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École Doctorale no 475
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Delphine SINOQUET Ingénieur de recherche, IFPEN, Promotrice
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Abstract

Black-box Mixed-integer Nonlinear Problems (MINLP) are optimization problems whose vari-
ables can take integer (or discrete) and continuous values, and the objective function (and
possibly constraints) are performed as output of ”black-box” simulations. Generally, black-box
MINLP optimization problems are considered as particularly complex problems due to the com-
binatorial aspect and the lack of information about the cost function and the constraints.

In recent years, there has been a considerable amount of real industrial applications that in-
volve mixed variables and time-consuming simulators, e.g., at Safran Tech and IFPEN, optimal
designs of engine turbine in aircraft, of mooring lines of offshore wind turbines, of electric en-
gine stators and rotors,. . . In these nonlinear optimization problems, derivatives of the objective
function (and, possibly of the constraints) are not available and cannot be directly approxi-
mated. Another difficulty is that minimization of the cost involves complex variables, a varying
number of components (integer variables), different materials (categorical variables, usually non-
ordered), the presence or not of some components (binary variables) and continuous variables
describing dimensions/characteristics of the structure pieces.

On this type of applications, even if the cost function can be relatively simple (e.g., sim-
ple relationship between the parameters to be optimized and the cost of the structure), some
physical constraints are introduced to satisfy accurate specifications (reliability, operating, di-
mensioning constraints . . . ). These constraints often result from complex computations of a
numerical simulator. It thus leads to an optimization problem involving one or more simulators
that are often computationally expensive ”black-box” (from closed commercial software or too
complex simulator for a possible extraction of any information on the optimization variables).

In this work, we focus on derivative free optimization methods (DFO) [7, 15]. Among DFO
methods, we consider two families: direct search methods (e.g., pattern search or Nelder Mead
simplex) and surrogate optimization methods, especially trust-region methods based on simple
interpolating or regression models (linear or quadratic). Convergence results to local minima are
proved for such method but require adaptations to converge to a global optimal solution (e.g.,
a multi-start approach with several initial points). The direct search methods require a large
number of simulations, whereas the methods of the second family are generally more efficient
to converge to a local solution. The methods of the two families should be extended to mixed
continuous and discrete variables constrained optimization (simple constraints and black-box
constraints) in order to address the presented applications.

Keywords: Mixed integer non-linear programming, derivative free optimization,
black-box simulation, necklace distance
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Chapter 1

Introduction

Subject of the study

The optimization problem we first address is in the form of a Mixed Binary Non-linear Pro-
gramming (MBNLP): 

min
x,y

fb(x, y)

x ∈ [xL, xU ], y ∈ {0, 1}n
g(x, y) ≤ 0
gb(x, y) ≤ 0,

(1.1)

where the objective function fb and the constraints functions gb are outputs of ”black-box”
simulator, and g are given explicitly.
This report is concerned with problems with a ”black-box” functions fb, gb : Rn → R with the
two following characteristics

1. The derivatives Ofb,Ogb are not available, we only have access to the function values,

2. It is computationally expensive to evaluate the functions fb and gb.

These problems are in general NP-hard and difficult to solve. MINLP or MBNLP are typi-
cally solved by branch and bound methods or meta-heuristic algorithms. It is generally mean-
ingless to use relaxation techniques for discrete variables (e.g., for categorical variables). In most
cases, the problem is not convex and the simulator cannot evaluate the black-box functions at
fractional values of the discrete variables. In addition, the feasible set can be very thin and thus
finding a feasible point becomes very difficult.

Derivative free methods dedicated to mixed continuous and discrete variables (with and with-
out constraints) have been studied in the literature, in which we can point out some prominent
articles, [4, 6, 33, 34]. Some well-known methods are for example pattern search methods, mesh
adaptive direct search, filter pattern search methods, etc. One main idea is to alternatively
do a continuous poll with the discrete variables held fixed, a discrete poll with the continuous
variables held fixed and an extended poll in mixed domain. The extended poll step performs a
continuous poll around each point found during the discrete poll whose objective function value
lies within some user defined threshold of the best known objective value encountered so far.

Another class of methods, trust region methods, are described in [15]. In this book, the
authors prove the local convergence based on the geometry of the interpolation set.

In this study, we focus on adapting DFO trust-region method to a black-box MIMLP appli-
cation coming from Safran, more precisely, the optimization of blade shapes of engine turbines in

3



4 Chapter 1. Introduction

aircraft, and arranging optimally these optimal shapes on the disk of the turbine. The values of
the objective function are computed by black-box mechanical simulators which can cost several
hours of computation or even more. Therefore, the priority is not only to find a ’good’ solution,
but also to save simulations.

Structure of the report

We begin in Chapter 2 by introducing notations and reminding some necessary mathematical
background. We also present the application from the aeronautics industry that motivates
our study. In Chapter 3, an overview of trust-region methods and derivative-free trust-region
methods are presented. In particular, we emphasize some important remarks about the model
requirements based on the geometry of the interpolation set. We also show how to deal with the
binary variables in this method. Chapter 4 focuses on the adaptation of the algorithm to the
application: we introduce the concept of necklace from the combinatorics literature and propose
an adapted distance for this type of variable configuration. The convergence properties of the
adapted method are also developed. The first numerical results are given in the Chapter 5 for
benchmark functions and for Safran’s application. The last chapter discuss the conclusions and
present perspectives.



Chapter 2

Notation and reminders

We begin by introducing the notations used in this report: vector and matrix norms, condition
number, quadratic programming and mixed integer quadratic programming.

Vector and matrix norms

For a vector x ∈ Rn p−norms (p ≥ 1) are given by

‖x‖p =
( n∑
i=1

|xi|p
) 1

p
,

and the ∞−norm by
‖x‖∞ = max

1≤i≤n
|xi|.

Similarly, we define the p−norm of matrices. Let A = (aij)m×n be a m × n matrix. The p−
norms, p ≥ 1, are defined by

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

,

the ∞−norm by

‖A‖∞ = max
i

n∑
j=1

|aij |,

and the Frobenius norm by

‖A‖F =

√√√√ n∑
i=1

n∑
j=1

a2
ij .

Besides satisfying the three norm properties(positive definite, scalar multiply, triangle inequal-
ity), they also satisfy the ”submultiplicative” property

‖AB‖ ≤ ‖A‖‖B‖.

There are several useful inequalities for matrix norms, namely

1√
m
‖A‖1 ≤ ‖A‖2 ≤ ‖A‖F ≤

√
n‖A‖2 ≤ n‖A‖1,

and for vector norms
‖.‖∞ ≤ ‖.‖2 ≤

√
n‖.‖∞.

5



6 Chapter 2. Notation and reminders

Conditioning

One of the most important properties we use to study a matrix is its condition number which
gives us the information as to whether a matrix is ill-conditioned or well-conditioned. The
condition number of a n× n non-singular matrix A is given by

χ(A) = ‖A‖.‖A−1‖,

which depends on the chosen norm. The value of the condition number has a large impact on the
difficulty of solving a linear system: the system is easier to solve if its condition number is small
(ideally χ(A) equal to 1) and it becomes difficult or unsolvable if the condition number is going
to infinity. In particular, even a small perturbation in the right-hand side of a linear of equations
can yield to an enormous change in the solution of this when the matrix is ill-conditioned. If
the matrix A is symmetric, there is another way to see the condition number, which is

χ(A) =
max1≤i≤n |αi|
min1≤i≤n |αi|

,

where α1, . . . , αn are the eigenvalues of A.

Quadratic programming and mixed integer quadratic program-
ming

Quadratic programming (QP)
Quadratic programming is widely studied in the literature as it is often a subproblem for opti-
mization algorithms. An optimization problem with a quadratic objective function and linear
constraints is called a quadratic program, which can be stated as

min
x

1

2
xTHx+ xT g

aTi x = bi, i ∈ E,
aTi x ≥ bi, i ∈ I,

where H is a symmetric matrix, E and I are index sets associated with equality and inequality
constraints. If the Hessian H is semi positive definite (SDP), the problem is said to be a convex
QP, otherwise it is a non-convex problem. Solving non-convex problems is more challenging
than solving convex problems as non-convex QPs are NP-hard problems. We can solve QP by
using Interior-Point Methods or Active set methods, see [39].

Mixed Integer Quadratic Programming (MIQP)
MIQP is in the form of 

min
x,z

f(x, z),

x ∈ Rm, z ∈ Zn,
g(x, z) ≤ 0.

(2.1)

where f, and g are quadratic and linear functions, respectively. To solve MIQP, the most
common class of methods is Branch-and-bound algorithms and their extended versions, such as
spatial branch-and-bound, branch-and-reduce, α branch-and-bound (for details see [13,43]).



Chapter 3

Design of turbine blades for
helicopter engine application

In this thesis, one of the motivating applications is the optimal design of the turbine blades of
helicopter engine. The objective is to maximize the compressor efficiency under some stability
constraints (minimal vibrations). This involves very expensive mechanical simulations (solid
and fluid mechanics), typically, involving computer runs of the the order of several hours for
evaluating one design configuration set. Some continuous parameters describe the blade shapes,
e.g., the thickness, length . . . of the blades, and binary variables locate the different types of
blade geometries that are considered. This problem thus falls into the MINLP class.

This chapter distributes as follows: first, we introduce Safran’s application context, then we
describe the idea of reduced order model which is used in practice.

3.1 Application context

Motivation

Air traffic is one of the most important means of transport nowadays, especially in Europe.
There are around 8000 daily flights. Moreover, the amount of people travelling by airplane
increases every year by around 5 %. Air traffic is associated with very high costs of fuel [2, 3],
and also with a huge budget for the maintenance and manufacturing of the new engines. Table
3.1 shows the fuel consumption for aircraft: if we can reduce of 0.5% the amount of fuel, we
can gain around 410 million US $ per year. Therefore, reducing fuel consumption (by increasing
engine efficiency) and maintenance costs (by decreasing vibrations) are two major concerns of
the aeronautics industry.

Table 3.1: Illustration of fuel consummation for aircraft

World fuel consumption (litres) Corresponding price (US $)

v 240.1012 v 83.109

0.5% ↓ 410.106 ↓

7



8 Chapter 3. Design of turbine blades for helicopter engine application

Turbomachines

There are several ways to optimize the costs in aviation: through optimizing trajectories, ar-
rangements of passengers (through design of seat arrangement), cargo-storage, etc. Our study
concentrates on optimizing the design of turbomachines by maximizing the efficiency (compres-
sor) and by minimizing vibrations. Turbomachines or gas turbines are complex systems that
are used in the aerospace, automotive and power generation industries. Blades are important
components that allow the exchange of energy with the flow, Figure (3.1). During the opera-
tion of the turbomachine, vibrations occur, mainly due to the excitation by modification of the
aerodynamic flow and also resulting from a coupling between the flow and the movement of the
blades [37].

Figure 3.1: Illustration of a turbomachine from [37]

In the concrete application proposed by SAFRAN, the main idea is to optimize the so-called
tuning and mistuning blade shapes in engine turbine and to find the optimal distribution of the
resulting two shapes on the disk. The continuous variables are shape parameters such as the
thickness of the axis length of the blades. A binary variable is associated to each blade: it takes
value 0 for the reference shape, and value 1 for the other pre-defined shape (mistuning shape).
Binary variables are used to locate these reference blade shapes on the disk, Figure (3.2).

Figure 3.2: An example of blade configurations for two different shapes from [37]

Remark that the cyclic symmetry property of the problem yields to a huge number of re-
dundant arrangements (see Tables 3.2). Due to the high cost of evaluating the simulations, we
do not want to recompute equivalent (rotated) configurations.

In the next subsection we present the Reduced Order Model (ROM) which is used in practice
to reduce the computational cost of optimization for such highly combinatorial problems.
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Table 3.2: Number of distinct solutions for n blades. [37]

Total number of Number of distinct Total number of
blades on the disk arrangements arrangements

2 3 2

3 4 3

6 14 64

12 352 4096

20 52488 1048576

3.2 Reduced Order Model (ROM)

Two blade disks that differ only by a rotation of the pattern around the disk lead to the same
value of the forced response on the disk. Such arrangements should obviously be considered
as a same solution. Note that when the number of blades is increasing, the number of such
equivalent solutions rapidly increases (Table 3.2).

For an instance of our problem involving n blades, we can roughly approximate the num-

ber of distinct arrangements by
2n

n
. Reducing these redundancies will significantly reduce the

combinatorial complexity of the optimization problem and, consequently the computational cost
of the envisaged optimization approach. Therefore, the methodology based on reduced-order
modeling method is proposed.

Suppose we have two types of blades, A and B, that need to be located at n locations on the
disk. In [49], the authors present a physical discussion about the problem of redundancy: in the
presence of strong coupling, i.e., if there are few switches or if there exists a series of groupings
of two consecutive blades of the form AA or BB (e.g., 7B5A), the vibration responses between
blades tend to be globally uniform at the wheel. While, in the case of low coupling, i.e., if there
are many switches or if the basic grouping forming the pattern are no longer AA and BB but
rather AB and BA (e.g., 1A1B2A2B, the responses tend to be located on some blade neighbors.

Following the previous comments about inter-blade coupling level, if the optimal distribu-
tion presents few alternations of the two different shapes, it can be roughly reconstructed by
a distribution of patterns AA or BB. On the other hand, if the optimal distribution presents
many alternations of the two different shapes, we use patterns AB or BA. In both cases, the
idea is to consider the distribution by groups of two blades in view of obtaining a model of
lower dimension. Indeed, the idea of ROMT is to consider n/2 sectors of two blades with two
possibilities for each sector. We group either patterns AA and BB if there are few switches
(high coupling) or AB and BA in case there are many switches (low coupling). For illustration,
a disk with 10 blades consists of 108 distinct distributions of two types of blades, whereas ROM
leads to a problem of a disk with 5 sectors and only 8 distinct distributions.

The ROM optimization methodology consists of two main steps. It first optimizes in the
two reduced spaces ( for patterns AA/BB and then for patterns AB/BA considering on sectors
of 2 blades) to provide initial guesses.Then, a local search limited to one flip from these initial
guesses provides ”local” solutions to the original problem.

ROM reduces the size of discrete space, which tends to reduce the computations in each
sub-problem. A disadvantage however is that it removes a large number of possibilities which
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Figure 3.3: Illustration of a case with 23 blades with patterns AA−BB, from [37]

will not be explored. For instance, for the problem involving n = 12 blades, ROM removes 324
(each subproblem keeps 14 distinct solutions) in over 352 distinct solutions. This motivates our
study to look for another method to address the above-mentioned cyclic symmetry property
while ensuring that all the distinct arrangements are considered. In Chapter 5, we will propose
an adapted method for this type of problem.



