestic (RTK) 47.82% 59.76% 43.06%
North International (RTK) 52.18% 40.24% 56.94%
America

Domestic (ATK) 48.52% 61.35% 44.40%
International (ATK) 51.48% 38.65% 55.60%

Europe Domestic (RTK) 4.53% 1.19% 0.56%
International (RTK) 95.47% 98.81% 99.44%

Domestic (ATK) 5.15% 1.79% 0.78%
International (ATK) 94.85% 98.21% 99.22%

Latin Domestic (RTK) 28.09% 27.19% 21.84%
America International (RTK) 71.91% 72.81% 78.16%

Domestic (ATK) 29.58% 27.62% 25.47%
International (ATK) 70.42% 72.38% 74.53%

Russia and Domestic (RTK) - 20.98% 0.00%
CIS International (RTK) - 79.02% 100.00%

Domestic (ATK) - 16.82% 0.05%
International (ATK) - 83.18% 99.95%

Africa Domestic (RTK) 2.87% 0.28% 7.37%
International (RTK) 97.13% 99.72% 92.63%

Domestic (ATK) 4.56% 0.26% 7.61%
International (ATK) 95.44% 99.74% 92.39%

The Middle Domestic (RTK) 2.58% 0.00% 0.16%
East International (RTK) 97.42% 100.00% 99.84%

Domestic (ATK) 3.38% 0.00% 0.42%
International (ATK) 96.62% 100.00% 99.58%

Asian Domestic (RTK) 1.15% 0.35% 0.10%
countries and International (RTK) 98.85% 99.65% 99.90%
Oceania

Domestic (ATK) 1.95% 0.50% 0.12%
International (ATK) 98.05% 99.50% 99.88%

China Domestic (RTK) 0.00% 0.00% 2.24%
International (RTK) 100.00% 100.00% 97.76%

Domestic (ATK) 0.00% 0.00% 2.71%
International (ATK) 100.00% 100.00% 97.29%

World Domestic (RTK) 24.76% 27.80% 19.42%
International (RTK) 75.24% 72.20% 80.58%

Domestic (ATK) 25.41% 30.31% 20.95%
International (ATK) 74.59% 69.69% 79.05%

Table 2.12: Repartition of freight traffic (expressed in RTK and ATK) within
each zone (1983-2007): domestic vs. international.
Source: Authors, from ICAO data.
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Mean values Yearly average growth rates
1983 1996 2007 Sub-periods Whole period

1983-1996 1996-2007 1983-2007

Central and RTK 56.15 128.78 187.19 6.59% 3.46% 5.14%
North ATK 101.55 223.35 309.03 6.25% 3.00% 4.75%
America

WLF 55.30% 57.66% 60.57% 0.32% 0.45% 0.38%

Europe RTK 29.93 91.23 152.32 8.95% 4.77% 7.01%
ATK 47.85 133.75 220.05 8.23% 4.63% 6.56%

WLF 62.55% 68.21% 69.22% 0.67% 0.13% 0.42%

Latin RTK 3.85 10.05 19.69 7.65% 6.31% 7.03%
America ATK 7.57 19.15 33.51 7.40% 5.22% 6.39%

WLF 50.91% 52.47% 58.77% 0.23% 1.04% 0.60%

Russia and RTK 19.05 4.20 9.69 -10.97% 7.89% -2.77%
CIS ATK 23.08 8.10 15.70 -7.74% 6.20% -1.59%

WLF 82.54% 51.89% 61.77% -3.51% 1.60% -1.20%

Africa RTK 3.55 3.11 8.24 -1.02% 9.26% 3.57%
ATK 6.94 6.00 14.45 -1.11% 8.32% 3.10%

WLF 51.23% 51.86% 57.04% 0.09% 0.87% 0.45%

The Middle RTK 4.28 8.18 29.06 5.10% 12.21% 8.30%
East ATK 7.92 13.33 48.49 4.09% 12.45% 7.84%

WLF 54.10% 61.38% 59.95% 0.98% -0.21% 0.43%

Asian RTK 19.22 64.84 102.64 9.81% 4.26% 7.23%
countries and ATK 29.85 106.46 166.07 10.27% 4.12% 7.41%
Oceania

WLF 64.37% 60.91% 61.81% -0.42% 0.13% -0.17%

China RTK 1.49 15.00 52.87 19.43% 12.13% 16.03%
ATK 2.15 23.23 76.94 20.08% 11.50% 16.07%

WLF 69.36% 64.58% 68.72% -0.55% 0.57% -0.04%

World RTK 137.56 325.42 561.75 6.85% 5.09% 6.04%
ATK 226.95 533.41 884.27 6.79% 4.70% 5.83%

WLF 60.61% 61.01% 63.53% 0.05% 0.37% 0.20%

Table 2.13: Passengers’ air traffic (expressed in RTK and ATK (billions)) and
Weight Load Factor for each zone during 1983-2007.
Source: Authors, from ICAO data.
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Mean values
1983 1996 2007

Central and Domestic (RTK) 69.15% 63.92% 58.22%
North International (RTK) 30.85% 36.08% 41.78%
America

Domestic (ATK) 70.72% 64.84% 58.44%
International (ATK) 29.28% 35.16% 41.56%

Europe Domestic (RTK) 8.34% 7.39% 5.67%
International (RTK) 91.66% 92.61% 94.33%

Domestic (ATK) 8.91% 8.72% 6.20%
International (ATK) 91.09% 91.28% 93.80%

Latin Domestic (RTK) 32.86% 30.87% 49.67%
America International (RTK) 67.14% 69.13% 50.33%

Domestic (ATK) 31.14% 32.13% 49.83%
International (ATK) 68.86% 67.87% 50.17%

Russia and Domestic (RTK) 93.37% 31.52% 33.92%
CIS International (RTK) 6.63% 68.48% 66.08%

Domestic (ATK) 91.72% 27.94% 31.28%
International (ATK) 8.28% 72.06% 68.72%

Africa Domestic (RTK) 16.49% 9.08% 10.87%
International (RTK) 83.51% 90.92% 89.13%

Domestic (ATK) 14.98% 9.03% 9.75%
International (ATK) 85.02% 90.97% 90.25%

The Middle Domestic (RTK) 18.95% 6.68% 4.72%
East International (RTK) 81.05% 93.32% 95.28%

Domestic (ATK) 17.28% 5.68% 4.92%
International (ATK) 82.72% 94.32% 95.08%

Asian Domestic (RTK) 10.72% 16.75% 16.30%
countries and International (RTK) 89.28% 83.25% 83.70%
Oceania

Domestic (ATK) 12.32% 21.43% 20.36%
International (ATK) 87.68% 78.57% 79.64%

China Domestic (RTK) 0.00% 29.37% 43.22%
International (RTK) 100.00% 70.63% 56.78%

Domestic (ATK) 0.00% 31.45% 41.52%
International (ATK) 100.00% 68.55% 58.48%

World Domestic (RTK) 46.42% 33.67% 30.71%
International (RTK) 53.58% 66.33% 69.29%

Domestic (ATK) 46.58% 36.80% 32.28%
International (ATK) 53.42% 63.20% 67.72%

Table 2.14: Repartition of passengers’ air traffic (expressed in RTK and
ATK) within each zone (1983-2007): domestic vs. international.
Source: Authors, from ICAO data.
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Mean values Yearly average growth rates
1983 1996 2007 Sub-periods Whole period

1983-1996 1996-2007 1983-2007

Central and RPK 479.53 1 022.09 1 444.00 5.99% 3.19% 4.70%
North ASK 779.16 1 478.83 1 819.70 5.05% 1.90% 3.60%
America

PLF 61.54% 69.11% 79.35% 0.90% 1.26% 1.06%

Europe RPK 214.22 697.56 1 212.24 9.51% 5.15% 7.49%
ASK 333.19 953.36 1 545.70 8.42% 4.49% 6.60%

PLF 64.30% 73.17% 78.43% 1.00% 0.63% 0.83%

Latin RPK 27.56 72.61 162.63 7.74% 7.61% 7.68%
America ASK 49.90 121.08 235.60 7.06% 6.24% 6.68%

PLF 55.22% 59.97% 69.03% 0.64% 1.29% 0.93%

Russia and RPK 176.47 36.47 86.43 -11.42% 8.16% -2.93%
CIS ASK 210.98 59.99 117.86 -9.22% 6.33% -2.40%

PLF 83.64% 60.79% 73.33% -2.43% 1.72% -0.55%

Africa RPK 28.91 27.48 69.12 -0.39% 8.75% 3.70%
ASK 49.35 44.99 102.36 -0.71% 7.76% 3.09%

PLF 58.59% 61.08% 67.52% 0.32% 0.92% 0.59%

The Middle RPK 32.67 55.34 203.10 4.14% 12.55% 7.91%
East ASK 50.95 81.15 268.86 3.65% 11.50% 7.18%

PLF 64.13% 68.20% 75.54% 0.47% 0.93% 0.68%

Asian RPK 134.55 446.32 713.53 9.66% 4.36% 7.20%
countries and ASK 206.03 653.53 962.07 9.29% 3.58% 6.63%
Oceania

PLF 65.31% 68.29% 74.17% 0.34% 0.75% 0.53%

China RPK 9.65 106.09 357.05 20.25% 11.66% 16.23%
ASK 13.70 149.64 463.80 20.19% 10.83% 15.81%

PLF 70.48% 70.90% 76.98% 0.05% 0.75% 0.37%

World RPK 1 103.60 2 463.99 4 248.13 6.37% 5.08% 5.78%
ASK 1 693.29 3 542.62 5 515.99 5.84% 4.11% 5.04%

PLF 65.17% 69.55% 77.01% 0.50% 0.93% 0.70%

Note: the above table corresponds to Table 2.13, expressed in RPK rather than in RTK.

Table 2.15: Passengers’ air traffic (expressed in RPK and ASK (billions)) and
Passenger Load Factor for each zone during 1983-2007.
Source: Authors, from ICAO data.
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Mean values
1983 1996 2007

Central and Domestic (RPK) 73.03% 68.84% 67.09%
North International (RPK) 26.97% 31.16% 32.91%
America

Domestic (ASK) 74.36% 69.95% 66.75%
International (ASK) 25.64% 30.05% 33.25%

Europe Domestic (RPK) 11.43% 9.61% 7.51%
International (RPK) 88.57% 90.39% 92.49%

Domestic (ASK) 11.33% 10.73% 8.40%
International (ASK) 88.67% 89.27% 91.60%

Latin Domestic (RPK) 42.28% 38.54% 58.75%
America International (RPK) 57.72% 61.46% 41.25%

Domestic (ASK) 39.06% 40.17% 59.80%
International (ASK) 60.94% 59.83% 40.20%

Russia and Domestic (RPK) 94.15% 34.23% 36.26%
CIS International (RPK) 5.85% 65.77% 63.74%

Domestic (ASK) 92.46% 34.22% 36.42%
International (ASK) 7.54% 65.78% 63.58%

Africa Domestic (RPK) 20.42% 11.10% 12.99%
International (RPK) 79.58% 88.90% 87.01%

Domestic (ASK) 18.16% 10.38% 12.03%
International (ASK) 81.84% 89.62% 87.97%

The Middle Domestic (RPK) 24.74% 11.05% 7.02%
East International (RPK) 75.26% 88.95% 92.98%

Domestic (ASK) 21.58% 8.95% 6.97%
International (ASK) 78.42% 91.05% 93.03%

Asian Domestic (RPK) 15.55% 25.96% 24.79%
countries and International (RPK) 84.45% 74.04% 75.21%
Oceania

Domestic (ASK) 16.42% 27.18% 26.17%
International (ASK) 83.58% 72.82% 73.83%

China Domestic (RPK) 0.00% 43.47% 59.24%
International (RPK) 100.00% 56.53% 40.76%

Domestic (ASK) 0.00% 42.44% 58.67%
International (ASK) 100.00% 57.56% 41.33%

World Domestic (RPK) 53.23% 39.86% 37.63%
International (RPK) 46.77% 60.14% 62.37%

Domestic (ASK) 52.29% 41.19% 37.77%
International (ASK) 47.71% 58.81% 62.23%

Note: the above table corresponds to Table 2.14, expressed in RPK rather than in RTK.

Table 2.16: Repartition of passengers’ air traffic (expressed in RPK and ASK)
within each zone (1983-2007): domestic vs. international.
Source: Authors, from ICAO data.
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Mean values Yearly average growth rates (EE gains) Rate of change
Sub-periods Whole period Sub-periods Whole period

1983-1996 1996-2006 1983-2006 1983-1996 1996-2006 1983-2006 1983-2006

Central and Aggregated 3.93E-07 2.90E-07 3.49E-07 -1.78% -3.18% -2.39% -42.65%
North Domestic 4.58E-07 3.62E-07 4.16E-07 -1.71% -1.86% -1.78% -33.80%
America International 2.60E-07 1.80E-07 2.25E-07 -1.04% -5.27% -2.91% -49.25%

Europe Aggregated 3.52E-07 2.71E-07 3.18E-07 -2.97% -1.20% -2.20% -40.10%
Domestic 8.75E-07 7.31E-07 8.17E-07 -3.99% 1.40% -1.68% -32.35%

International 3.02E-07 2.35E-07 2.74E-07 -2.58% -1.25% -2.00% -37.22%

Latin Aggregated 4.22E-07 4.35E-07 4.31E-07 -3.73% 1.18% -1.63% -31.42%
America Domestic 7.21E-07 6.24E-07 6.81E-07 -4.05% -3.81% -3.95% -60.41%

International 2.85E-07 3.31E-07 3.08E-07 -3.46% 5.03% 0.14% 3.34%

Russia and Aggregated n.a. 1.00E-06 n.a. n.a. -5.79% n.a. -44.92% *
CIS Domestic n.a. 2.09E-06 n.a. n.a. -5.37% n.a. -42.39% *

International n.a. 6.89E-07 n.a. n.a. -5.86% n.a. -45.33% *

Africa Aggregated 7.81E-07 9.18E-07 8.30E-07 4.45% -7.22% -0.80% -16.79%
Domestic 1.80E-06 3.94E-06 2.69E-06 12.51% -7.14% 3.50% 120.60%

International 6.60E-07 6.78E-07 6.62E-07 2.65% -7.63% -1.95% -36.43%

The Middle Aggregated 6.75E-07 5.07E-07 6.02E-07 0.02% -8.68% -3.86% -59.56%
East Domestic 5.53E-07 1.00E-06 7.36E-07 8.40% -11.23% -0.62% -13.29%