Chapter 4

Derivative-free optimization

In this chapter, we address the unconstrained problem of the form{
min
x,y

f(x, y)

x ∈ [xL, xU ], y ∈ {0, 1}n
(4.1)

where x ∈ Rm, y ∈ {0, 1}n are continuous and binary variables, respectively. The objective
function f is the output of a ”black-box” numerical simulator. We further assume that f is
smooth and bounded from below to guarantee convergence of the algorithm, see ( [7, 15]). We
also assume that derivatives of f are unavailable. Derivative-free methods can be classified as
direct search methods (pattern search methods, simplex search methods . . .) and model-based
methods (derivative free trust-region methods, surrogate optimization methods). In this report,
we focus on derivative free trust region method.
We now begin with the useful background on trust-region framework basics. We first outline
derivative-free trust-region methods and then discuss their extension to mixed binary problems.

4.1 Trust-region framework basics

We begin by providing a review of the trust-region framework for continuous optimization when
derivatives of f are available, see [39] for details. In trust-region methods, at each iteration
k, we build a quadratic model mk around the current iterate xk. This model is assumed to
approximate the objective function sufficiently well in a neighbourhood of center xk called the
trust region, which is defined based on the center and radius pair (xk,∆k > 0)

B(xk,∆k) = {x ∈ Rn : ‖x− xk‖k ≤ ∆k}.

The trust region norm ‖.‖k can be taken from the standard 2−norm ‖.‖2. To find the value of
the next iterate xk+1, we solve a quadratic sub-problem of the form

min
s∈B(0,∆k)

mk(xk + s), (4.2)

where mk(xk + s) = f(xk) + gTk s+
1

2
sTHks, gk is the gradient of f at xk, Hk is a symmet-

ric approximation of the Hessian of f at xk. The approximate solution sk should satisfy the
condition

mk(xk)−mk(xk + sk) ≥
κd
2
‖gk‖k min{ ‖gk‖k

‖Hk‖k
,∆k},

11



12 Chapter 4. Derivative-free optimization

where κd ∈ (0, 1] is a constant.
Taylor’s theorem ensures the existence of a trust region that ensures previous condition, but

does not give its precise size. Therefore, updating and adjusting the trust region radius after
each iteration is necessary. Given an approximate solution sk of (4.2), the trust region radius is
updated depending on the ratio of actual improvement and predicted improvement

ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
.

If the model reduction matches well the actual reduction of the objective function (when ρ >
0 and v 1), the candidate sk is accepted and the trust region radius is possibly increased.
Otherwise, the candidate is rejected and the trust region radius is decreased. We run the loop
until convergence criteria on minimal gradient norm and minimal trust region radius are reached.

Algorithm 1: Derivative based trust region algorithm, see [39]

Input: x0, 0 < ∆0 ≤ ∆max, 0 < γ0 < 1 < γ1, 0 ≤ η0 ≤ η1 ≤ 1
0. Initialization. Compute f(x0),Of(x0), k = 0
1. Model definition. Build quadratic model mk in B(xk,∆k)
2. Solve sub-problem (4.2)

sk = argmin
s∈B(xk,∆k)

mk(xk + s)

3. Center update. Compute

ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
.

xk+1 =

{
xk + sk if ρk ≥ η0,

xk if ρk < η0.

4. Trust region update

∆k+1 =


min{γ1∆k,∆max} if ρk ≥ η1

∆k if η0 ≤ ρk < η1,

γ0∆k if ρk < η0.

When the derivatives are not available, we build on interpolation model based on a set of
given simulations (f values). In this case, the model is considered as a valid approximation
of the objective function under some conditions which mainly depend on the geometry of the
interpolation set. If the model does not satisfy these conditions, a new point is added to improve
the accuracy of the model. This is detailed in the next section.

4.2 Derivative-free trust region methods for continuous prob-
lems

The basic idea of DFO trust region methods [15] is to replace the problem, which involves
expensive simulations with no information about the derivatives, by a simpler problem (linear
or quadratic form) for which we have derivatives. Then we minimize the simpler problem using
the idea of classical trust-region method. At each iteration, we solve the sub-problem to find
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the possible candidate for the next iteration. Similarly to derivative based trust region method,
if the model is qualified to valid, by computing the ratio between the actual improvement and
the predicted improvement we will decide to increase, decrease or keep the current trust-region
radius and choose the solution of sub-problem as the new center of trust-region or not. We keep
running the algorithm till the stopping criteria are met, typically when the trust-region and the
norm of gradient of the model are small enough.

The main differences between derivative free and derivative based trust region methods are
listed below:

• the quadratic models are based on a given interpolation set (available simulations),

• the Taylor expansion error bound is replaced by fully linear or fully quadratic model
properties, or model qualification condition.

In the next section, we will focus on the model construction and the necessary properties of
the geometry of the interpolation set to control the error bounds of the models.

4.2.1 Geometry of the interpolation set

Consider a set of sample points given by

X = {x0, x1, . . . , xp}, xi ∈ Rm. (4.3)

where p < (m+ 1)(m+ 2)/2, we denote p1 = p+ 1 the number of points of the sample set.
We would like to build a quadratic model m(x) which interpolates points in X. If p1 =

(m+ 1)(m+ 2)/2, the problem (4.1) is a quadratic interpolation problem; if p1 > (m+ 1)(m+ 2)/2,
we have over-determined problems, otherwise it is under-determined. In general, the problem is
under-determined since the simulations are computationally expensive.

Let m(x) denoted the polynomial of degree d (e.g., d = 1, 1 < p1 = m+ 1 or d = 2,m+ 1 <
p1 ≤ (m+ 1)(m+ 2)/2) that interpolates f(x) at the points

m(xi) = f(xi), i = 0, . . . , p. (4.4)

Let us consider Pdm the space of polynomials of degree≤ d in Rm and a basis φ = {φ0, φ1, φ2, . . . , φp}.
We can express m(x) as

m(x) =

p∑
i=0

αiφi(x), (4.5)

where αi, i = 0, . . . , p, are coefficients. It is clear that m(x) is determined if the values of
α0, . . . , αp are determined. From (4.4) and (4.5), the coefficients α are found by solving the
following linear system

φ0(x0) φ1(x0) . . . φp(x
0)

φ0(x1) φ1(x1) . . . φp(x
1)

...
...

...
φ0(xp) φ1(xp) . . . φp(x

p)



α0

α1
...
αp

 =


f(x0)
f(x1)

...
f(xp)

 , (4.6)

or equivalently in matrix form:

M(φ,X)α = f(X).
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If the matrix of the system M(φ,X) is non-singular (i.e., has full rank) then the system has
unique solution. In this case, the interpolation set X is said to be poised. Thus, if X is a poised
set, then the interpolating polynomial m(x) exists and is unique. In [15] the authors prove that
if the interpolation set is poised, then the condition number of M(φ,X) does not depend on the
choice of the basis. The condition number of M(φ, X̂) can be considered as a measure of the
poisedness of X, where X̂ is a scaled interpolation set (detail in [15])

X̂ =
1

∆
[x1 − x0, . . . , xp − x0],

with ∆ = ∆(X) = max
1≤i≤p

‖xi − x0‖.
In practice, we choose the natural basis

{1, x1, x2, . . . , xm,
1

2
x2

1, x1x2, . . . ,
1

(m− 1)!
xd−1
m−1xm,

1

m!
xdm}, (4.7)

Definition 4.1. (Lagrange Polynomials) Given a set of interpolation points X = {x0, x1, . . . , xp},
a basis of p1 = p+ 1 polynomials lj(x), j = 0, . . . , p, in Pdm is called a basis of Lagrange polyno-
mials if

lj(x
i) = σij =

{
1 if i = j,

0 if i 6= j.

If X is poised, then the basis of Lagrange polynomials exists and is unique.

Definition 4.2. (Λ− poisedness) Let Λ > 0 and a set B ∈ Rm be given. Let {φi(x)}pi=0 be a
basis of Pdm. A poised set X = {x0, x1, . . . , xp} is said to be Λ−poised in B if and only if

1. for the basis of Lagrange polynomials associated with x

Λ ≥ max
0≤i≤p

max
x∈B
|li(x)|,

or, equivalently,

2. for any x ∈ B there exists λ(x) ∈ Rp1 such that

p∑
i=0

λi(x)φ(xi) = φ(x), with ‖λ(x)‖∞ ≤ Λ,

or, equivalently,

3. replacing any points in X by any x ∈ B can increase the volume of the set {φ(xi), i =
0, . . . , p} at most by a factor Λ, where the volume is defined as

vol(φ(X)) =
|det(M(φ,X))|

p1!
.

One note that if a set is Λ1- poisedness then it is also Λ2-poisedness with Λ1 < Λ2, but the
reverse does not hold.
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4.2.2 Fully linear and fully quadratic models

As mentioned before, in trust region methods, the quality of the model approximation should
be controlled just as for Taylor expansion models. To formalize this idea, we introduced the
class of fully linear and fully quadratic model which is detailed in [7, 15].
We suppose that x0 is given as the initial iterate. We define the level set

L(x0) = {x ∈ Rm : f(x) ≤ f(x0)}.

We do not only consider the objective function f within the level set, but also extend to the
enlarge region

Lenl(x0) = L(x0) ∪ ∪x∈L(x0)B(x,∆max) = ∪x∈L(x0)B(x,∆max).

Assumption 4.3. Suppose x0,∆max are given. Assume that f is continuously differentiable in
an open domain containing the set Lenl(x0) and that Of is Lipschitz continuous on Lenl(x0)

Definition 4.4. (Class of fully linear models) Let a function f : Rm → R, that satisfies
Assumption (4.3) , be given. A set of model functions M = {m(x) : Rm → R,m(x) ∈ C 1} is
called a fully linear class of models if the following hold:

1. There exist positive constants κef , κeg and νm1 such that for any x ∈ L(x0) and ∆ ∈
(0,∆max] there exists a model function m(x+ s) ∈M, with Lipschitz continuous gradient
and corresponding Lipschitz constant bounded by νm1 , and such that

• The error between the gradient of the model and the gradient of the function satisfies

‖Of(x+ s)− Om(x+ s)‖ ≤ κeg∆, ∀s ∈ B(0,∆), (4.8)

• the error between the model and the function satisfies

|f(x+ s)−m(x+ s)| ≤ κef∆2, ∀s ∈ B(0,∆). (4.9)

Such a model m is called fully linear on B(0,∆).

2. For this class M there exists an algorithm which we will call a ”model-improvement” al-
gorithm, that in a finite, uniformly bounded (with respect to x and ∆) number of steps
can

• either establish that a given model m ∈M is fully linear on B(x; ∆)

• or find a model m̃ ∈M that is fully linear on B(x; ∆).

One example to illustrate the notion of fully linear model is the first-order Taylor approxi-
mation of a continuously differentiable locally Lipchitz function, i.e., f ∈ C1+.

Assumption 4.5. Suppose x0 and ∆max are given. Assume that f is twice continuously differ-
entiable in an open domain containing the set Lenl(x0) and that O2f is Lipchitz continuous on
Lenl(x0).

Definition 4.6. (Class of fully quadratic models) Let a function f : Rm → R, that satisfies
Assumption (4.5) , be given. A set of model functions M = {m(x) : Rm → R,m(x) ∈ C 2} is
called a fully quadratic class of models if the following hold:
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1. There exist positive constants κef , κeg, κeh and νm2 such that for any x ∈ L(x0) and ∆ ∈
(0,∆max] there exists a model function m(x+ s) ∈M, with Lipschitz continuous gradient
and corresponding Lipschitz constant bounded by νm2 , and such that

• The error between the Hessian of the model and the Hessian of the function satisfies

‖O2f(x+ s)− O2m(x+ s)‖ ≤ κeh∆, ∀s ∈ B(0,∆), (4.10)

• The error between the gradient of the model and the gradient of the function satisfies

‖Of(x+ s)− Om(x+ s)‖ ≤ κeg∆2, ∀s ∈ B(0,∆), (4.11)

• the error between the model and the function satisfies

|f(x+ s)−m(x+ s)| ≤ κef∆3, ∀s ∈ B(0,∆). (4.12)

Such a model m is called fully quadratic on B(x; ∆).

2. For this class M there exists an algorithm which we will call a ”model-improvement” al-
gorithm, that in a finite uniformly bounded (with respect to x and ∆) number of steps
can

• either establishes that a given model m ∈M is fully linear on B(x; ∆)

• or finds a model m̃ ∈M that is fully linear on B(x; ∆).

It is clear that the class of fully quadratic models is better than the class of fully linear models
in terms of Taylor-like bounded error, but we will see after that we need more simulations to
build a fully quadratic model.

4.2.3 Building the trust region model

Next, we will indicate how to construct a fully linear (quadratic) model in the particular context
of polynomial interpolation and regression. Note that we only consider DFO problems whose
initial sample set has at least m+ 1 points.
In case the number of interpolation points is exactly equal to m+ 1.
We build a linear interpolation function LX(x) := α0 + αTx where (α0, α1) is the solution of

[1 X]

(
α0

α1

)
= f(X). (4.13)

If the interpolation set X is poised then there exists only one linear interpolation model whose
coefficients satisfy (4.13).
When the number of interpolation points is larger than m + 1 points and smaller

than
(m1)(x+ 2)

2
.

To build the model in this case, we can use a least square regression function LX(x) with the
same form as in the case of linear interpolation, but (α0, α1) is now the solution of

min
α0,α1

[
m∑
i=0

(α0 + αT1 x
i − f(xi))2

]
. (4.14)
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We can also use the minimum Frobenius norm interpolation model MX = α0 + αTx + 1
2x

THx
where (α0, α,H) is the solution of the following quadratic optimization problem

min
(α0,α,H)

1

2

m∑
i=1

m∑
j=1

h2
i,j

α0 + αTxi + 1
2(xi)THxi = f(xi), i = 0, . . . , p,

H = HT .

. (4.15)

When the number of interpolation points is exactly (m+1)(m+2)
2 .

We build the quadratic interpolation function MX = α0 + αTx+ 1
2x

THx, where (α0, α
T , H) is

the unique solution of

α0 + αTxi +
1

2
(xi)THxi = f(xi), i = 0, . . . , p. (4.16)

One note that the quadratic interpolation is fully quadratic if X is poised. Comparing with the
linear interpolation, the error bounds of quadratic interpolation are tighter, and the function
MX provides both approximations of gradient and Hessian. Therefore, in term of iterations,
quadratic interpolation can converge much faster, but it requires over-determined problem.
When the number of interpolation points is larger than (m+1)(m+2)

2 .
In this case, we use regression to build the model as in the case where we have more than m+ 1
points for linear models.
To guarantee the fully linear (or fully quadratic) property of a model, we first have to check that
the interpolation set is poised. If the sample set is not poised we need to improve its poisedness,
as explained in the next section.