International 7.08E-07 4.87E-07 6.14E-07 -0.79% -8.46% -4.20% -62.75%

Asian Aggregated 3.17E-07 2.44E-07 2.85E-07 -2.88% -1.54% -2.30% -41.46%
countries and Domestic 5.87E-07 4.03E-07 5.08E-07 -6.31% -2.80% -4.80% -67.73%
Oceania International 2.69E-07 2.10E-07 2.44E-07 -2.35% -0.79% -1.67% -32.18%

China Aggregated n.a. 2.22E-07 n.a. n.a. -1.65% n.a. -15.37% *
Domestic n.a. 3.53E-07 n.a. n.a. -2.37% n.a. -21.32% *

International n.a. 1.56E-07 n.a. n.a. -2.45% n.a. -21.94% *

World Aggregated 4.17E-07 2.98E-07 3.66E-07 -3.09% -2.61% -2.88% -48.95%
Domestic 4.52E-07 4.17E-07 4.36E-07 -0.20% -1.95% -0.96% -19.94%

International 3.96E-07 2.35E-07 3.28E-07 -5.23% -2.56% -4.08% -61.62%

Note: ∗ means that rates of change are not computed for the whole period, but for the second sub-period.

Table 3.1: EE coefficients (ktoe/ATK) for each zone and worldwide. Means values and growth rates during 1983-2006.
Source: Authors, from ICAO and IEA data.
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Mean values Yearly average growth rates Rate of change
Sub-periods Whole period Sub-periods Whole period

1983-1996 1996-2006 1983-2006 1983-1996 1996-2006 1983-2006 1983-2006

Central and Zone’s aggregated EE /
World’s aggregated EE

0.95 0.97 0.96 1.36% -0.59% 0.51% 12.34%

North Zone’s domestic EE /
World’s domestic EE

1.01 0.87 0.95 -1.52% 0.09% -0.82% -17.31%

America Zone’s international EE /
World’s international EE

0.69 0.76 0.71 4.41% -2.78% 1.22% 32.24%

Europe Zone’s aggregated EE /
World’s aggregated EE

0.85 0.91 0.88 0.13% 1.44% 0.70% 17.33%

Zone’s domestic EE /
World’s domestic EE

1.94 1.76 1.87 -3.80% 3.41% -0.73% -15.50%

Zone’s international EE /
World’s international EE

0.79 1.00 0.88 2.79% 1.35% 2.16% 63.58%

Latin Zone’s aggregated EE /
World’s aggregated EE

1.00 1.49 1.22 -0.66% 3.88% 1.29% 34.33%

America Zone’s domestic EE /
World’s domestic EE

1.59 1.50 1.56 -3.86% -1.90% -3.02% -50.55%

Zone’s international EE /
World’s international EE

0.74 1.45 1.05 1.86% 7.79% 4.40% 169.25%

Russia and Zone’s aggregated EE /
World’s aggregated EE

n.a. 3.34 n.a. n.a. -3.27% n.a. -28.26% *

CIS Zone’s domestic EE /
World’s domestic EE

n.a. 4.95 n.a. n.a. -3.49% n.a. -29.87% *

Zone’s international EE /
World’s international EE

n.a. 2.91 n.a. n.a. -3.38% n.a. -29.12% *

Africa Zone’s aggregated EE /
World’s aggregated EE

1.95 3.03 2.39 7.78% -4.74% 2.15% 62.99%

Zone’s domestic EE /
World’s domestic EE

4.00 9.27 6.22 12.73% -5.30% 4.51% 175.54%

Zone’s international EE /
World’s international EE

1.80 2.83 2.21 8.31% -5.20% 2.22% 65.63%

The Middle Zone’s aggregated EE /
World’s aggregated EE

1.66 1.67 1.66 3.21% -6.24% -1.01% -20.78%

East Zone’s domestic EE /
World’s domestic EE

1.23 2.37 1.71 8.61% -9.46% 0.35% 8.31%

Zone’s international EE /
World’s international EE

1.90 2.04 1.95 4.68% -6.06% -0.13% -2.95%

Asian Zone’s aggregated EE /
World’s aggregated EE

0.76 0.82 0.79 0.21% 1.10% 0.60% 14.66%

countries and Zone’s domestic EE /
World’s domestic EE

1.29 0.96 1.15 -6.12% -0.87% -3.87% -59.70%

Oceania Zone’s international EE /
World’s international EE

0.70 0.90 0.79 3.04% 1.82% 2.51% 76.71%

China Zone’s aggregated EE /
World’s aggregated EE

n.a. 0.75 n.a. n.a. 0.98% n.a. 10.22% *

Zone’s domestic EE /
World’s domestic EE

n.a. 0.81 n.a. n.a. -0.43% n.a. -4.22% *

Zone’s international EE /
World’s international EE

n.a. 0.67 n.a. n.a. 0.12% n.a. 1.19% *

Note: a ratio >(<) 1 means that the region’s energy efficiency is inferior (superior) to the world’s energy efficiency. These ratios are provided for the aggregated
(domestic+international), domestic, and international travels.

∗ means that rates of change are not computed for the whole period, but for the second sub-period.

Table 3.2: Comparison of EE coefficients (ktoe/ATK) between zones using world’s EE coefficients as benchmark
(1983-2006).
Source: Authors, from ICAO and IEA data.
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Mean values Yearly average growth rates Rate of change
Sub-periods Whole period Sub-periods Whole period

1983-1996 1996-2006 1983-2006 1983-1996 1996-2006 1983-2006 1983-2006

Central and Zone’s domestic EE /
Zone’s aggregated EE

1.16 1.25 1.20 0.06% 1.36% 0.63% 15.44%

North Zone’s international EE /
Zone’s aggregated EE

0.66 0.62 0.64 0.74% -2.16% -0.53% -11.50%

America Zone’s domestic EE /
Zone’s international EE

1.77 2.06 1.85 -0.68% 3.60% 1.16% 30.44%

Europe Zone’s domestic EE /
Zone’s aggregated EE

2.46 2.71 2.57 -1.05% 2.63% 0.53% 12.94%

Zone’s international EE /
Zone’s aggregated EE

0.86 0.87 0.86 0.40% -0.05% 0.20% 4.81%

Zone’s domestic EE /
Zone’s international EE

2.87 3.13 2.99 -1.45% 2.68% 0.33% 7.76%

Latin Zone’s domestic EE /
Zone’s aggregated EE

1.69 1.44 1.57 -0.34% -4.93% -2.36% -42.27%

America Zone’s international EE /
Zone’s aggregated EE

0.68 0.75 0.72 0.28% 3.81% 1.80% 50.69%

Zone’s domestic EE /
Zone’s international EE

2.53 1.89 2.21 -0.61% -8.42% -4.09% -61.69%

Russia and Zone’s domestic EE /
Zone’s aggregated EE

n.a. 2.04 n.a. n.a. 0.45% n.a. 4.59% *

CIS Zone’s international EE /
Zone’s aggregated EE

n.a. 0.69 n.a. n.a. -0.07% n.a. -0.75% *

Zone’s domestic EE /
Zone’s international EE

n.a. 2.99 n.a. n.a. 0.53% n.a. 5.38% *

Africa Zone’s domestic EE /
Zone’s aggregated EE

2.30 4.29 3.24 7.71% 0.09% 4.33% 165.11%

Zone’s international EE /
Zone’s aggregated EE

0.86 0.74 0.81 -1.72% -0.43% -1.16% -23.60%

Zone’s domestic EE /
Zone’s international EE

2.72 5.81 4.06 9.60% 0.53% 5.56% 247.03%

The Middle Zone’s domestic EE /
Zone’s aggregated EE

0.82 1.93 1.28 8.37% -2.79% 3.37% 114.41%

East Zone’s international EE /
Zone’s aggregated EE

1.05 0.96 1.01 -0.81% 0.24% -0.36% -7.91%

Zone’s domestic EE /
Zone’s international EE

0.80 2.02 1.21 9.26% -3.02% 3.74% 132.81%

Asian Zone’s domestic EE /
Zone’s aggregated EE

1.81 1.65 1.74 -3.52% -1.28% -2.56% -44.88%

countries and Zone’s international EE /
Zone’s aggregated EE

0.85 0.87 0.86 0.55% 0.76% 0.64% 15.86%

Oceania Zone’s domestic EE /
Zone’s international EE

2.15 1.91 2.05 -4.05% -2.03% -3.18% -52.43%

China Zone’s domestic EE /
Zone’s aggregated EE

n.a. 1.58 n.a. n.a. -0.73% n.a. -7.03% *

Zone’s international EE /
Zone’s aggregated EE

n.a. 0.70 n.a. n.a. -0.81% n.a. -7.77% *

Zone’s domestic EE /
Zone’s international EE

n.a. 2.27 n.a. n.a. 0.08% n.a. 0.80% *

World Zone’s domestic EE /
Zone’s aggregated EE

1.10 1.41 1.23 2.99% 0.68% 1.98% 56.83%

Zone’s international EE /
Zone’s aggregated EE

0.94 0.79 0.88 -2.21% 0.05% -1.23% -24.82%

Zone’s domestic EE /
Zone’s international EE

1.14 1.78 1.33 5.31% 0.63% 3.25% 108.60%

Note: a ratio >(<) 1 means that the energy efficiency of the kind of travel in numerator is inferior (superior) to the kind of travel in denominator. These ratios aim at comparing.
within each region, (i) the domestic vs. aggregated (domestic+international) EE coefficients mean values, (ii) the international vs. aggregated (domestic+international) EE
coefficients mean values, and (iii) the domestic vs. international EE coefficients mean values.

∗ means that rates of change are not computed for the whole period, but for the second sub-period.

Table 3.3: Comparison of domestic and international EE coefficients (ktoe/ATK) within each zone (1983-2006).
Source: Authors, from ICAO data.
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Mean values Yearly average growth rates (EE gains) Rate of change
Sub-periods Whole period Sub-periods Whole period

1983-1996 1996-2006 1983-2006 1983-1996 1996-2006 1983-2006 1983-2006

Central and Aggregated 2565946,7 3477612,5 2966918,8 1,81% 3,28% 2,45% 74,37%
North Domestic 2207639,6 2768136,2 2452842,9 1,74% 1,89% 1,81% 51,05%
America International 3885062,3 5745430,1 4708899,1 1,06% 5,57% 2,99% 97,03%

Europe Aggregated 2881628,7 3709641,5 3226374,5 3,06% 1,22% 2,25% 66,95%
Domestic 1212357,0 1371737,5 1274298,3 4,16% -1,38% 1,71% 47,82%

International 3349671,6 4284099,8 3738678,3 2,65% 1,26% 2,04% 59,28%

Latin Aggregated 2483593,7 2406918,0 2436415,7 3,87% -1,16% 1,65% 45,82%
America Domestic 1497787,9 1692209,4 1581379,1 4,22% 3,96% 7,42% 4,11%

International 3618230,1 3272428,8 3439413,9 3,59% -4,79% -0,14% -3,23%

Russia and Aggregated n.a. 1048910,8 n.a. n.a. 6,14% n.a. 81,54%
CIS Domestic n.a. 549387,2 n.a. n.a. 5,67% n.a. 73,58%

International n.a. 1506261,7 n.a. n.a. 6,22% n.a. 82,91%

Africa Aggregated 1334944,8 1271609,5 1323456,7 -4,26% 7,79% 0,80% 20,18%
Domestic 768519,3 348568,7 597580,8 -11,12% 7,69% -3,38% -54,67%

International 1548368,7 1729031,6 1644592,7 -2,58% 8,25% 1,99% 57,31%

The Middle Aggregated 1563396,4 2244855,1 1867590,3 -0,02% 9,51% 4,01% 147,26%
East Domestic 2411827,7 1361833,4 1991967,2 -7,75% 12,64% 0,62% 15,32%

International 1492208,6 2325808,3 1859683,6 0,80% 9,25% 4,39% 168,49%

Asian Aggregated 3199569,9 4113998,7 3598577,7 2,97% 1,56% 0,56% 2,36%
countries and Domestic 1877405,6 2503904,0 2151699,2 6,73% 2,89% 5,04% 209,93%
Oceania International 3760541,5 4755643,2 4191488,4 2,41% 0,80% 1,70% 47,44%

China Aggregated n.a. 4529077,0 n.a. n.a. 1,68% n.a. 18,16%
Domestic n.a. 2898890,2 n.a. n.a. 2,43% n.a. 27,09%

International n.a. 6459934,3 n.a. n.a. 2,51% n.a. 28,11%

World Aggregated 2445427,9 3384470,8 2851385,3 3,19% 2,68% 2,97% 95,88%
Domestic 2219407,3 2404242,1 2305690,4 0,20% 1,99% 0,97% 24,90%

International 2678068,9 4287249,1 3365274,9 5,52% 2,63% 4,25% 160,55%

Note: ∗ means that rates of change are not computed for the whole period, but for the second sub-period.

Table 3.1bis: EE coefficients (ATK/ktoe) for each zone and worldwide. Means values and growth rates during 1983-2006.
Source: Authors, from ICAO and IEA data.
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Mean values Yearly average growth rates Rate of change
Sub-periods Whole period Sub-periods Whole period