4.2.4 Model improvement

It is essential to check and improve the model during the optimization iterations. Firstly, we
need to ”improve ” the sample set to ensure its poisedness. In [15], the authors give two main
ways to improve the sample set: one based on the Lagrange polynomials and one based on LU
factorization. In our study, we focus on LU factorization to improve the model. Model improve-
ment algorithm is applied before each model update.
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Algorithm 2: Improving poisedness of X via LU factorization, see [15]

0. Initialization
Initialize the pivot polynomial basis with some basis, e.g., the monomial basis (4.7),
ui(x) = φi(x), i = 0, . . . , p. Select pivot threshold ξ > 0.

For i = 0, . . . , p

1. Point selection: If found ji, i.e., |ui(xji)| ≥ ξ, swap xji and xi, otherwise, recompute xi

as
xi ∈ argmax

x∈B
|ui(x)|,

stop if |ui(xi)| < ξ.

2. Gaussian elimination: For j = i+ 1, . . . , p

uj(x)← uj(x)− uj(x
i)

ui(xi)
ui(x).

To illustrate the algorithm, we consider an example with a given initial set X0 and three
iterations of the improvement algorithm X1, X2 and X3: (see Figure 4.1)

X0 =



0 0
0.1 0
0.5 0
0.6 0.1
0 0.3
0 0.7

 , X1 =



0 0
0.6 0.1
0 0.7

0.5 0
0.1 0
−0.7 −0.7

 ,

X2 =



0 0
−0.7 −0.7

0 0.7
0.6 0.1
0.1 0

0.9899 −0.9899

 , X3 =



07 0
0.9899 −0.9899
−0.7 −0.7

0 0.7
0.6 0.1
−1.4 1.4

 .

Another way to improve the model is to use Lagrange polynomials. In [41] they use the
definition of Λ = max0≤i≤p maxx∈B |li(x)| and maintain the sample set X by choosing a point
entering or leaving the set X so that the value of Λ is reduced. To do that the farthest point
from the center of trust region is removed, i.e., the point of X associated with the largest value
of Lagrange polynomials in absolute value.

Convergence results:
The derivative free trust region method is a local method. The local convergence for contin-

uous problems is proven in [15]. The validity of the convergence of our model is based on the
fully linear or fully quadratic property in definition (4.4), which is guaranteed by the poisedness
of the interpolation set. Besides, the model must satisfy inequality (10.10) in [15]

∀k, mk(xk)−mk(xk + sk) ≥
κ

2
‖Omk(xk)‖min(

‖Omk(xk)‖
‖Hk‖

,∆k),
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Figure 4.1: Improvement of the interpolation set via LU factorization

for some constant κ ∈ (0, 1). The first order critical point convergence is shown in lemma (10.8)
in [15]

lim
k→+∞

‖Of(xk)‖ = 0.

4.3 Derivative free trust region method for mixed binary vari-
ables

In this section, we focus on extending derivative free methods for continuous optimization to
mixed binary variables. We introduce binary variables y ∈ {0, 1}n. The variables are extended
from x to z = (x, y), x ∈ Rm, y ∈ {0, 1}n. By adding binary variables, the notation of the
interpolation set becomes

Z = {z0, z1, . . . , zp}, zi ∈ Rm × {0, 1}n.

The classification of problems based on the value of p is kept, but with dimension m + n
(for mixed continuous and binary) instead of m (for continuous). We keep all the notations and
definitions from before, but with mixed binary z = (x, y) variables. Let us remark that when we
deal with binary variables, in the natural basis φ1(z), . . . , φp(z) we omit the quadratic binary
terms due to the fact that y2

i = yi:

φ(z) = {1, x1, x2, . . . , xm, y1, y2, . . . , yn,
1

2
x2

1, . . . ,
1

2
x2
m, . . . , xixj , . . . , xiyj , . . . , xmyn}. (4.17)

The proof of maintaining Λ−poised sample sets via a finite algorithm is mentioned in an ex-
tension of trust region method to binary variables of A.Conn, [14]. We recall the proof in the
following lemma.
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Lemma 4.7. Let vTφ(z) be a quadratic polynomial of degree at most d, where φ(z) is defined
above and ‖v‖∞ = 1. Then, there exists a constant σ∞ > 0 independent of v such that

max
x∈B(0,1),y∈B

|vTφ(z)| ≥ σ∞. (4.18)

For d = 1, σ∞ ≥ 1 and for d = 2, σ∞ ≥
1

4
, where B(xk,∆k) is the ball centered at xk with radius

∆k and B indicates binary.

Proof. We first show that such constant σ∞ exists. Let us consider

ψ(v) = max
x∈B(0,1),y∈B

|vTφ(z)|. (4.19)

We see that ψ(v) is a norm in the space of vector v. By using the norm relation in equation (2),
we obtain the demonstration with the choice of σ∞ as follows

σ∞ = min
‖v‖∞=1

ψ(v). (4.20)

Thus, if v has l∞−norm one then ψ(v) ≥ σ∞ and there exits a continuous vector x ∈ B(0, 1)
nad binary y ∈ B such that |vTφ(z)| ≥ σ∞.

We demonstrate for two cases: for d = 1, σ∞ ≥ 1 and d = 2, σ∞ ≥
1

4
.

For d = 1, we have the natural polynomial basis of degree one is

φ(z) = [1, x1, x2, . . . , xm, y1, y2, . . . , yn]T .

Let u = [v1, v2, . . . , vm+1]T and w = [vm+2, vm+3, . . . , vm+n+1]T . Therefore, ψ(v) becomes max
x∈B(0,1),y∈B

|v1+

uTx+ wT y| which reach the optimal value at x =
u

‖u‖
and y are chosen as

yi = 1, if vi+m+1 > 0,

yi = 0, otherwise,

or x = − u

‖u‖
and

yi = 1, if vi+m+1 < 0,

yi = 0, otherwise.

Thus, the optimal value of ψ(v) is |v1|+ ‖u‖+
∑
yi 6=0

|vi+m+1| ≥ 1. We finish the proof of the first

case.
For d = 2: the natural polynomial basis of degree 2 is given as

φ(z) = {1, x1, x2, . . . , xm, y1, y2, . . . , yn,
1

2
x2

1, . . . ,
1

2
x2
m, . . . , xixj , . . . , xiyj , . . . , xmyn}.

Since ‖v‖∞ = 1, by the definition of linf−norm, there exits i : |vi| = 1. Thus, one of
the coefficients of the polynomial q(z) = vTφ(z) is equal 1,−1 (corresponding to linear part

in the basis 1, x1, . . . , xm, y1, . . . , yn) or
1

2
,−1

2
(corresponding to quadratic part in the basis

1
2x

2
1, . . . ,

1

2
x2
m, . . . , xixj , . . . , xiyj , . . . , xmyn).



4.3. Derivative free trust region method for mixed binary variables 21

Let us consider only the cases where one of the coefficients of q(z) is 1 or
1

2
(the case −1 or

−1

2
would be analyzed similarly).

The largest coefficient in absolute value in v corresponds to a term which either a constant

term, a linear term xi or yi, a quadratic term
1

2
x2
i or xixj or xiyj . Let us restrict all variables

that do not appear in this term to zero. We will show that the maximum absolute value of q(z)

is at least
1

4
by considering 6 cases of different terms that correspond to the largest coefficient.

In each case we will evaluate q(z) at several points in the unit ball and show that at least at one

of these points |q(z)| ≥ 1

4
:

• q(z) = 1: it implies directly |q(z)| ≥ 1

4

• q(z) = xi +
1

2
αx2

i + δ: in this case we have

q(1) = 1 +
α

2
+ δ,

q(−1) = −1 +
α

2
+ δ,

If
α

2
+ δ < 0 −→ |q(−1)| > 1, otherwise, if

α

2
+ δ ≥ 0 −→ |q(1)| ≥ 1.

• q(z) = yi + δ: if |δ| ≥ 1

4
then |q(x, 0)| = |δ| ≥ 1

4
. Otherwise

−1

4
< δ <

1

4
then |q(x, 1)| =

|1 + δ| > 3

4
.

• q(z) =
1

2
x2
i + αxi + δ: in this case we have:

q(1) =
1

2
+ α+ δ,

q(−1) =
1

2
− α+ δ,

It is satisfied directly if one of the inequalities |q(1)| ≥ 1

4
or |q(−1)| ≥ 1

4
hold . In

both cases |q(1)| < 1

4
and |q(−1)| < 1

4
hold, then, by adding these inequalities, we have

−1

2
< 1 + 2β <

1

2
implies that β <

−1

4
, and also we have q(0) = β <

−1

4
, thus, we have

|q(0)| > 1

4
.

• q(z) = xixj +
1

2
αx2

i +
1

2
βx2

j + γxi + +δxj + ε: in this case, we consider q(z) at four points
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p1 = (
1√
2
,

1√
2

), p2 = (
1√
2
,
−1√

2
), p3 = (

−1√
2
,

1√
2

), p4 = (
−1√

2
,
−1√

2
), we have

q(p1) =
α+ β

4
+

1

2
+
γ + δ√

2
+ ε,

q(p2) =
α+ β

4
− 1

2
+
γ − δ√

2
+ ε,

q(p3) =
α+ β

4
− 1

2
− γ − δ√

2
+ ε,

q(p4) =
α+ β

4
+

1

2
− γ + δ√

2
+ ε,

As a result, we obtain q(p1)−q(p2) = 1+2δ and q(p3)−q(p4) = −1+2δ. If δ ≤ 0, we have

q(p1)− q(p2) ≥ 1. We divide in two cases: if |q(p1)| < 1

2
then q(p2) ≤ −1

2
, it implies that

|q(p2)| ≥ 1

2
. Otherwise, δ > 0, q(p3)− q(p4) ≤ −1. Thus if |q(p3)| < 1

2
, then q(p4) ≤ −1

2
.

• q(z) = xiyj +
1

2
αx2

i + βxi + γyj + δ: in this case, we evaluate q(z) at six points with the

evaluation as follows
q(0, 0) = δ,

q(0, 1) = γ + δ,

q(1, 0) =
α

2
+ β + q(0, 0),

q(−1, 0) =
α

2
− β + q(0, 0),

q(1, 1) =
α

2
+ (1 + β) + q(0, 1),

q(−1, 1) =
α

2
− (1 + β) + q(0, 1).

From last two equation, we have

q(1, 1)− q(−1, 1) = 2 + 2β.

We will prove that with all the possible value of β, we can find at least one point which
satisfies the lemma. If β ≥ 0 we have

q(1, 1)− q(−1, 1) = 2 + 2β ≥ 2.

If |q(−1, 1)| < 1 then q(1, 1) > 1, otherwise, if |q(−1, 1)| > 1 it is trivial.

If
−1

2
< β < 0, we have

q(1, 1)− q(−1, 1) > 1,

then if |q(1, 1)| < 1

2
implies that −q(1, 1) > 1 − q(1, 1) >

1

2
, so we obtain |q(−1, 1)| > 1

2
.

Otherwise, if |q(1, 1)| > 1

2
it is trivial.

If β ≤ −1

2
, from the third and the fourth equations, we have

q(1, 0)− q(−1, 0) = 2β ≤ −1,
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in this case, if |q(−1, 0)| < 1

2
then q(1, 0) <

−1

2
, it implies that |q(1, 0)| > 1

2
. Otherwise,

if |q(−1, 0)| ≥ 1

2
then it is trivial.

The basic Derivative free Optimization with mixed Binary variables (DFOb) trust region
method approach for mixed binary problems in iteration k is described mainly as follows:

• Step 0: build quadratic subproblem model mk(x, y) for both continuous and binary vari-
ables.

• Step 1: solve a continuous subproblem (QP) by temporary fixing the discrete variables
y. In this step, we aim to find an accepted continuous candidate (ρk ≥ η0, see Algorithm
(1)). If the solution of step 1 is not accepted, an improvement step is activated to improve
the poisedness of the current interpolation set.

• Step 1.5a: if we succeed to find the continuous candidate in step 1, we attempt to improve
x and y by solving a MBQP subproblem.

• Exploration phase: before termination, we use an exploration phase to force the algorithm
to explore a different region of the binary space.
The details of these steps will be indicate in the next part.

4.3.1 The trust region subproblems

When solving mixed binary optimization by DFOb trust region methods, we have to solve three
different types of subproblems:

1. Model improvement subproblem:
max
z∈B
|ui(z)|, (4.21)

where ui(z) is natural basis in (4.7) and Algorithm (2). In practice, we use MIQP solvers
such as CPLEX, BONMIN or NOMAD to solve this subproblem.

2. Model minimization subproblems

• QP (Step 1) {
min
x
mk(x, yk)

s.t. ‖x− xk‖∞ ≤ ∆x,k,
(4.22)

where ∆x,k is the trust region radius with respect to continuous variables x at iteration
k and (xk, yk) is the current center (current best point) in the feasible region. Notice
that we use the infinite norm l∞ to define the trust region with respect to continuous
variables. We only consider the problem within the trust region in Step 1.

• MBQP (Step 1.5a) 
min
x,y

mk(x, y)

s.t. ‖x− xk‖∞ ≤ ∆x,k,
‖y − yk‖H ≤ ∆y,k,

(4.23)
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with (xk, yk) the current center of the trust region. Here H denotes the classical
Hamming distance for binary variables. The Hamming distance is the number of
positions at which the corresponding symbol of two vectors of the same length are
different. Thus, we define our trust-region for the binary variables by ∆y,k which
defines the right-hand side of the constraint on the Hamming distance between binary
vector y and yk, the centre of the binary trust region∑

j:yk,j=0

yj +
∑

j:yk,j=1

(1− yj) ≤ ∆y,k. (4.24)

If we can not improve the current point (local solution), we want to force the algorithm
to explore a different region of binary space. To achieve this, we relax the local
branching constraint (4.24) and add a ”no-good-cut” constraint to obtain a new
center ∑

j:y∗j =0

yj +
∑

j:y∗j=1

(1− yj) ≥ k∗, (4.25)

where (y∗, k∗) are respectively the center and the radius of the explored domain,
k∗ ≥ 1, k∗ ∈ N. Note that we will have a bunch of constraints (4.25) for each
explored region.

It is possible that the current trust region does not contain any feasible points due to a
large number of no-good-cut constraints, or no better point could be found. In those cases, new
simulations are added to try to improve the model accuracy.