1983-1996 1996-2006 1983-2006 1983-1996 1996-2006 1983-2006 1983-2006

Central and Zone’s aggregated TE /
World’s aggregated TE

1,06 1,03 1,05 -1,34% 0,59% -0,50% -10,98%

North Zone’s domestic TE /
World’s domestic TE

0,99 1,15 1,06 1,54% -0,09% 0,83% 20,93%

America Zone’s international TE /
World’s international TE

1,52 1,33 1,45 -4,23% 2,86% -1,21% -24,38%

Europe Zone’s aggregated TE /
World’s aggregated TE

1,18 1,10 1,14 -0,13% -1,42% -0,69% -14,77%

Zone’s domestic TE /
World’s domestic TE

0,55 0,57 0,55 3,95% -3,30% 0,74% 18,34%

Zone’s international TE /
World’s international TE

1,30 1,00 1,17 -2,72% -1,33% -2,12% -38,87%

Latin Zone’s aggregated TE /
World’s aggregated TE

1,01 0,72 0,88 0,66% -3,74% -1,28% -25,56%

America Zone’s domestic TE /
World’s domestic TE

0,67 0,71 0,69 4,02% 1,94% 3,11% 102,23%

Zone’s international TE /
World’s international TE

1,38 0,78 1,12 -1,83% -7,23% -4,22% -62,86%

Russia and Zone’s aggregated TE /
World’s aggregated TE

n.a. 0,31 n.a. n.a. 3,38% n.a. 39,39%

CIS Zone’s domestic TE /
World’s domestic TE

n.a. 0,23 n.a. n.a. 3,61% n.a. 42,59%

Zone’s international TE /
World’s international TE

n.a. 0,35 n.a. n.a. 3,50% n.a. 41,09%

Africa Zone’s aggregated TE /
World’s aggregated TE

0,57 0,37 0,49 -7,22% 4,98% -2,10% -38,65%

Zone’s domestic TE /
World’s domestic TE

0,35 0,14 0,26 -11,29% 5,59% -4,31% -63,71%

Zone’s international TE /
World’s international TE

0,62 0,39 0,53 -7,68% 5,48% -2,17% -39,63%

The Middle Zone’s aggregated TE /
World’s aggregated TE

0,66 0,65 0,66 -3,11% 6,65% 1,02% 26,23%

East Zone’s domestic TE /
World’s domestic TE

1,09 0,55 0,87 -7,93% 10,45% -0,35% -7,67%

Zone’s international TE /
World’s international TE

0,59 0,53 0,57 -4,47% 6,45% 0,13% 3,04%

Asian Zone’s aggregated TE /
World’s aggregated TE

1,31 1,22 1,28 -0,21% -1,08% -0,59% -12,79%

countries and Zone’s domestic TE /
World’s domestic TE

0,84 1,04 0,92 6,52% 0,88% 4,03% 148,13%

Oceania Zone’s international TE /
World’s international TE

1,46 1,12 1,32 -2,95% -1,79% -2,45% -43,41%

China Zone’s aggregated TE /
World’s aggregated TE

n.a. 1,34 n.a. n.a. -0,97% n.a. -9,27%

Zone’s domestic TE /
World’s domestic TE

n.a. 1,25 n.a. n.a. 0,43% n.a. 4,40%

Zone’s international TE /
World’s international TE

n.a. 1,52 n.a. n.a. -0,12% n.a. -1,17%

Note: a ratio <(>) 1 means that the region’s energy efficiency is inferior (superior) to the world’s energy efficiency. These ratios are provided for the aggregated
(domestic+international), domestic, and international travels.

∗ means that rates of change are not computed for the whole period, but for the second sub-period.

Table 3.2bis: Comparison of EE coefficients (ATK/ktoe) between zones using world’s EE coefficients as benchmark
(1983-2006).
Source: Authors, from ICAO and IEA data.
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Mean values Yearly average growth rates Rate of change
Sub-periods Whole period Sub-periods Whole period

1983-1996 1996-2006 1983-2006 1983-1996 1996-2006 1983-2006 1983-2006

Central and Zone’s domestic TE /
Zone’s aggregated TE

0,86 0,80 0,83 -0,06% -1,35% -0,62% -13,38%

North Zone’s international TE /
Zone’s aggregated TE

1,52 1,64 1,57 -0,74% 2,21% 0,53% 13,00%

America Zone’s domestic TE /
Zone’s international TE

0,57 0,49 0,46 0,68% -3,48% -1,15% -23,34%

Europe Zone’s domestic TE /
Zone’s aggregated TE

0,42 0,37 0,40 1,07% -2,56% -0,53% -11,46%

Zone’s international TE /
Zone’s aggregated TE

1,16 1,15 1,16 -0,40% 0,05% -0,20% -4,59%

Zone’s domestic TE /
Zone’s international TE

0,36 0,32 0,34 1,47% -2,61% -0,32% -7,20%

Latin Zone’s domestic TE /
Zone’s aggregated TE

0,60 0,76 0,65 0,34% 5,19% 2,42% 73,22%

America Zone’s international TE /
Zone’s aggregated TE

1,47 1,28 1,41 -0,28% -3,67% -1,77% -33,64%

Zone’s domestic TE /
Zone’s international TE

0,41 0,61 0,47 0,62% 9,19% 4,26% 161,03%

Russia and Zone’s domestic TE /
Zone’s aggregated TE

n.a. 0,51 n.a. n.a. -0,45% n.a. -4,39%

CIS Zone’s international TE /
Zone’s aggregated TE

n.a. 1,45 n.a. n.a. 0,08% n.a. 0,75%

Zone’s domestic TE /
Zone’s international TE

n.a. 0,36 n.a. n.a. -0,52% n.a. -5,10%

Africa Zone’s domestic TE /
Zone’s aggregated TE

0,55 0,26 0,43 -7,16% -0,09% -4,15% -62,28%

Zone’s international TE /
Zone’s aggregated TE

1,18 1,36 1,25 1,75% 0,43% 1,18% 30,90%

Zone’s domestic TE /
Zone’s international TE

0,49 0,19 0,36 -8,76% -0,52% -5,27% -71,18%

The Middle Zone’s domestic TE /
Zone’s aggregated TE

1,55 0,58 1,15 -7,73% 2,87% -3,26% -53,36%

East Zone’s international TE /
Zone’s aggregated TE

0,95 1,04 0,99 0,82% -0,24% 0,36% 8,58%

Zone’s domestic TE /
Zone’s international TE

1,65 0,56 1,20 -8,48% 3,11% -3,61% -57,05%

Asian Zone’s domestic TE /
Zone’s aggregated TE

0,58 0,61 0,59 3,65% 1,30% 2,62% 81,42%

countries and Zone’s international TE /
Zone’s aggregated TE

1,18 1,16 1,17 -0,55% -0,76% -0,64% -13,69%

Oceania Zone’s domestic TE /
Zone’s international TE

0,49 0,53 0,51 4,22% 2,07% 3,28% 110,20%

China Zone’s domestic TE /
Zone’s aggregated TE

n.a. 0,64 n.a. n.a. 0,73% n.a. 7,56%

Zone’s international TE /
Zone’s aggregated TE

n.a. 1,43 n.a. n.a. 0,81% n.a. 8,42%

Zone’s domestic TE /
Zone’s international TE

n.a. 0,45 n.a. n.a. -0,08% n.a. -0,80%

World Zone’s domestic TE /
Zone’s aggregated TE

0,92 0,71 0,84 -2,90% -0,67% -1,94% -36,24%

Zone’s international TE /
Zone’s aggregated TE

1,08 1,27 1,16 2,25% -0,05% 1,25% 33,01%

Zone’s domestic TE /
Zone’s international TE

0,88 0,56 0,75 -5,04% -0,63% -3,15% -52,06%

Note: a ratio <(>) 1 means that the energy efficiency of the kind of travel in numerator is inferior (superior) to the kind of travel in denominator. These ratios aim at comparing.
within each region, (i) the domestic vs. aggregated (domestic+international) EE coefficients mean values, (ii) the international vs. aggregated (domestic+international) EE
coefficients mean values, and (iii) the domestic vs. international EE coefficients mean values.

∗ means that rates of change are not computed for the whole period, but for the second sub-period.