4.3.2 Stopping criteria and convergence results

The algorithm stops either because the maximum budget of simulation or the maximal number of
nogoodcuts are reached. The maximal number of nogoodcuts is theoretically equal to 2n−1 (for
n binary variables). We will see that in the case of cyclic symmetric problems, it is approximately
2n

n
.

The convergence results proved in [15] can be extended to the algorithm for mixed binary
problems (on the work from personal communication of A.Conn [14]).
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A pseudo-code for the Derivative-free Optimization trust-region method (DFOb) for mixed
binary problems is given in the following:

Algorithm 3: Derivative-Free trust-region method for mixed binary variables

Input: εgood > εok > 0,∆x,max > ∆0,x > ∆x,min > 0,∆y,max > ∆0,y > ∆y,min > 0
0. Initialization
Initial interpolation set of p points {(x1, y1, f1), (x2, y2, f2), . . . , (xp, yp, fp))} with
fi = f(xi, yi)

Define trust-region center (x0, y0) associated with f0 = min(f1, . . . , fp)
1. Main iteration loop

• STEP 0: Build quadratic sub-problem model mk(x, y)

• STEP 1a: Solve the TR quadratic sub-problem for fixed yk and model improvement
step (MI)

x∗ = argmin
x

mk(x, yk), s.t.‖x− xk‖∞ ≤ ∆x,k, (QP )

• STEP 1b: Compute ρ = (fk(xk, yk)− fk(x∗, yk))/(mk(xk, yk)−mk(x
∗, yk)),

• STEP 1c: xk+1 ← x∗ if εtol ≤ ρ < εok or ρ ≥ εok (success step: f(x∗, y) is smaller)
Update quadratic model with new values of f (from Step 1.a: QP and MI)

• STEP 1.5a : If xk+1 6= xk (successful STEP 1), attempt to improve y
Solve the TR MIQP sub-problem for both (x, y)

(x∗, y∗) = argmin
x,y

mk(x, y), s.t.‖x− xk‖∞ ≤ ∆x,k, ‖y − yk‖H ≤ ∆y,k,

• STEP 1.5b: Trust region management

– If y∗ 6= yk and f(x∗, y∗) is smaller than min(fi)i=0,...,p: k ← k + 1, (xk, yk)← (x∗, y∗)

– If y∗ 6= yk but no improvement: k ← k + 1,∆y,k ← ∆y,k − 1,∆x,k ← 2∆x,k if
ρ ≥ εgood or ∆x,k ← ∆x,k/2 if ρ < εok

• Check stopping criteria: ∆x,k < ∆min or no change in (x, y) or very small
improvement.

• Before termination: Add a nogoodcut constraint to force exploration in y

‖y − yk‖H ≥ k∗, k∗ > 0 for next step 1.5a .
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Chapter 5

An adapted distance for cyclic
binary problems

We begin the chapter by reminding our target application: the optimal design of the blade shape
of a turbine for aircraft’s engine in order to minimize the vibrations. In practice, the aim is
to optimize the blade arrangement on the disk of two different pre-defined shapes of blades: a
reference shape called A and a mistuning shape B. A binary variable yi is associated with each
blade location, taking value 0 for shape A and value 1 for shape B. The optimization solution
provides the distribution of the two shapes around the turbine disk.

In practice, the reduced order model (ROM) is used. However, it removes a large number of
possibilities for optimization, in the sense that ROM considers two reduced sub-problems but
the cyclic symmetry property remains and is not taken into account explicitly in the standard
optimization workflow. For instance, in the case of 12 blades, ROM considers two sub-problems
with 6 binary variables, which ends up with only 28 distinct arrangements (14 for each sub-
problem), while the total number of distinct arrangements in the original problem is 352. But
the removed configurations could be ”good” candidates for optimization.

Therefore, we attempt to define a new distance which can model the cyclic symmetry and
thus avoid the redundancy. This new distance is expected to have a simple form. As noted
in the previous chapter, the standard Hamming distance does not appear appropriate for this
target.

In this chapter, we focus on defining this new distance, which is inspired by the concept
of ”Necklace” in literature [22, 23]. In addition, the adaptation of the optimization method is
discussed.

5.1 Necklace context

5.1.1 Concept of ”Necklace” and associated distances

The idea of arranging two different types of blade shapes on the disk is similar to distribute
two different colors of beads on a necklace. In the application field of this concept, we identify
several promising distances.

Definition 5.1. (Necklace) In combinatorics, a k-ary necklace of length n is an equivalent
class of n-character strings over an alphabet

∑k = {a1, . . . , ak} of size k, taking all rotations

27
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as equivalent. It represents a structure with n circularly connected beads which have k available
colors.

Let Neck(n) be the set containing all the necklaces of length n. For instance, considering
the necklace with 2 colors and 4 beads (n = 4, k = 2,

∑k = {0, 1}), we have the following list
of representative necklaces (in red color) and all rotations (in black)

0000 0001 0011 0101 0111 11111
0010 0110 1010 1110
0100 1100 1101
1000 1001 1011

Our application can be seen as a 2-colors necklace optimization with a fixed number of

beads. The number of distinct arrangements is approximately that given v
2n

n
in the turbine

application [37, 49]. By using the result from [22], we obtain the exact number of necklaces for

a given number of beads n is equal to
1

n

∑
d|n φ(d)2n/d, where φ is Euler’s totient function, i.e.

the function that counts the positive integers up to n that are relatively prime to n, and where
the summation is taken over all divisors d of n.

There are a large number of necklace’s applications, many of them based on necklace dis-
tances such as similarity of different types of music [44, 45, 47], the dissimilarity of DNA in
biology [28], calculating the leap years and design calendars [19], painting car in manufactur-
ing [21]. . . In the the next section, we review some usual ”necklace” distances.

5.1.2 Survey of ”necklace” distances

The study of distances in continuous space is well-known and widely extended in the literature.
Nevertheless, in the discrete space, there is a limitation of defining a distance: the choice of a
distance depends on the problem formulation. Taking into account cyclic symmetry property
is one difficulty of our problem. It can save a large number of simulations in the optimization
procedure. There exists a wide variety of distances for measuring the difference between two
discrete strings. We list the main ones in the following.

Definition 5.2. (The Hamming distance) Given two binary strings y = (y1, . . . , yn) and
y′ = (y′1, . . . , y

′
n), the Hamming distance between y and y′ is given by

dH(y, y′) =
n∑
i=1

|yi − y′i|. (5.1)

The Hamming distance is easily computed in O(n) operations. The constraint dH(y, yref ) ≤ c
for a given yref and constant c is linear.

Definition 5.3. (Varshamov distance) Given two binary strings y = (y1, . . . , yn) and y′ =
(y′1, . . . , y

′
n), the Varshamov distance between y and y′ is given by

dV (y, y′) = max(N01(y, y′), N10(y, y′)), (5.2)

where N01(y, y′) = #{(yi, y′i) : yi = 0, y′i = 1} and N10(Y, Y ′) = #{(yi, y′i) : yi = 1, y′i = 0}.
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For more details, see [42]. Varshamov distance can detect cases where the number of 1 in
string y is larger than the number of 1 in string y′.

Definition 5.4. (The swap distance) We represent y, y′ above as U = (u1, . . . , uk), V =
(v1, . . . , vk) where ui, vi are the indices such that yui = 1 and y′vi = 1, the swap distance is given
by

dswap(y, y
′) = dswap(U, V ) =

k∑
i=1

|ui − vi|. (5.3)

In [20] the authors use the swap distance to measure the similarity of two rhythms (applica-
tion in classification of type of music) or bioinformatics where the two strings to be compared
are chain polymers. Computing U, V from y, y′ costs O(n) operations and Toussaint [46] states
that the swap distance can be computed in O(n2). However, in [20], the authors introduce
algorithms computing in O(k2) and O(k3) operations.

Definition 5.5. (The Hamming distance with shifts) Given y, y′ two binary sequences of
the same length, we define three types of operations on y

• An insertion ins(i) changes y[i] from 0 to 1 with cost cins;

• A deletion del(i) changes y[i] from 1 to 0 with cost cdel;

• A shift sh(i, j) changes y[i] from 1 to 0 and y[j] from 0 to 1 with cost ‖i− j‖csh.

The Hamming distance with shifts between y and y′ is the minimum cost of a sequence of oper-
ations that transform y to y′.

The Hamming distance with shifts was mentioned in [29], it measures not only the number
of mismatches but also how far apart the mismatches occur.
We note that with the values of cins = cdel = 1, csh =∞ it becomes the Hamming distance and
cins = cdel =∞, csh = 1 it becomes the swap distance.
In [30] Jiang states that the Hamming distance with shifts can be computed in O(n) operations.

Definition 5.6. (The Euclidean interval vector distance) Given y, y′ two binary se-
quences of the same length, we represent them as their interval vectors U ′ = (u′1, . . . , u

′
k), V

′ =
(v′1, . . . , v

′
k) where u′i, v

′
i are the number of 0 elements between two elements of 1. For instance,

X = (1100100000) can be represented as X = (0, 2, 5). Then the Euclidean interval vector
distance for two binary strings with the same length and the same number of 1 is given by

dE(y, y′) =

√√√√ k∑
i=1

(u′i − v′i)2. (5.4)

The interval vectors can be computed from the given binary sequences in O(n) operations,
dE(y, y′) can be computed in O(k) operations, where k is the number of 1 in the sequence. We
note that this distance does not take into account the cyclic symmetry property.

Definition 5.7. (The interval-difference vector distance) Given y, y′ two binary sequences
and U ′ = (u′1, . . . , u

′
k), V

′ = (v′1, . . . , v
′
k) their interval vectors. For each sequence, we define

new sequences, Z = (z1, . . . , zk),with zi = u′i+1/u
′
i, i = 1, . . . , k − 1, zk = yk/u

′
1 and Z1 =
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(z1
1 , . . . , z

1
k),with z1

i = v′i+1/v
′
i, i = 1, . . . , k−1, z1

k = y′k/v
′
1. the interval difference vector distance

is

dID(y, y′) =
( k∑
i=1

max(zi, z
1
i )

min(zi, z1
i )

)
− k. (5.5)

In [44] dID(y, y′) is computed in O(n) operations.

Definition 5.8. (Minimum distance of pairs assignment (MDPA)) Given y, y′ two in-
teger sequences, MDPA is defined as

dMDPA(y, y′) = min
Y,Y ′

(
n∑

i,j=1

|yi − y′j |). (5.6)

The definition can be applied to two binary strings.

There are other distances related to the necklace application field, such as the chronotonic
distance or the geometry distance [44, 46]. We listed above the main ones to see how the
formulations are and how the cyclic symmetry can be taken into account. In the next section,
we discuss about a new necklace distance adapted to our application.

5.2 Necklace distance adapted to DFO

The cyclic symmetry property motivates the search for an appropriate distance to adapt to the
algorithm. Inspire from the concept of necklace and its distances, we build a new distance and
adapt it to DFO.

5.2.1 Distance formulation and its properties

In this section, we indicate the new distance formulation.
Formulation
Firstly, we recall Necklace Alignment Problem (NAP), from [8], that gives us ideas of building
the new distance. The goal of NAP is to find the angle rotation offset c ∈ [0, 1) and the perfect
matching shift s ∈ {0, 1, . . . , n} between two sorted vectors of real numbers y = (y1, . . . , yn), y′ =
(y′1, . . . , y

′
n):

min
c,s

n∑
i=1

(d0((yi + c)mod(1), y′(i+s)mod(n)))
p, where d0(yi, y

′
i) = min(|yi − y′i|, 1− |yi − y′i|), (5.7)

with p = 1 or 2. The l1 necklace alignment problem, also called cyclic swap distance or necklace
swap distance, is restricted to integer vectors.
Inspired by the main idea of NAP, we propose a new distance that is appropriate to our problem.

Definition 5.9. (The necklace distance) Given two binary strings y, y′ of length n, the
necklace distance is defined as the minimal value of the Hamming distances between y and all
the rotations of y′:

dneck(y, y
′) = min(g1(y, y′), . . . , gn(y, y′)), (5.8)

where gr(y, y
′) = dH(y,Rotr(y′)), r = 1, . . . n, Rotr(y′) is the rotation of y′ by r positions, i.e.,

Rotr(y′) = (y′r+1, y
′
r+2 . . . , y

′
1, y
′
2, . . . , y

′
r).
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Figure 5.1: An example of necklace alignment, see [8]

We denote Rot(y) := {Rotr(y), 0 ≤ r < n} and Π be the permutation matrix :

Π =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
1 0 0 · · · 0 0


.

By using the fact that Πry = Rotr(y), we obtain

Rot(y) = {Πry : 0 ≤ r < n}.

Metric properties of the necklace distance dneck
In the following, we show the metric properties of dneck.

Proposition 5.10. (Non-negativity property) dneck has the non-negativity property

dneck(y, y
′) ≥ 0,∀y, y′ ∈ {0, 1}n.

Proof. The statement is a corollary of the non-negativity property of the Hamming distance.

Proposition 5.11. (Reflexivity property) dneck has the reflexivity property

dneck(y, y) = 0.

Proof. Since dH(y, y) = 0 holds true, 0 is the minimum bound of dneck(y, y
′). Therefore

dneck(y, y) = 0.

Proposition 5.12. (Commutativity property) dneck has the commutativity property

dneck(y, y
′) = dneck(y

′, y).

Proof. Based on the fact that dH(y,Rotr(y′)) = dH(y′, Rotn−r(y)), thus min
r
dH(y,Rotr(y′)) =

min
r
dH(y′, Rotn−r(y)) = min

r
dH(y′, Rotr(y)).
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Proposition 5.13. (Triangle inequality property) dneck satisfies the triangle inequality prop-
erty:

dneck(y, y
′) ≤ dneck(y, y”) + dneck(y”, y′).

Proof. Direct consequence of the triangle inequality property of Hamming distance.

To state the next metric property, we need to introduce a definition:

Definition 5.14. (Cyclic symmetry property in distance) We say a distance d has the
cyclic symmetry property if

d(y, y′) = 0⇐⇒ y ∈ Rot(y′),

for any given two distinct vectors y, y′.

Proposition 5.15. (Cyclic symmetry property) dneck has cyclic symmetry property

dneck(y, y
′) = 0⇐⇒ y ∈ Rot(y′), ∀y, y′ ∈ {0, 1}n.

Proof. To prove this statement, we prove both implications:

1. Proof of the first implication ” =⇒ ”: ”dneck(y, y
′) = 0 =⇒ y ∈ Rot(y′)

Assume dneck(y, y
′) = 0 =⇒ min

r
(dH(y,Rotr(y′))) = 0 =⇒ ∃i : dH(y,Roti(x)) = 0, since

the metric property of Hamming distance dH(y,Roti(y′)) = 0⇐⇒ y = Roti(y′).