Table 3.3bis: Comparison of domestic and international EE coefficients (ATK/ktoe) within each zone (1983-2006).
Source: Authors, from ICAO data.
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RTK (109) Corresponding Jet fuel-Ton (106) % variation Mean growth

Regions (mean growth ATK (109) (consumption of Jet-Fuel rate per year
(Energy gains rate per year) (mean growth of the region-%) (2008-2025) of Jet-Fuel
hypothesis) rate per year) (2008-2025)

2008 2025 2008 2025 2008 2025

Central and North 246.2 405.9 403.9 627.5 86.96 77.98 -10% -0.6%
America (-3.18%) (3.0%) (2.6%) 38.7% 29.9%

Europe 163.5 310.0 235.2 413.1 49.78 52.37 5% 0.4%
(-2.97%) (3.9%) (3.5%) 22.2% 20.1%

Latin America 28.5 64.7 47.1 89.3 16.68 16.57 -1% 0.04%
(-2.73%) (5.0%) (3.9%) 7.4% 6.4%

Russia and CIS 9.6 21.1 15.4 28.1 9.03 6.00 -34% -2.2%
(-5.79%) (4.9%) (3.8%) 4.0% 2.3%

Africa 9.9 30.0 17.3 47.6 7.25 5.59 -23% -1.5%
(-7.22%) (6.7%) (6.2%) 3.2% 2.1%

The Middle East 24.1 48.7 39.9 74.3 7.19 2.86 -60% -5.0%
(-8.68%) (4.5%) (4.0%) 3.2% 1.1%

Asian countries and 98.6 296.4 158.2 465.2 32.71 58.52 79% 3.7%
Oceania (-2.88%) (6.9%) (6.8%) 14.6% 22.4%

China 56.9 215.0 82.8 296.7 15.10 40.77 170% 6.1%
(-1.65%) (8.2%) (7.9%) 6.7% 15.6%

World 637.4 1391.8 999.8 2041.9 224.69 260.67 16% 0.9%
(-3.22%)* (4.7%) (4.3%) 100% 100%

Notes:
The first two columns present 2008 and 2025 air traffic forecasts expressed in RTK (first column)
and ATK (second column).
ATK are computed from RTK forecasts using the following equations: RTK = WLF × ATK ⇔

ATK = RTK
WLF

with WLF the percentage of an aircraft’s available ton effectively occupied during
a flight. Because airlines never fully fill their aircrafts, ATK > RTK (see Section 2.1 for more
details). Assumptions on the evolution of WLF between 2008 and 2025 are detailed in Section 4.2.
In the first two columns, figures into brackets represent yearly mean growth rate of air traffic
forecasts between 2008 and 2025. Note that for each zone and at the world level, the yearly mean
growth rate of air traffic forecasts expressed in ATK is always inferior to the yearly mean growth
rate of air traffic forecasts expressed in RTK.

The other three columns concern Jet-Fuel forecasts.
The third column presents 2008 and 2025 Jet-Fuel forecasts expressed in Ton (106). For each
region, Jet-Fuel forecasts are computed from ATK using i) Energy Efficiency (EE) coefficients
presented in Section 3 and ii) a regional energy gains hypothesis. Energy gains hypothesis are
indicated into brackets under each region’s name. These figures correspond to the EE coefficient
yearly mean growth rate hypothesis. A negative sign means an energy efficiency improvement

hypothesis as EEi,t =
Tjeti,t
ATKi,t

with EEi,t the abbreviation for EE coefficient in zone i at time

t. Thus defined, EE may be interpreted as the quantity of Jet-Fuel (Tjet, expressed in ton of
Jet-Fuel) required to power the transportation of one ton over one kilometer (ATK). A decrease of
EE coefficients means then that quantities of Jet-Fuel required to power the transportation of one
ton over one kilometer have decreased.
In the third column, figures expressed in % terms indicate the share of each region’s Jet-Fuel
consumption in 2008 and 2025.
The fourth and the fifth column indicate, respectively, the % variation and the corresponding
yearly mean growth rate of Jet-Fuel forecasts between 2008 and 2025.
* This figure corresponds to the world level energy gains (per year until 2025) resulting from
regional energy gains hypothesis as defined in the ‘Green energy gains’ traffic efficiency improve-
ments scenario.

Table 4.7:
Air traffic (expressed in 109 RTK and 109 ATK) and Jet-Fuel (expressed in Ton

(106)) forecasts for the years 2008 and 2025. Forecasts are presented at the world

level (last line) and for each regions (other lines).

‘IMF GDP growth rates’ air traffic forecasts scenario combined with
‘Green energy gains’ traffic efficiency improvements scenario.
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RTK (109) Corresponding Jet fuel-Ton (106) % variation Mean growth

Regions (mean growth ATK (109) (consumption of Jet-Fuel rate per year
(Energy gains rate per year) (mean growth of the region-%) (2008-2025) of Jet-Fuel
hypothesis) rate per year) (2008-2025)

2008 2025 2008 2025 2008 2025

Central and North 246.1 391.2 403.8 604.8 87.95 84.04 -4% -0.3%
America (-2.61%) (2.8%) (2.4%) 38.5% 31.2%

Europe 163.3 287.7 235.0 383.5 50.10 52.15 4% 0.3%
(-2.61%) (3.5%) (3.0%) 21.9% 19.3%

Latin America 28.5 62.7 47.1 86.5 17.06 20.00 17% 1.0%
(-2.61%) (4.8%) (3.7%) 7.5% 7.4%

Russia and CIS 9.6 19.1 15.3 25.4 9.63 10.19 6% 0.5%
(-2.61%) (4.2%) (3.2%) 4.2% 3.8%

Africa 9.9 27.6 17.2 43.8 7.97 12.92 62% 2.9%
(-2.61%) (6.2%) (5.6%) 3.5% 4.8%

The Middle East 24.0 42.3 39.7 64.6 8.15 8.45 4% 0.5%
(-2.61%) (3.7%) (3.2%) 3.6% 3.1%

Asian countries and 98.3 253.8 157.7 398.4 32.79 52.82 61% 3.1%
Oceania (-2.61%) (6.0%) (5.8%) 14.4% 19.6%

China 56.7 184.4 82.5 254.5 14.76 29.03 97% 4.1%
(-2.61%) (7.3%) (6.9%) 6.5% 10.8%

World 636.5 1268.9 998.4 1861.5 228.40 269.59 18% 1.0%
(-2.61%) (4.2%) (3.8%) 100% 100%

Notes:
The first two columns present 2008 and 2025 air traffic forecasts expressed in RTK (first column)
and ATK (second column).
ATK are computed from RTK forecasts using the following equations: RTK = WLF × ATK ⇔

ATK = RTK
WLF

with WLF the percentage of an aircraft’s available ton effectively occupied during
a flight. Because airlines never fully fill their aircrafts, ATK > RTK (see Section 2.1 for more
details). Assumptions on the evolution of WLF between 2008 and 2025 are detailed in Section 4.2.
In the first two columns, figures into brackets represent yearly mean growth rate of air traffic
forecasts between 2008 and 2025. Note that for each zone and at the world level, the yearly mean
growth rate of air traffic forecasts expressed in ATK is always inferior to the yearly mean growth
rate of air traffic forecasts expressed in RTK.