2. Proof of the second implication ”⇐= ”: y ∈ Rot(y′) =⇒ dneck(y, y
′) = 0

If y ∈ Rot(y′) then ∃i : y = Roti(y′) −→ dH(y,Roti(y′)) = 0, then min
r
dh(y,Rotr(y′)) = 0,

hence dneck(y, y
′) = 0.

The new distance dneck defined in (5.8) takes into account the cyclic symmetry property.
However, the appearance of the ”min” operator leads to difficulties when it is used in the
optimization procedure. In the next part, we propose a reformulation of dneck adapted to DFO.

5.2.2 Observations about necklace distance imply to simplified simulations

In this section, we aim to study the regularity of the objective function with respect to necklace
distance, compare to the Hamming distance.

We display in Figure (5.2) the differences in objective functions of simplified simulation
provided by Safran (see Section (6.5)) with respect to the necklace distance and the Hamming
distance for all of arrangements (with fixed value of continuous variable).
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Figure 5.2: Regularity of the objective function with respect to the necklace distance and the
Hamming distance.

This figure shows that necklace distance has a better regularity performance: if two points
are closed, then the difference of associated objective functions is small.

5.2.3 Reformulation of QP problems with necklace distance

The derivative-free trust-region method uses quadratic models to approximate the objective
function. Here, we would like to keep the QP structure of the subproblems even when using the
necklace distance. Nevertheless, the ”min” operator in the necklace distance prevents.

In this section, we propose a QP reformulation of the subproblems involved in the DFO
method.
Reformulation of nogoodcuts constraints: For the MIQP subproblem in step 1.5a of Al-
gorithm 3, to explore the binary space, we use the constraints∑

j:y∗j =0

yj +
∑
j:y∗j =1

(1− yj) ≥ k∗ > 1,

associated with the Hamming distance dH . To adapt the necklace distance to this step, we use
the following remark

Remark 5.1. Given a1, a2, . . . , an and k∗ real constants, we have

min
i=1,...,n

(a1, a2, . . . , an) ≥ k∗ ⇐⇒ ai ≥ k∗,∀i = 1, . . . , n, (5.9)

Using remark (5.1) with ai = dH(y,Roti(yc)), i = 1, . . . , n, we obtain

min(dH(y,Rot(yc)), . . . , dH(y,Rotn(yc))) ≥ k∗ ⇐⇒ dH(y,Roti(yc)) ≥ k∗, i = 1, . . . , n. (5.10)
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Consequently, we can add n linear constraints based on the Hamming distance to reformulate
nogoodcuts associated to the necklace distance.
Reformulation of the trust region problem (without nogoodcuts): We recall the prob-
lem to be reformulated  min

z
f(z)

s.t. min
i=1,...,n

{gi(z)} ≤ ∆,
(P1)

with z = (x, y), gi(z) = dH(y, yc), i = 1, . . . , n.
Before starting the new proposition, let us define two optimization problems to be equivalent

if an optimal solution of one problem straightforwardly gives an optimal solution of the other
problem.

Proposition 5.16. (Mini-min formulation) Let M > 0 be a sufficiently large positive real
constant, let µ > 0 be a given constant, n,m be positive integers, and let gi : Rm × Zn →
R, i = 1, 2, . . . , n, be real-valued functions satisfying 0 ≤ gi(z) ≤M, ∀z. Then, the two following
optimization problems (P1) and (P2) are equivalent{

min
z,t

f(z) + µ min
i=1,...,n

{gi(z)} (P1)


min
z,ỹ,t

f(z) + µt

s.t. t ≥ gi(z)−Mỹi, i = 1, . . . , n∑n
i=1 ỹi = n− 1,

ỹi ∈ {0, 1}, i = 1, . . . , n.

(P2)

Proof. Problem (P1) is clearly equivalent to min
z,t

f(z) + µt

s.t. t = min
i=1,...,n

{gi(z)}.
(P ′1)

We prove the proposition in two steps: first, (P2) is a relaxation of (P ′1), and, if there exists
solutions of (P2) then necessarily they are feasible points of (P ′1).

Let us consider the first assertion: (P2) is a relaxation of (P ′1). More precisely, if (z̄, t̄) is
a feasible solution of (P ′1),then (z̄, ȳ, t̄) is a feasible solution of P2, where

ȳi :=

0 if i is the smallest index such that t = min
i=1,...,n

{gi(z̄)},

1, otherwise.
(5.11)

Let I be the index such that ȳi = 0. From the definition of ȳ , we note that t̄ = gI(z̄), ȳI =
0 and ȳi = 1 for all i 6= I.

Let us show that (z̄, ȳ, t̄) is indeed feasible for problem (P2). For i 6= I, the constraint
t̄ ≥ gi(z̄) −M holds since t̄ = gI(z̄) = min

i=1,...,n
{gi(z̄) ≥ 0 ≥ gi(z̄) −M} with M is sufficiently

large. For i = I, the ith constraint of (P2) reads t̄ = gI(z̄) ≥ gI(z) −MȳI = gI(z̄). Hence
(z̄, ȳ, t̄) is feasible for (P2).

Let us now show that: if (z∗, y∗, t∗) is an optimal solution of (P2) then (z∗, t∗) is fea-
sible for (P ′1), i.e., t∗ = min

i=1....,n
{gi(z∗)}.
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By contradiction, let us suppose that this optimal solution of (P2) is such that t∗ 6= min
i=1....,n

{gi(z∗)}.

Let us consider two cases: either t∗ < min
i=1....,n

{gi(z∗)} or t∗ > min
i=1....,n

{gi(z∗)}.
Let Iy∗ denote the index i such that y∗i = 0, then yIy∗ = 0 and y∗i = 1, for all i 6= Iy∗ . Using the
fact that (z∗, y∗, t∗) is a feasible solution for (P2), we have

t∗ ≥ gIy∗ (z
∗). (5.12)

In the first case, we have t∗ < min
i=1....,n

{gi(z∗)}. Then we have gIy∗ (z
∗) ≥ min

i=1....,n
{gi(z∗)} > t∗,

which contradicts (5.12).

Therefore, the second case necessarily holds, i.e., t∗ > min
i=1....,n

{gi(z∗)}. Consider a solution

(z̄, ȳ, t̄) defined as
z̄ = z∗,

t̄ = min
i=1....,n

{gi(z∗)}, (5.13)

and

ȳi :=

0, if i is the smallest index s.t gi(z
∗) = min

i=1....,n
{gi(z∗)},

1, otherwise.
(5.14)

Let I∗ denote this smallest index i such that gi(z
∗) = min

i=1....,n
{gi(z∗)}. This new solution (z̄, ȳ, t̄)

is

• feasible for (P2). Indeed, consider the two cases: if i 6= I∗, the ith constraint t ≥ gi(z)−Myi,
is satisfied since M is an upper bound for the gi and ȳi = 1. If i = I∗, then on the one
hand min

i=1....,n
{gi(z∗)} = t̄ and on the second hand gI∗(z̄) = gI∗(z

∗) = min
i=1....,n

{gi(z∗)} by

definition of I∗. Therefore, the I∗th constraint of (P2) is satisfied by (z̄, ȳ, t̄).

• In term of objective function values, it is clear that f(z∗) + µt∗ > f(z̄) + µt̄ since by
hypothesis t∗ > min

i=1....,n
{gi(z∗)}while t̄ = min{gi(z∗)}. This contradicts the optimality of

(z∗, y∗, t∗).

The original model to minimize is m(z). To use the proposition (5.16), we build a perturbed
model mε(z) = m(z) + ε and prove that, if m(z) is fully linear, then the perturbed model mε(z)
is also fully linear, which guarantees the convergence of the algorithm.

Assumption 5.17. We assume that Z = {z0, . . . , zn} ⊂ Rm × {0, 1}n is a set of sample points
poised in the linear interpolation sense (or regression sense).
We assume that the function f is continuously differentiable in an open domain Ω containing
B(z0,∆) and Of is Lipschizt continuous in Ω with the Lipschitz constant ν > 0.

Problem 5.1. (MIQP with original model)
min
x,y

m(x, y)

min
i=1,...,n

(gi(y)) ≤ ∆y,k,

‖x− xk‖∞ ≤ ∆x,k,
x ∈ Rm, y ∈ {0, 1}n,

(5.15)
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where gi, i = 1, . . . , n is the Hamming distance gi(y) = dH(y,Roti(yk)), yk is the binary parts of
the trust region centre. By adding a slack variable t the problem (5.15) is equivalent to

min
x,y,t

m(x, y)

t = min
i=1,...,n

(gi(y)),

t ≤ ∆y,k,
‖x− xk‖∞ ≤ ∆x,k,
x ∈ Rm, y ∈ {0, 1}n, t ∈ Z+

(5.16)

Our goal is to introduce the necklace distance inside this MIQP. Thus, we propose:

• To perturb the model without impacting the fully linear property of the original model
(to ensure the convergence of the algorithm)

• to use exact reformulation in proposition (5.16) to obtain linear constraints, i.e. to avoid
the operator ”min” in the new distance formulation.

First, the perturbed problem is defined as

Problem 5.2. 

min
x,y,t

m(x, y) + µt

t = min
i=1,...,n

(gi(y))

t ≤ ∆y

‖x− xk‖∞ ≤ ∆x,k,
x ∈ Rm, y ∈ {0, 1}n, t ∈ Z+

(5.17)

with µ = ε/(n − 1) in order to ensure µt ≤ ε, ε is a given small constant. By using exact
reformulation in proposition (5.16) we obtain

min
x,y,ỹ,t

f(x, y) + µt

s.t. t ≥ gi(y)−Mỹi, ∀i = 1, . . . , n
‖x− xk‖∞ ≤ ∆x,k,∑n

i=1 ỹi = n− 1,
x ∈ Rm, y ∈ {0, 1}n, t ∈ Z+, ỹi ∈ {0, 1},

(5.18)

5.2.4 Fully linear property of the perturbed model

We will indicate that if m(x, y) is fully linear, then with a given ε small enough, we still have fully
linear property for the new model mε(x, y) = m(x, y) + ε. To do this, we use some fundamental
theorems of calculus, see Appendix (B).

To be convenient, we denote

errg = Omε(z)− Of(z)

errf = mε(z)− f(z)

Now we will show that mε is fully linear for a small perturbation ε if m is fully linear.
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Theorem 5.18. Let assumption (4.3) hold. Then if a quadratic model |mε(zi)− f(zi)| ≤ ε for
all points in B(z0,∆) we have

• The error between the gradient of the interpolating quadratic model and the gradient of the
function satisfies

‖errg‖ = ‖Omε(z)− Of(z)‖ ≤
√
n∆‖Ẑ−1‖(5

2
ν +

5

2
‖H‖F +

1

∆2
2ε) (5.19)

• The error between the interpolating quadratic model and the function satisfies

|errf | = |mε(z)− f(z)| ≤ ∆2(ν + ‖H‖F )
5
√
n‖Ẑ‖−1 + 1

2
+ ε(2

√
n‖Ẑ‖−1 + 1) (5.20)

Proof. First, we expand

(zi − z)T errg(z) = (zi − z)T (Omε(z)− Of(z))

= (zi − z)T (Hz + g − Of(z))

= (zi − z)THz + (zi − z)T g − (zi − z)TOf(z)

= (zi − z)THz + (zi − z)T g − f(zi) + f(z) + (f(zi)− f(z)− (zi − z)TOf(z))
(5.21)

Set zi − z = d. Using lemma (B.1), equation (5.21) is equivalent to

(zi − z)T errg(z) =

∫ 1

0
dT (Of(z + td)− Of(z))dt− f(zi) + f(z) + (zi − z)THz + (zi − z)T g

=

∫ 1

0
dT (Of(z + td)− Of(z))dt+ errf (zi)− errf (z)− 1

2
dTHd

(5.22)
The next step is to subtract for z0

(zi − z0)T errg(z) = (zi − z)T errg(z)− (z0 − z)T errg(z)

=

∫ 1

0
(zi − z)T (Of(z + t(zi − z))− Of(z))dt

−
∫ 1

0
(z0 − z)T (Of(z + t(z0 − z))− Of(z))dt

+ errf (zi)− errf (z0)− 1

2
(zi − z)TH(zi − z) +

1

2
(z0 − z)TH(z0 − z)

(5.23)

Using both lemma (B.1, B.2) and the definition of mε we have

errf = |mε(zi)− f(zi)| ≤ ε, ∀zi ∈ Z.

Combining this result with the relation

(zi − z)TH(zi − z) ≤ ‖H‖F ‖zi − z‖2,

and the fact that ‖z − zi‖ ≤ 2∆, ‖z − z0‖ ≤ ∆, we find the bound

|(zi − z0)T errg(z)| ≤ 5

2
ν∆2 +

5

2
‖H‖F∆2 + 2ε. (5.24)
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Setting Ẑ =
1

∆
(z1 − z0, . . . , zn − z0), we have

ẐT errg(z) =
1

∆


(z1 − z0)T

(z2 − z0)T

. . .
(zn − z0)T

 errg(z0). (5.25)

In particular,

‖ẐT errg‖2∞ =
1

∆2
max
i

((zi − z0)errg(z))2

≤ 1

∆2
(ν‖zi − z0‖2 + ‖H‖F ‖zi − z0‖2 + 2ε)2

≤ 1

∆2
max
i

((zi − z0)errg(z))2

≤ 1

∆2
(
5

2
ν∆2 +

5

2
‖H‖F∆2 + 2ε)2

= ∆2(
5

2
ν +

5

2
‖H‖F +

1

∆2
2ε)2

(5.26)

Noting that ‖A‖ = ‖AT ‖, we have

‖errg(z) = ‖Ẑ−T ẐT (Omε(z)− Of(z0))‖
≤ ‖Ẑ−T ‖‖ẐT errg(z)‖
≤
√
n‖Ẑ−T ‖‖ẐT errg(z)‖∞

≤
√
n∆‖Ẑ−1‖(5

2
ν +

5

2
‖H‖F +

1

∆2
2ε)

(5.27)

Taking the norm both sides of the equation with z = z0, we have

|errf (z)| ≤ ‖errg(z)‖∆ +
1

2
ν∆2 +

1

2
‖H‖F∆2 + 2ε+ |errf (z0)|

=⇒ |errf (z)| ≤
√
n∆2‖Ẑ−1‖(5

2
ν +

5

2
‖H‖F +

1

∆2
2ε) +

1

2
∆2(ν + ‖H‖F ) + ε

= ∆2(ν + ‖H‖F )
2
√
n‖Ẑ‖−1 + 1

2
+ ε(5

√
n‖Ẑ‖−1 + 1)

(5.28)

Remark 5.2. We note that if the value of ∆ is decreased significantly, the term
ε

∆2
in the

bound (5.19) tends to infinity which cause the divergence of the algorithm. In order to avoid

that, we can control the value of ε if we take the value of µ =
∆2

n− 1
ε′ then the perturbation is

bounded by ε′.

Remark 5.3. With the value ε = 0, we obtain the bound in Theorem 5.4 (page 79, [15])

In this chapter, we proposed an appropriate distance adapted to the cyclic symmetric prob-
lems. Its integration in DFO trust region algorithm is shown along with a convergence proof.

By adapting the necklace distance to DFO trust region method, thanks to the exploration of
distinct binary arrangements, we would also expect to obtain a good performance. In the next
chapter, we present some numerical results obtained with the presented adapted trust region
method applied to cyclic symmetric mixed binary problems.



Chapter 6

Application of DFOb-TR on mixed
binary cyclic problems

In the previous chapter, we introduced the adapted DFOb trust region method with the necklace
distance for cyclic symmetric problems.

The distribution of this chapter is as follows: the first section gives an illustration of DFOb
in action with one given example. In the next section, we detail the methodology for applying
our method and comparing with state-of-the-art methods. In the last section, numerical results
of DFOb-dneck, DFOb-dH , NOMAD, RBFopt are presented.

6.1 DFOb in action with one given example

DFOb algorithm is presented in Chapter 4. To clarify how does the algorithm work step by step
we give an illustration of running DFOb for a given example. We choose MAD1 function from
benchmark set, details in Appendix (C).

In Figure (6.1), we plot the function for the three distinct binary configurations.

This function has two continuous variables, range in [−2, 6], three levels (that we transform
into binaries by using the trick in (6.2) that will be discussed in the Subsection 6.3): the first
level for y = [0, 0] is polynomial of degree 2 with one global solution, the second level for
y = [1, 0] or y = [0, 1] is sin function with bunch of solutions reached at x1 = π/2 or 3π/2, the
last level for y = [1, 1] is cos function where the solution is reached at x2 = 0.

We start from 5 starting points. The initial design is required to satisfy two properties which
are space-filling and non-collapsing, the methodology details will be described in the Subsection
(6.2.1).

After building models, we solve QP subproblems (in step 1.0) and MBQP subproblems (step
1.5) which require continuous variables to satisfy the trust-region constraints, thus, in Figure
(6.1) except initial sample set, all other points is closed (distance is less than ∆x

initial).
We see that DFOb-dneck discovers the global solution in the first level, since the quadratic

model is appropriate for performing a polynomial of degree 2.

39
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Figure 6.1: Function with three levels and Simulation locations along DFOb-dneck for benchmark
function MAD1, [35]: points of the initial design are represented by white circles, the solutions
for step (1.0) by black asterisks, the points associated with model improvement step by magenta
asterisks, the added points in step (1.5) by yellow asterisks, the local solutions by cyan asterisks
and the global solution by a red diamond

6.2 Methodology for method comparison

6.2.1 Initial design of experiments

The first step in any DFO methods is to choose a set of starting points. The first model is
built based on cost function evaluations at these points. A ”good” design of experiments (DOE)
should satisfy the following requirements:

• Space-filling property: the set of points should spread over the entire design space.

• Non-collapsing property: two arbitrary points should not share the same coordinate value.

There are several methods to pick up a choice of initial sample points in continuous space. When
the dimension is small, to select the initial sample points we pick the 2n corner points of the box
constraint. [24] use a strategy to choose n+1 corner points of the box constraint and the central
points. For larger dimensions, a popular strategy is called Latin Hypercube Sample (LHS). In
our implementation, the chosen sampling procedure is based on LHS of size n+m+ 1. We note
that LHS originally is used for generating samples in continuous space, Rm, the procedure to
create a sample set of size N is described is in Algorithm 4, see [36,48] for details.
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Algorithm 4: Uniform Latin Hypercube sampling of size N in Rm

1. For i = 1, . . . , N

• For j = 1, . . . ,m
Generate U v Uniform[0, 1] and

Set Xi,j =
Ui − 1

N
• Randomly permute elements of the ith row of X, [Xi,1, . . . , Xi,m]

2. Output each of the N rows of the matrix X as sample point

Figure (6.2) shows an illustration of LHS design for continuous variables applying to problem
QL, Appendix C, the range is [−2, 6]

Figure 6.2: LHS design illustration for function with 2 continuous variables.

For binary part, we might modify this methodology adapt to binary domain. More precisely,
to build a set of N binary (with the size of n) initial points: yi ∈ {0, 1}n, i = 1, . . . , N first by
using LHS we generate a sample set with N continuous points, xi ∈ Rn, i = 1, . . . , N . After this
step, the values of each element of xi is between 0 and 1. By rounding each element of xi to the
nearest integer, either 0 or 1, we obtain the binary initial sample set LHS(y, n,N).

Rounding can recover integer domain but may destroy the properties of LHS, or even worse,
it can provide several times the same points. Thus, a next study will be dedicated to improve
this initial design procedure.
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6.2.2 Compared methods

We compare our algorithm with direct search (NOMAD), [5, 31], and model-based (RBFopt),
[16] algorithms. We consider only solvers that are designed to solve mixed integer black-box
optimization problems. We use NOMAD because this method is popular among application
scientists and it can solve a wide range of non-linear optimization problems. NOMAD solver
requires one starting point z0, i.e., chosen as the point associated to the best objective function in
DFOb trust-region method. Remark that NOMAD can handle linear and nonlinear constraints.

RBFopt was first introduced in [24]. It is based on Radial Basis Functions to build surrogate
models. The exploration and exploitation decision depends on a measure of bumpiness, thus it
requires that the unknown function f does not oscillate too much. RBFopt was not designed
for constrained optimization problems (only box constraints) , linear constraints are handled by
penalization in our implementation.

Remember that both algorithms can handle binary variables.

6.2.3 Evaluation methodology

Our evaluation based on performance profiles and data profiles. We define a maximum number
of function evaluations. The budget is set to 300 simulations in our implementation , it is
reasonable number for many real applications.

A solver solves a problem if it returns a point x̄ satisfying the following criterion

f(x0)− f(x̄) ≥ (1− τ)(f(x0)− f∗),

with f∗ be the best function value found by any solver, x0 the starting point for each solver, τ
tolerance value, we use τ = 10−3. A solver fails otherwise.

For a set of np problems P = {p1, p2, . . . , pnp}, and the set of ns solvers S = {s1, s2, . . . , sns},
we define the performance criterion for a solver s, a problem p and a required precision tol by

tp,s = number of simulations required for s to solver p at precision tol.

tp,s =∞ if solver s fails on solving problem p.

A performance ratio over all the solvers is defined by

rp,s =
tp,s

min{tp,s, s ∈ S}
≥ 1, for a given problem p.

For η ≥ 1, we define a distribution function ρs for the performance ratio for a solver s as

ρs(η) =
1

np
card{p ∈ P, rp,s ≤ η} ≤ 1, for a given solver s,

with card denotes the cardinal of a set. This distribution computes the number of problems p
that are solved with a performance ratio below a given threshold η. If the value of ρs(η) is near
1, it means that the solver is good and can solve almost all the problems. The performance
profiles is a graph of the function ρs(η), η > 1.

Performance profiles provide an accurate view of the relative performance of solvers with a
given number of simulations. However, for expensive optimization problems it does not provide
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sufficient information.
With expensive optimization problems, we are interested in the performance of solvers as a

function of the number of function evaluations which leads to the definition of data profiles. The
data profile for a solver s is the fraction of problems that are solved within a fixed simulation
budget κ

ds(α) =
1

np
card{p ∈ P :

tp,s
nv + 1

≤ κ},

with nv the number of variables of problem p. It is normalized by nv + 1 since the number of
simulations grows when the number of variables increase.

We present results of DFOb-dneck in comparing to NOMAD, RBFopt and DFOb-dH applied
to benchmark functions, a toy problem that is closed to the application and a simulation given
by Safran Tech. We indicate values of parameters using in optimization procedure, in Table (6.1).

Table 6.1: Parameters using in DFOb-TR

nsimul nogoodcut max ∆0
x ∆0

y

300 min(14, 2n − 1), n ≤ 6, 20 if n = 12 1 2

Note that for the simulation given by Safran, we would use the default option of RBFopt
to generate its best initial design. DFOb-dneck, DFOb-dH share the same initial sample set.
NOMAD uses the the best point in our initial design. For benchmark functions, initial designs
are taken the same for the 3 optimizers: RBFopt, DFOb-dH and DFOb-dnew.

6.3 Benchmark functions

List of functions

Our benchmark consists in 25 different box-constrained problems from [1, 18, 25, 35, 38] and
GLOBALLIB, listed in table 6.2.

Note that these benchmark functions are originally for continuous optimization (some in-
clude constraints, but we consider only box constraints). Thus, we suitably transform them into
mixed binary problems with cyclic symmetry.

In [35], benchmark functions are associated with minimax problems for continuous optimiza-
tion

min
x∈[x,x̄]

F (x) := max
1≤w≤l

(fw(x)).

We transform them into mixed categorical problems:

min
x∈[x,x̄],1≤w≤l

F̃ (x,w) :=


f1(x) ifw = 1,

f2(x) ifw = 2,

. . .

fl(x) ifw = l.

(6.1)
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Table 6.2: Benchmark functions

Test names # continuous (m) # binary (n) Domain Reference

CB1 2 2 [-2,6] [35]

CB2 2 2 [-2,6] [35]

QL 2 2 [-2,6] [35]

WF 2 2 [1,6] [35]

MAD1 2 2 [-2,6] [35]

MAD1 2 2 [-2,6] [35]

RosenSuzuki 4 3 [-2,6] [35]

Pentagon 6 3 [0,2] [35]

Wong2 10 4 [0,2] [35]

Wong3 20 6 [0,2] [35]

HS2 1 3 [-5,5] [25]

HS3 1 3 [-5,5] [25]

HS29log 1 3 [-5,5] [25]

Branin 1 3 [-5,10] [18]

Camel 1 3 [-3,3] [18]

Goldstein-Price 1 3 [-2,2] [18]

Hartman3 2 3 [0,1] [18]

Hartman6 5 3 [0,1] [18]

Shekel7 3 3 [0,10] [18]

Shekel10 3 3 [0,10] [18]

ex8-1-1 1 3 [-2,4] GLOBALLIB

ex8-1-4 1 3 [-1,2] GLOBALLIB

Perm6 5 3 [-6,6] [38]

Perm8 7 3 [-1,1] [38]

sporttournament 14 3 [0,1] [1]

Instead of using the standard encoding of integer variables into binary variables:

w =

h∑
i=0

2iyi, h = floor(log 2(n) + 1),

we use the following trick to introduce a cyclic symmetry,: each categorical variable is associated
with a necklace and its rotations. For instance, in case of 3 levels for an integer variable, l = 3,
the problems are transformed as follows

min
x∈[x,x̄],y∈{0,1}2

F̃ (x, y) :=


f1(x) if y = (0, 0),

f2(x) if y = (0, 1) or (1, 0),

f3(x) if y = (1, 1).

(6.2)

For benchmark functions of [1, 18, 25] and GLOBALLIB, we restrict the last continuous
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variable to take only a finite number of values: xend ∈ Xend with

Xend =

(
xend + h

x̄end − xend

nlevel − 1
, for h = 0, . . . , nlevel − 1

)
.

where xend and x̄end respectively the lower and upper bound of original xend. After this step,
we obtain one integer variable of nlevel (equal to 4 in our implementation). The last step is to
apply the above trick, example in (6.2), to build cyclic symmetric problems.

The dimension of these test functions range from 2 to 20 in their original formulation, range
from 4 to 27 for the new necklace formulation. For [25], functions are smooth while functions
from [1,18,35,38] and GLOBALLIB are more complex with several local minima. With an effort
of building a benchmark with a large range in the number of variables and different complexities
of functions, we aim to study the behavior of our algorithm in comparison with NOMAD and
RBFopt algorithms.

Preliminary results for benchmark functions

The results of running DFOb with necklace distance DFOb − dneck, DFOb with Hamming
distance DFOb − dH , NOMAD and RBFopt over 25 benchmark functions are presented by
data profiles, performance profiles, mean relative errors on F (%) compared to the best values
among results (all the solvers) and number of iterations necessary to reach the best points, see
in Figures (6.3, 6.4, 6.5,6.6). For all examples, DFOb-dH are displayed by red lines, DFOb-dneck
by blue lines, NOMAD by black lines, RBFopt by cyan lines.

Figure 6.3: Performance profiles for 25 benchmark functions of DFOb-dH , DFOb-dneck, NO-
MAD, RBFopt



46 Chapter 6. Application of DFOb-TR on mixed binary cyclic problems

Figure 6.4: Data profiles for 25 benchmark functions of DFOb-dH , DFOb-dneck, NOMAD,
RBFopt

Figure 6.5: Mean relative errors (in log scale) on F(%) over the 25 benchmark functions of
DFOb-dH , DFOb-dneck, NOMAD, RBFopt
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Figure 6.6: Number of simulation necessary to reach the best points over the 25 benchmark
functions of DFOb-dH , DFOb-dneck, NOMAD, RBFopt

For the benchmark of 25 ebnchmark functions, DFOb-dneck method outperforms the 3 other
optimizers including NOMAD, RBFopt, DFOb-dH : it succeeds to solve 88% of runs, whereas,
DFOb-dH , NOMAD, RBFopt succeeds to solve respectively 84%, 68% and 80% runs.

Performance profiles are reported in Figure (6.3). The results show that DFO-dneck has big
progress compare to DFOb-dH . It is highly competitive with comparing solvers.

We report data profiles in Figure (6.4). We can see that DFOb-dneck has the best perfor-
mance in solving expensive simulators. Figure (6.5) and Figure (6.6) displays the median relative
error for objective functions and the number of simulation necessary to reach the best points of
4 optimizers over 25 benchmark functions. As can be seen in Figure (6.5) all configurations of
4 solvers coincide on relative errors fr the first few data points, and they start to diverge after
v 15 iterations, then at the end they coincide again since reaching of the best solutions. Figure
(6.6) shows that DFOb-dneck, DFOb-dH and RBFopt use reasonable number of iterations to
reach best points, whereas NOMAD requires much larger number of simulation.

Running over benchmark functions also highlight the fact that the optimizers will have differ-
ent performance on different problems. It is important also to think of the compromise between
saving simulations and finding the best solution. If a solver can find a better solution for an
optimization problem in an acceptable number of simulations, we consider it has better perfor-
mance for this problem. In derivative free optimization, since the computationally expensive of
the simulations, we would always limit the number of simulations.