The other three columns concern Jet-Fuel forecasts.
The third column presents 2008 and 2025 Jet-Fuel forecasts expressed in Ton (106). For each
region, Jet-Fuel forecasts are computed from ATK using i) Energy Efficiency (EE) coefficients
presented in Section 3 and ii) a regional energy gains hypothesis. Energy gains hypothesis are
indicated into brackets under each region’s name. These figures correspond to the EE coefficient
yearly mean growth rate hypothesis. A negative sign means an energy efficiency improvement

hypothesis as EEi,t =
Tjeti,t
ATKi,t

with EEi,t the abbreviation for EE coefficient in zone i at time

t. Thus defined, EE may be interpreted as the quantity of Jet-Fuel (Tjet, expressed in ton of
Jet-Fuel) required to power the transportation of one ton over one kilometer (ATK). A decrease of
EE coefficients means then that quantities of Jet-Fuel required to power the transportation of one
ton over one kilometer have decreased.
In the third column, figures expressed in % terms indicate the share of each region’s Jet-Fuel
consumption in 2008 and 2025.
The fourth and the fifth column indicate, respectively, the % variation and the corresponding
yearly mean growth rate of Jet-Fuel forecasts between 2008 and 2025.

Table 4.8:
Air traffic (expressed in 109 RTK and 109 ATK) and Jet-Fuel (expressed in Ton

(106)) forecasts for the years 2008 and 2025. Forecasts are presented at the world

level (last line) and for each regions (other lines).

‘Low GDP growth rates’ air traffic forecasts scenario combined with
‘Homogeneous energy gains’ traffic efficiency improvements scenario.
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RTK (109) Corresponding Jet fuel-Ton (106) % variation Mean growth

Regions (mean growth ATK (109) (consumption of Jet-Fuel rate per year
(Energy gains rate per year) (mean growth of the region-%) (2008-2025) of Jet-Fuel
hypothesis) rate per year) (2008-2025)

2008 2025 2008 2025 2008 2025

Central and North 246.1 391.2 403.8 604.8 86.92 75.17 -14% -0.9%
America (-3.18%) (2.8%) (2.4%) 38.7% 31.6%

Europe 163.3 287.7 235.0 383.5 49.73 48.61 -2% -0.1%
(-2.97%) (3.5%) (3.0%) 22.2% 20.4%

Latin America 28.5 62.7 47.1 86.5 16.67 16.06 -4% -0.14%
(-2.73%) (4.8%) (3.7%) 7.4% 6.7%

Russia and CIS 9.6 19.1 15.3 25.4 9.01 5.42 -40% -2.8%
(-5.79%) (4.2%) (3.2%) 4.0% 2.3%

Africa 9.9 27.6 17.2 43.8 7.23 5.14 -29% -2.0%
(-7.22%) (6.2%) (5.6%) 3.2% 2.2%

The Middle East 24.0 42.3 39.7 64.6 7.16 2.49 -65% -5.8%
(-8.68%) (3.7%) (3.2%) 3.2% 1.0%

Asian countries and 98.3 253.8 157.7 398.4 32.61 50.11 54% 2.8%
Oceania (-2.88%) (6.0%) (5.8%) 14.5% 21.1%

China 56.7 184.4 82.5 254.5 15.05 34.97 132% 5.2%
(-1.65%) (7.3%) (6.9%) 6.7% 14.7%

World 636.5 1268.9 998.4 1861.5 224.38 237.96 6% 0.4%
(-3.22%)* (4.2%) (3.8%) 100% 100%

Notes:
The first two columns present 2008 and 2025 air traffic forecasts expressed in RTK (first column)
and ATK (second column).
ATK are computed from RTK forecasts using the following equations: RTK = WLF × ATK ⇔

ATK = RTK
WLF

with WLF the percentage of an aircraft’s available ton effectively occupied during
a flight. Because airlines never fully fill their aircrafts, ATK > RTK (see Section 2.1 for more
details). Assumptions on the evolution of WLF between 2008 and 2025 are detailed in Section 4.2.
In the first two columns, figures into brackets represent yearly mean growth rate of air traffic
forecasts between 2008 and 2025. Note that for each zone and at the world level, the yearly mean
growth rate of air traffic forecasts expressed in ATK is always inferior to the yearly mean growth
rate of air traffic forecasts expressed in RTK.

The other three columns concern Jet-Fuel forecasts.
The third column presents 2008 and 2025 Jet-Fuel forecasts expressed in Ton (106). For each
region, Jet-Fuel forecasts are computed from ATK using i) Energy Efficiency (EE) coefficients
presented in Section 3 and ii) a regional energy gains hypothesis. Energy gains hypothesis are
indicated into brackets under each region’s name. These figures correspond to the EE coefficient
yearly mean growth rate hypothesis. A negative sign means an energy efficiency improvement

hypothesis as EEi,t =
Tjeti,t
ATKi,t

with EEi,t the abbreviation for EE coefficient in zone i at time

t. Thus defined, EE may be interpreted as the quantity of Jet-Fuel (Tjet, expressed in ton of
Jet-Fuel) required to power the transportation of one ton over one kilometer (ATK). A decrease of
EE coefficients means then that quantities of Jet-Fuel required to power the transportation of one
ton over one kilometer have decreased.
In the third column, figures expressed in % terms indicate the share of each region’s Jet-Fuel
consumption in 2008 and 2025.
The fourth and the fifth column indicate, respectively, the % variation and the corresponding
yearly mean growth rate of Jet-Fuel forecasts between 2008 and 2025.
* This figure corresponds to the world level energy gains (per year until 2025) resulting from
regional energy gains hypothesis as defined in the ‘Green energy gains’ traffic efficiency improve-
ments scenario.

Table 4.9:
Air traffic (expressed in 109 RTK and 109 ATK) and Jet-Fuel (expressed in Ton (106))

forecasts for the years 2008 and 2025. Forecasts are presented at the world level (last

line) and for each regions (other lines).

‘Low GDP growth rates’ air traffic forecasts scenario combined with
‘Green energy gains’ traffic efficiency improvements scenario.
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RTK (109) Corresponding Jet fuel-Ton (106) % variation Mean growth

Regions (mean growth ATK (109) (consumption of Jet-Fuel rate per year
(Energy gains hypothesis) rate per year) (mean growth of the region-%) (2008-2025) of Jet-Fuel

rate per year) (2008-2025)

2008 2025 2008 2025 2008 2025

Central and North 246.3 421.0 404.1 650.9 88.02 90.43 3% 0.2%
America (-2.61%) (3.2%) (2.8%) 38.4% 28.0%

Europe 163.7 333.7 235.4 444.8 50.20 60.50 21% 1.2%
(-2.61%) (4.4%) (3.9%) 21.9% 18.8%

Latin America 28.6 66.8 47.1 92.2 17.08 21.31 25% 1.4%
(-2.61%) (5.2%) (4.1%) 7.5% 6.6%

Russia and CIS 9.6 23.4 15.4 31.1 9.68 12.49 29% 1.7%
(-2.61%) (5.5%) (4.4%) 4.2% 3.9%

Africa 10.0 32.7 17.3 51.8 8.00 15.26 91% 3.9%
(-2.61%) (7.2%) (6.7%) 3.5% 4.7%

The Middle East 24.2 56.0 40.1 85.4 8.21 11.17 36% 2.1%
(-2.61%) (5.4%) (4.9%) 3.6% 3.5%

Asian countries and 98.9 345.7 158.7 542.6 32.99 71.95 118% 5.0%
Oceania (-2.61%) (7.9%) (7.8%) 14.4% 22.3%

China 57.1 250.3 83.0 345.4 14.85 39.40 165% 6.0%
(-2.61%) (9.2%) (8.8%) 6.5% 12.2%

World 638.3 1529.5 1001.2 2244.2 229.02 322.49 41% 2.1%
(-2.61%) (5.3%) (4.9%) 100% 100%

Notes:
The first two columns present 2008 and 2025 air traffic forecasts expressed in RTK (first column)
and ATK (second column).
ATK are computed from RTK forecasts using the following equations: RTK = WLF × ATK ⇔

ATK = RTK
WLF

with WLF the percentage of an aircraft’s available ton effectively occupied during
a flight. Because airlines never fully fill their aircrafts, ATK > RTK (see Section 2.1 for more
details). Assumptions on the evolution of WLF between 2008 and 2025 are detailed in Section 4.2.
In the first two columns, figures into brackets represent yearly mean growth rate of air traffic
forecasts between 2008 and 2025. Note that for each zone and at the world level, the yearly mean
growth rate of air traffic forecasts expressed in ATK is always inferior to the yearly mean growth
rate of air traffic forecasts expressed in RTK.

The other three columns concern Jet-Fuel forecasts.
The third column presents 2008 and 2025 Jet-Fuel forecasts expressed in Ton (106). For each
region, Jet-Fuel forecasts are computed from ATK using i) Energy Efficiency (EE) coefficients
presented in Section 3 and ii) a regional energy gains hypothesis. Energy gains hypothesis are
indicated into brackets under each region’s name. These figures correspond to the EE coefficient
yearly mean growth rate hypothesis. A negative sign means an energy efficiency improvement

hypothesis as EEi,t =
Tjeti,t
ATKi,t

with EEi,t the abbreviation for EE coefficient in zone i at time

t. Thus defined, EE may be interpreted as the quantity of Jet-Fuel (Tjet, expressed in ton of
Jet-Fuel) required to power the transportation of one ton over one kilometer (ATK). A decrease of
EE coefficients means then that quantities of Jet-Fuel required to power the transportation of one
ton over one kilometer have decreased.
In the third column, figures expressed in % terms indicate the share of each region’s Jet-Fuel
consumption in 2008 and 2025.
The fourth and the fifth column indicate, respectively, the % variation and the corresponding
yearly mean growth rate of Jet-Fuel forecasts between 2008 and 2025.

Table 4.10:
Air traffic (expressed in 109 RTK and 109 ATK) and Jet-Fuel (expressed in Ton

(106)) forecasts for the years 2008 and 2025. Forecasts are presented at the world

level (last line) and for each regions (other lines).

‘High GDP growth rates’ air traffic forecasts scenario combined with
‘Homogeneous energy gains’ traffic efficiency improvements scenario.
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RTK (109) Corresponding Jet fuel-Ton (106) % variation Mean growth

Regions (mean growth ATK (109) (consumption of Jet-Fuel rate per year
(Energy gains rate per year) (mean growth of the region-%) (2008-2025) of Jet-Fuel
hypothesis) rate per year) (2008-2025)

2008 2025 2008 2025 2008 2025

Central and North 246.3 421.0 404.1 650.9 86.99 80.89 -7% -0.4%
America (-3.18%) (3.2%) (2.8%) 38.7% 28.3%

Europe 163.7 333.7 235.4 444.8 49.83 56.38 13% 0.8%
(-2.97%) (4.4%) (3.9%) 22.1% 19.7%

Latin America 28.6 66.8 47.1 92.2 16.69 17.10 2% 0.22%
(-2.73%) (5.2%) (4.1%) 7.4% 6.0%

Russia and CIS 9.6 23.4 15.4 31.1 9.06 6.65 -27% -1.6%
(-5.79%) (5.5%) (4.4%) 4.0% 2.3%

Africa 10.0 32.7 17.3 51.8 7.26 6.07 -16% -1.0%
(-7.22%) (7.2%) (6.7%) 3.2% 2.1%

The Middle East 24.2 56.0 40.1 85.4 7.22 3.29 -54% -4.2%
(-8.68%) (5.4%) (4.9%) 3.2% 1.1%

Asian countries and 98.9 345.7 158.7 542.6 32.81 68.25 108% 4.7%
Oceania (-2.88%) (7.9%) (7.8%) 14.6% 23.9%

China 57.1 250.3 83.0 345.4 15.14 47.47 214% 7.0%
(-1.65%) (9.2%) (8.8%) 6.7% 16.6%

World 638.3 1529.5 1001.2 2244.2 224.99 286.10 27% 1.5%
(-3.22%)* (5.3%) (4.9%) 100% 100%

Notes:
The first two columns present 2008 and 2025 air traffic forecasts expressed in RTK (first column)
and ATK (second column).
ATK are computed from RTK forecasts using the following equations: RTK = WLF × ATK ⇔

ATK = RTK
WLF

with WLF the percentage of an aircraft’s available ton effectively occupied during
a flight. Because airlines never fully fill their aircrafts, ATK > RTK (see Section 2.1 for more
details). Assumptions on the evolution of WLF between 2008 and 2025 are detailed in Section 4.2.
In the first two columns, figures into brackets represent yearly mean growth rate of air traffic
forecasts between 2008 and 2025. Note that for each zone and at the world level, the yearly mean
growth rate of air traffic forecasts expressed in ATK is always inferior to the yearly mean growth
rate of air traffic forecasts expressed in RTK.

The other three columns concern Jet-Fuel forecasts.
The third column presents 2008 and 2025 Jet-Fuel forecasts expressed in Ton (106). For each
region, Jet-Fuel forecasts are computed from ATK using i) Energy Efficiency (EE) coefficients
presented in Section 3 and ii) a regional energy gains hypothesis. Energy gains hypothesis are
indicated into brackets under each region’s name. These figures correspond to the EE coefficient
yearly mean growth rate hypothesis. A negative sign means an energy efficiency improvement

hypothesis as EEi,t =
Tjeti,t
ATKi,t

with EEi,t the abbreviation for EE coefficient in zone i at time

t. Thus defined, EE may be interpreted as the quantity of Jet-Fuel (Tjet, expressed in ton of
Jet-Fuel) required to power the transportation of one ton over one kilometer (ATK). A decrease of
EE coefficients means then that quantities of Jet-Fuel required to power the transportation of one
ton over one kilometer have decreased.
In the third column, figures expressed in % terms indicate the share of each region’s Jet-Fuel
consumption in 2008 and 2025.
The fourth and the fifth column indicate, respectively, the % variation and the corresponding
yearly mean growth rate of Jet-Fuel forecasts between 2008 and 2025.
* This figure corresponds to the world level energy gains (per year until 2025) resulting from
regional energy gains hypothesis as defined in the ‘Green energy gains’ traffic efficiency improve-
ments scenario.

Table 4.11:
Air traffic (expressed in 109 RTK and 109 ATK) and Jet-Fuel (expressed in Ton (106))

forecasts for the years 2008 and 2025. Forecasts are presented at the world level (last

line) and for each regions (other lines).

‘High GDP growth rates’ air traffic forecasts scenario combined with
‘Green energy gains’ traffic efficiency improvements scenario.
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