6.4 Toy problem closed to SAFRAN’s application

We build a toy problem closed to Safran’s application as described in Appendix A. It results in
minimizing the maximal amplitude of the excitation of the system with respect to a continuous
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parameter (frequency) and a binary vector (mistuning blade locations)

minimize
ω,y

‖A‖∞

subject to ω ∈ [ωmin, ωmax],

y ∈ {0, 1}n,

(6.3)

where n denotes the number of blades on the disk.

Figure (6.7, 6.8, 6.9, 6.10) report the performance profiles, data profiles, mean best function
values and number of iterations to reach the best points for 10 randomly chosen initial design
of experiments.

Figure 6.7: Performance profiles for toy problem of DFOb-dH , DFOb-dneck, NOMAD, RBFopt
with 10 random initial designs
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Figure 6.8: Data profiles for toy problem of DFOb-dH , DFOb-dneck, NOMAD, RBFopt with 10
random initial designs

Figure 6.9: Mean relative errors on F(%) for toy problem of DFOb-dH , DFOb-dneck, NOMAD,
RBFopt with 10 random initial designs
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Figure 6.10: Number of iteration to reach the best points for toy problem of DFOb-dH , DFOb-
dneck, NOMAD, RBFopt

For this example, DFO-dneck has the second rank in data profiles and performance profiles
after DFOb-dH . However, Figure (6.9) and Figure (6.10) illustrate that DFOb-dneck is more
efficient in terms of number of simulations.

6.5 Safran’s application

Safran’s application was provided by means of a simplified simulation (with 12 blades on the disk)
based on a response surface model to avoid the huge computational cost for these preliminary
tests. Recall that the objective is to minimize the vibration of the compressor, a continuous
variable describe the blade frequency (which cause from shape parameters such as the thickness
of the axis, the length of the blades) and binary variables locate the two pre-defined blade
geometries (tuning and mistunig) on the disk.

In this part, we present results on Safran’s application. Figure (6.11, 6.12, 6.13, 6.14) report
the Performance profiles, Data profiles, Mean best function values and number of simulations
to reach the best points for 10 randomly chosen initial design of experiments.
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Figure 6.11: Performance profiles for Safran’s simulation of DFOb-dH , DFOb-dneck, NOMAD,
RBFopt with 10 random initial designs.

Figure 6.12: Data profiles for Safran’s simulation of DFOb-dH , DFOb-dneck, NOMAD, RBFopt
with 10 random initial designs.
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Figure 6.13: Mean relative errors on F(%) for Safran’s simulation of DFOb-dH , DFOb-dneck,
NOMAD, RBFopt with 10 random initial designs.

Figure 6.14: Number of simulation necessary to reach the best points for Safran’s simulation of
DFOb-dH , DFOb-dneck, NOMAD, RBFopt with 10 random initial designs.

For the simplified simulation, DFOb-dneck method outperforms the 3 other optimizers: NO-
MAD, RBFopt, DFOb-dH . It succeeds to solve 100% of runs, whereas, DFOb-dH , NOMAD,
RBFopt succeeds to solve respectively 70%, 60% and 90% runs.

Performance profiles are reported in Figure (6.11). The results show the improvement of
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DFO-dneck compared to DFOb-dH .
We report data profiles in Figure (6.12). We can see that DFOb-dneck has the best perfor-

mance in terms of number of simulations. Figure (6.13) shows the mean best function over 10
runs: DFOb-dneck succeeds to reach the best mean values in the smaller number of simulations.
Figure (6.14) displays the number of simulations necessary to reach the best values. It shows
that DFO-dneck succeeds to find the best points in all the runs in less than 210 simulations.
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Chapter 7

Conclusion and perspectives

In this report, we have addressed derivative-free optimization problems when the cost function
is computationally expensive. In Chapter 4, we showed how to extend a general framework (for
continuous optimization) to mixed binary quadratic models. It is difficult to find the details of
dealing with binary variables in the literature of derivative free optimization. Most of them give
general comments or ideas of dealing with binary variables without special or dedicated methods
are proposed. In the knowledge of the author, [15] is the only book that gives the proof about
the convergence (local) of Derivative free trust region method for continuous variables.

The details of real application given by SAFRAN is presented in Chapter 3. Along with the
concrete problem, the cyclic symmetry property in binary variables appear tends us to adapt
our algorithm. By using the concept of Necklace, in Chapter 5, we proposed a new distance to
DFO trust region method for this distance. We studied local convergence issues for the adapted
DFOb trust region. We showed that the adapted model is adapted to guarantee the local con-
vergence of the method.

In Chapter 6, we introduced collections of benchmark functions and analyzed the numerical
results obtained by the proposed method and compared them to the results of state-of-the-art
DFO methods: NOMAD and RBFopt. We also built a toy problem that is closed to the real
application. The first results obtained on the benchmark functions and on SAFRAN’s appli-
cation are very encouraging. Our adapted method outperforms the other methods in term of
robustness and of simulation cost.

There remains many open possibilities for future work. First, we enlighted the sensitivity of
the results to the initial points. As we mentioned before, we apply a LHS design for continuous
and binary variables with rounding technique. We should build an initial set designed for binary
variables, especially for cyclic symmetric problems. An interesting idea to pursue is to build
a suitable initial design based on a positive definite kernel. [26, 27] have shown the theoretical
proof that the Hamming distance is sufficient to build a positive definite kernel. We will study
the possibility to use the necklace distance which we proposed to build a positive definite kernel.

Another important issue to improve is the globalization of our method with respect to con-
tinuous variables (the globalization in sense of improving the local minima). As standard trust
region methods, our method is a local optimization method. A classical approach to overcome
the difficulty of local minima is the multi-start technique [9], [48]. The simulation cost and the
presence of binary variables may invalid this type of method.

Another promising proposal from professor Marcel Mongeau mentions about using branch
technique to work directly in necklace domain. From now we work in binary space (dimension
2n, n number of binary variables). Thanks to necklace distance, we do not explore redundant

55
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rotated solutions. The idea is to create a tree of all the distinct arrangements and classify the
order of the leaves according to the number of 0 (1) in the arrangements. Then in the exploration
phase, we can use search techniques to find a solution in Step (1.5a) on the tree.



Future work and planning

For the main schedule in my thesis, I would split into four main phases. The time schedule is
arranging according to the last day in the contract with IFPEN 26/9/2021

1. Phase 1: Boosting Thesis (March 2020 to February 2021) This part includes
working days, meetings, attending conferences and writing papers

• First, for the upcoming period, we would try our best to improve initial interpolation
set using adapted design of experiment techniques. As explain in previous section, we
would discover continuous part which attempts to globalize the objective function.
We plan to submit my first paper to JoGO (Special issues in ICCSAMA conference).
Presentation of my first results in Safran and also discuss with Safran experts.
Presentation of my work at conference: DFO symposium (DFOS) at the University of
British Columbia (Canada), from Aug 10 to 14, 2020. EUROPT continuous optimiza-
tion working group of EURO at ENAC, Toulouse from 1 to 3 July, MASCOT-NUM
annual conference from 4th to 7th May 2020 at Aussois.

• We plan to collaborate with Sébastien Le Digabel (NOMAD contributor from GERAD,
Canada) and Giacomo Nannicini (RBFopt contributor from IBM): some interesting
ideas can be shared for DFO methods NOMAD, RBFopt and our DFO trust region
method, especially, regarding globalization.

2. Phase 2: Writing Thesis (February 2021 to June 2021) This part is for writing
final report respect to the deadline of submitting manuscript (before the defense at least
3 months)

• Focusing on writing the final report. Respect to requirements about limitation of
pages, report form, ensure the quality of the report

• During writing part, we expect to work upon a paper also (summarize of work since
midterm)

3. Phase 3: Writing Presentation (June 2021 to 25th September 2021) : This part
is for preparing

• Defense presentation.

• Rehearsal

• In parallel, if possible, we can think about papers

4. Phase 4: Defense day (26/09/2021): Respect to the contract of working with IFPEN,
the last day of the contract is 26/09/2021. It has no doubt that we should defense on that
day.
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Professional project

During my internship at INRIA (Grenoble), I have realized that I am specifically interested in
application fields. Then the opportunity of working at IFPEN which collaborates with Safran
and ENAC en-boosted my orientation about my future work. It would be an excellent experience
if I could work for companies as Safran Tech, Airbus, EDF or laboratories which combine
academic and industry such as INRIA, ONERA, CEA.
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Appendix A

Toy problem

Single-degree of freedom model

In the following part, we illustrate a very simple model closed to Safran’s application: the
problem of determining a mistuning pattern of a cyclic bladed disk that maximize the vibra-
tion amplification. Following [10–12,32,37,40,49], we use a single-degree-of-freedom (DOF) per
blade disk model. To keep the notation clear throughout the section, we introduce the table of
nomenclature in Table (A.1):

Table A.1: Nomenclature using for single DOF model.

N : Number of blades F0 : Magnitude of exiting fore (N)
mi : Blade mass (kg) E : Order of exitation
kc : Coupling stiffness blade-to-blade (N/m) A : Tuned blades
kb : Stiffness of reference blade (N/m) B : Mistuned blades has 10% higher in kb
c : Damping value (N.s/m) δ : Deviation of volume (%)

In a theoretically dynamic analysis of a turbomachinery rotor, we usually assumed that the
blades are identical. But, in practice, it appears differences in their mechanical properties or
their geometry due to the manufacturing process. This mistuning may affect significantly the
forced response and the cyclic symmetry of bladed disks. Thus, we attempt to intentionally
mistune the design of the blades to analyse the impact on the cyclic property.

The consideration of intentional mistuning is not new, it is introduced and investigated in [10,
11]. Some papers [12, 49] described a general optimization approach using genertic algorithms.
In this section, we focus on building the optimization of an intentional mistuning bladed disk
model.

We investigate the case with two sets of blades, called A and B. This symplification is due to
the complexity of modeling the manufacturing and certification process. It is highly reasonable
to keep the number of different types of blades as small as possible.

Two blades A and B are different from their geometry in reality: the thickness, the length of
the blades. These elements impact into frequency of blades. We consider a simple model whose
continuous variable be directly frequency.
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Figure A.1: Single DOF per bladed disk model

Figure (A.1) depicts the simplest model of a bladed disk: single DOF-sector model. The
motion equation of the system composed of n blades is, for blade i,

miẍi + cẋi +−kcxi−1 + kixi + 2kcxi − kcxi+1 = Fi, i = 1, . . . , N, (A.1)

where the blade stiffness ki = (1+δi)kb, the force induced by a harmonic engine order excitation
E, Fi = F0e

j(ωt+φi), the phase of the excitation of blade i φi = 2π(i− 1)E/N . δi is a mistuning
parameter of stiffness for blade i. Let us assume the harmonic motion, i.e., xi = Aie

jωt, j =√
−1, Ai the amplitude of displacement of blade i. We thus obtain

−miω
2xi + jωcxi +−kcxi−1 + (1 + δi)kbxi + 2kcxi − kcxi+1 = Fi, i = 1, . . . , N. (A.2)

For the tuned, un-forced (Fi = 0), un-damped (c = 0) case the equation of motion is

miẍi − kcxi−1 + kbxi + 2kcxi − kcxi+1 = 0, i = 1, . . . , N.

According to ( [40]) the natural frequencies of the tuned system are given by the formula

ω̂2
k = 1 + 2R(1− cosσk), k = 1, . . . , N, (A.3)

where ω̂2 =
mkω

2

kb
, R =

kc
kb
, σk =

2π(k − 1)

N
, cosσk = cosσN+2−k.

We reformulate (A.2) as the form of the transform matrix. One notes that xN+1 = x1, x0 =
xN from the cyclic property.

[−Mω2 + jωD +K]X = F, (A.4)

where M = diag(m0, . . . ,mN−1), D = diag(c, c, . . . , c),K = diag(2kc+(1+δi)kb)+[−kc](1,N),(N,1)

are respectively the mass, the damping and the stiffness matrix, X = (x0, . . . , xN−1)T ,F =
(F0, . . . , FN−1)T are the vector of displacements and forces.

TX =


T0 −kc 0 . . . 0 −kc
−kc T1 −kc . . . 0 0

...
...

...
. . .

...
...

−kc 0 0 . . . −kc TN−1




x0

x1

x2
...

xN−1

 =


F0

F1

F2
...

FN−1

 , (A.5)
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where Ti = −miω
2 + jωc + 2kc + (1 + δi)kb, δi = yiδ, yi = 0 if blade A, otherwise yi = 1, δ >

0 isthe mistuning constant . Thus, (A.5) can be rewritten as

TA = F̄, (A.6)

where A = (A0, A1, . . . , AN−1)T , F̄ = (F̄i)i=0,...,N−1, F̄i = F0e
jφi . The above equation gives us

the form of the vector of amplitude magnification for forced response A = T−1F̄.

Using the comments in [10,11], we build our optimization problem in order to obtain the pat-
tern(s) that yield(s) the smallest value of the largest amplitude of response to a given excitation
by varying the number of the position of the mistuned blades

minimize
ω,y

‖A‖∞

subject to ω ∈ [ωmin, ωmax],

y ∈ {0, 1}N .

(A.7)
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Appendix B

Fundamental theorem of calculus

Lemma B.1. (lemma 4.1.2, [17]) Let f : Rn → R ∈ C1. Then, for x, d ∈ Rn, the direction
derivative of x in the direction of d exists and equals Of(x)Td. Furthernore

f(x+ d)− f(x) =

∫ 1

0
dTOf(x+ td)dt.

Proof. Applying the fundamental theorem of calculus of one variable to g(t) = f(x + td), we
have

g(1) = g(0) +

∫ 1

0
g′(t)dt.

Define x(t) = x+ td, then by the chain rule, for 0 ≤ α ≤ 1

dg

dt
(α) =

n∑
i=1

∂f(x(t))

∂x(t)i
(x(α))

dx(t)i
dt

(α)

=

n∑
i=1

∂f

∂xi
(x(α))pi

= Of(x+ αd)Td.

(B.1)

By definition of g and equation (B.1) we obtain the lemma.

Lemma B.2. ( lemma 4.1.12, [17]) Let f : Rn → Rm be continuously differentiable, i.e., f ∈ C1

on D = B(x,∆), x ∈ D, and let Of be Lipchitz continuous at x in the neighborhood of D with
the Lipchitz constant ν, then for any x+ d ∈ D,

|f(x+ d)− f(x)− dTOf(x)| ≤ 1

2
ν‖d‖2. (B.2)
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Proof. By using lemma (B.1) we have

|f(x+ d)− f(x)− dTOf(x)| = |
∫ 1

0
dTOf(x+ td)dt− dTOf(x)|

= |
∫ 1

0
dT (Of(x+ td)− Of(x))dt|

≤
∫ 1

0
|dT (Of(x+ td)− Of(x))dt|

≤
∫ 1

0
‖dT ‖‖(Of(x+ td)− Of(x))‖dt

≤
∫ 1

0
‖dT ‖ν‖x+ td− x‖dt

= ν‖d‖2
∫ 1

0
tdt =

1

2
ν‖d‖2.

(B.3)
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Benchmark functions

C.1 Luksan and Vlcek (2000) benchmark

Problem C.1. CB2.

F (x) = max
1≤i≤3

fi(x),

f1(x) =x2
1 + x4

2,

f2(x) =(2− x1)2 + (2− x2)2,

f3(x) =2ex2−x1 .

Problem C.2. CB3.

F (x) = max
1≤i≤3

fi(x),

f1(x) =x4
1 + x2

2,

f2(x) =(2− x1)2 + (2− x2)2,

f3(x) =2ex2−x1 .

Problem C.3. QL.

F (x) = max
1≤i≤3

fi(x),

f1(x) =x2
1 + x2

2,

f2(x) =x2
1 + x2

2 + 10(−4x1 − x2 + 4),

f3(x) =x2
1 + x2

2 + 10(−x1 − 2x2 + 6).

Problem C.4. WF.

F (x) = max
1≤i≤3

fi(x),

f1(x) =
1

2
(x1 +

10x1

x1 + 0.1
+ 2x2

2),

f2(x) =
1

2
(−x1 +

10x1

x1 + 0.1
+ 2x2

2),

f3(x) =
1

2
(x1 −

10x1

x1 + 0.1
+ 2x2

2).
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Problem C.5. PENTAGON.

F (x) = max
1≤i≤3

fi(x),

f1(x) =−
√

(x1 − x3)2 + (x2 − x4)2,

f2(x) =−
√

(x3 − x5)2 + (x2 − x6)2,

f3(x) =−
√

(x5 − x1)2 + (x6 − x2)2.

Problem C.6. ROSEN-SUZUKI.

F (x) = max{f1(x), f1(x) + 10f2(x), f1(x) + 10f3(x), f1(x) + 10f4(x)},
f1(x) =x2

1 + x2
2 + 2x2

3 + x2
4 − 5x1 − 5x2 − 21x3 + 7x4,

f2(x) =x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 + x3 − x4 − 8,

f3(x) =x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10,

f4(x) =x2
1 + x2

2 + x2
3 + 2x1 − x4 − 5.

Problem C.7. WONG 2.

F (x) = max
1≤i≤6

fi(x),

f1(x) =x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2+

2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45,

f2(x) =f1(x) + 10(3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120),

f3(x) =f1(x) + 10(5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40),

f4(x) =f1(x) + 10(0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30),

f5(x) =f1(x) + 10(x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6),

f6(x) =f1(x) + 10(−3x1 + 6x2 + 12(x9 − 8)2 − 7x10).
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Problem C.8. WONG 3.

F (x) = max
1≤i≤14

fi(x),

f1(x) =x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2+

2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + (x11 − 9)2+

10(x12 − 1)2 + 5(x13 − 7)2 + 4(x14 − 14)2 + 27(x15 − 1)2 + x4
16 + (x17 − 2)2+

13(x18 − 2)2 + (x19 − 3)2 + x2
20 + 95,

f2(x) =f1(x) + 10(3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120),

f3(x) =f1(x) + 10(5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40),

f4(x) =f1(x) + 10(0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30),

f5(x) =f1(x) + 10(x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6),

f6(x) =f1(x) + 10(−3x1 + 6x2 + 12(x9 − 8)2 − 7x10),

f7(x) =f1(x) + 10(x2
1 + 5x11 − 8x12 − 28),

f8(x) =f1(x) + 10(4x1 + 9x2 + 5x2
13 − 9x14 − 87),

f9(x) =f1(x) + 10(3x1 + 4x2 + 3(x13 − 6)2 − 14x14 − 10),

f10(x) =f1(x) + 10(14x2
1 + 35x15 − 79x16 − 92),

f11(x) =f1(x) + 10(15x2
2 + 11x15 − 61x16 − 54),

f12(x) =f1(x) + 10(5x2
1 + 2x2 + 9x4

17 − x18 − 68),

f13(x) =f1(x) + 10(x2
1 − x9 + 19x19 − 20x20 + 19),

f14(x) =f1(x) + 10(7x2
1 + 5x2

2 + x2
19 − 30x20).

Problem C.9. MAD1.
F (x) = max

1≤i≤3
fi(x),

f1(x) =x2
1 + x2

2 + x1x2 − 1,

f2(x) = sin(x1),

f3(x) =− cos(x2).

Problem C.10. MAD4.

F (x) = max
1≤i≤3

fi(x),

f1(x) =− ex1−x2 ,
f2(x) = sinh(x1 − 1)− 1,

f3(x) =− log(x2)− 1.

C.2 Hock and Schittkowski benchmark

Problem C.11. HS2.

F (x) = 100(x2 − x2
1)2 + (1− x1)2.

Problem C.12. HS3.

F (x) = x2 + 10−5(x2 − x1)2.
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Problem C.13. HS29log.

F (x) = log10(100(x2 − x2
1)2 + (1− x1)2).

C.3 Dixon–Szegö benchmark

Problem C.14. Branin.

F (x) = (x2 − (
5.1

4π2
)x2

1 +
5

π
x1 − 6)2 + 10(1− 1

8π
) cos(x1) + 10.

Problem C.15. Camel.

F (x) = (4− 2.1x2
1 + x

4/3
1 )x2

1 + x1x2 + (−4 + 4x2
1)x2

1.

Problem C.16. Goldstein-Price.

F (x) = (1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2))∗
(30 + (2x1 − 3x2)2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)).

Problem C.17. Hartman3.

a = [ [ 3 . 0 , 0 . 1 , 3 . 0 , 0 . 1 ] ,
[ 1 0 . 0 , 1 0 . 0 , 1 0 . 0 , 1 0 . 0 ] ,
[ 3 0 . 0 , 3 5 . 0 , 3 0 . 0 , 3 5 . 0 ] ]

P = [ [ 0 . 3 6 8 9 0 , 0 .46990 , 0 .10910 , 0 . 0 3 8 1 5 ] ,
[ 0 . 1 1 7 0 0 , 0 .43870 , 0 .87320 , 0 . 5 7 4 3 0 ] ,
[ 0 . 2 6 7 3 0 , 0 .74700 , 0 .55470 , 0 . 8 8 2 8 0 ] ]

c = [ 1 . 0 , 1 . 2 , 3 . 0 , 3 . 2 ]

F (x) = −
4∑
i=1

cie
−

3∑
j=1

aji(xj−Pji)
2

.

Problem C.18. Hartman6.

a = [ [ 1 0 . 0 0 , 0 . 0 5 , 3 . 0 0 , 1 7 . 0 0 ] ,
[ 3 . 0 0 , 1 0 . 0 0 , 3 . 5 0 , 8 . 0 0 ] ,
[ 1 7 . 0 0 , 1 7 . 00 , 1 . 7 0 , 0 . 0 5 ] ,
[ 3 . 5 0 , 0 . 1 0 , 1 0 .0 0 , 1 0 . 0 0 ] ,
[ 1 . 7 0 , 8 . 0 0 , 1 7 .0 0 , 0 . 1 0 ] ,
[ 8 . 0 0 , 1 4 . 0 0 , 8 . 0 0 , 1 4 . 0 0 ] ]

p = [ [ 0 . 1 3 1 2 , 0 .2329 , 0 .2348 , 0 . 4 0 4 7 ] ,
[ 0 . 1 6 9 6 , 0 .4135 , 0 .1451 , 0 . 8 8 2 8 ] ,
[ 0 . 5 5 6 9 , 0 .8307 , 0 .3522 , 0 . 8 7 3 2 ] ,
[ 0 . 0 1 2 4 , 0 .3736 , 0 .2883 , 0 . 5 7 4 3 ] ,
[ 0 . 8 2 8 3 , 0 .1004 , 0 .3047 , 0 . 1 0 9 1 ] ,
[ 0 . 5 8 8 6 , 0 .9991 , 0 .6650 , 0 . 0 3 8 1 ] ]

c = [ 1 . 0 , 1 . 2 , 3 . 0 , 3 . 2 ]

F (x) = −
4∑
i=1

cie
−

6∑
j=1

aji(xj−Pji)
2

.
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Problem C.19. Shekel7.

a = [ [ 4 . 0 , 1 . 0 , 8 . 0 , 6 . 0 , 3 . 0 , 2 . 0 , 5 . 0 ] ,
[ 4 . 0 , 1 . 0 , 8 . 0 , 6 . 0 , 7 . 0 , 9 . 0 , 5 . 0 ] ,
[ 4 . 0 , 1 . 0 , 8 . 0 , 6 . 0 , 3 . 0 , 2 . 0 , 3 . 0 ] ,
[ 4 . 0 , 1 . 0 , 8 . 0 , 6 . 0 , 7 . 0 , 9 . 0 , 3 . 0 ] ]

c = [ 0 . 1 , 0 . 2 , 0 . 2 , 0 . 4 , 0 . 4 , 0 . 6 , 0 . 3 ]

F (x) = −
7∑
j=1

1
4∑
i=1

(xi − aij)2 + cj

.

Problem C.20. Shekel10.

a = [ [ 4 . 0 , 1 . 0 , 8 . 0 , 6 . 0 , 3 . 0 , 2 . 0 , 5 . 0 , 8 . 0 , 6 . 0 , 7 . 0 ] ,
[ 4 . 0 , 1 . 0 , 8 . 0 , 6 . 0 , 7 . 0 , 9 . 0 , 5 . 0 , 1 . 0 , 2 . 0 , 3 . 6 ] ,
[ 4 . 0 , 1 . 0 , 8 . 0 , 6 . 0 , 3 . 0 , 2 . 0 , 3 . 0 , 8 . 0 , 6 . 0 , 7 . 0 ] ,
[ 4 . 0 , 1 . 0 , 8 . 0 , 6 . 0 , 7 . 0 , 9 . 0 , 3 . 0 , 1 . 0 , 2 . 0 , 3 . 6 ] ]

c = [ 0 . 1 , 0 . 2 , 0 . 2 , 0 . 4 , 0 . 4 , 0 . 6 , 0 . 3 , 0 . 7 , 0 . 5 , 0 . 5 ]

F (x) = −
1∑
j=1

0
1

4∑
i=1

(xi − aij)2 + cj

.

C.4 GLOBALLIB benchmark

Problem C.21. ex8_1_1

.

F (x) = cos(x1) sin(x2)− x1

x2
2 + 1

.

Problem C.22. ex8_1_4

.

F (x) = 12x2
1 − 6.3x4

1 + x6
1 − 6x1x2 + 6x2

2.

Problem C.23. Perm6.

β = 60,

F (x) =
6∑

k=1

(
6∑
i=1

((i+ 1)k + β)(
xi

(i+ 1)k
− 1))2 + 1000.

Problem C.24. Perm8.

β = 100,

F (x) =

8∑
k=1

(

8∑
i=1

((i+ 1) + β)(xki − (
1

(i+ 1)
)k)2 + 1000.
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C.5 MINLPLib2 benchmark

Problem C.25. Sporttournament.

F (x) = 2x1x3 − 2x1 + 2x3 + 2x1x7 − 2x7 + 2x2x6 − 2x2 − 2x5 + 2x2x10−
4x10 − 2x3x4 + 2x4 − 2x3x12 − 2x3x14 − 2x4x5 + 2x4x9 − 2x9−
2x4x15 + 2x5x6 − 2x6 + 2x5x8 − 2x8 + 2x6x9 − 2x7x8 + 2x7x12+

2x7x13 + 2x8x10 + 2x8x15 + 2x9x11 − 2x11 − 2x9x13 + 2x10x11+

2x10x12 − 2x13x15 + 2x14x15.



Bibliography

[1] Minlplib2, http://www.gamsworld.org/minlp/minlplib2/html/.

[2] Air transport action group (atag). 2016, http://www.atag.org/facts-and-figures.

html.

[3] International air transport association, iata price analysis. 2016, http://www.iata.org/
publications/economics/fuel-monitor/Pages/price-analysis.aspx.

[4] M. Abramson, Pattern search algorithms for mixed variable general constrained optimiza-
tion problems, PhD thesis, (2003).

[5] M. Abramson, C. Audet, G. Couture, J. Dennis, Jr., S. Le Digabel, and
C. Tribes, The NOMAD project. Software available at https://www.gerad.ca/nomad/,
https://www.gerad.ca/nomad/.

[6] C. Audet and J. Dennis, Pattern search algorithms for mixed variable pro-
gramming, SIAM Journal on Optimization, 11 (2000), https://doi.org/10.1137/

S1052623499352024.

[7] C. Audet and W. Hare, Derivative-Free and Blackbox Optimization, Springer Series in
Operations Research and Financial Engineering, Springer International Publishing, Cham,
Switzerland, 2017, https://doi.org/10.1007/978-3-319-68913-5.

[8] D. Bremner, T. M. Chan, E. D. Demaine, J. Erickson, F. Hurtado, J. Iacono,
S. Langerman, M. Patrascu, and P. Taslakian, Necklaces, convolutions, and X+Y,
CoRR, abs/1212.4771 (2012), http://arxiv.org/abs/1212.4771, https://arxiv.org/

abs/1212.4771.

[9] C. Cartis, L. Roberts, and O. Sheridan-Methven, Escaping local minima with
derivative-free methods: a numerical investigation, 2018, https://arxiv.org/abs/1812.
11343.

[10] B. Choi, Pattern optimization of intentional blade mistuning for the reduction of the forced
response using genetic algorithm, KSME International Journal, 17 (2003), pp. 966–977,
https://doi.org/10.1007/BF02982981, https://doi.org/10.1007/BF02982981.

[11] B. Choi, K. H. Eun, K. H. Jung, J. Haneol, G. DongSik, and K. M. Kwan,
Optimization of intentional mistuning for bladed disk : Intentional mistuning intensity
effect, in Engineering Asset Management, J. Mathew, J. Kennedy, L. Ma, A. Tan, and
D. Anderson, eds., London, 2006, Springer London, pp. 1024–1029.

73

http://www.gamsworld.org/minlp/minlplib2/html/
http://www.atag.org/facts-and-figures.html
http://www.atag.org/facts-and-figures.html
http://www.iata.org/publications/economics/fuel-monitor/Pages/price-analysis.aspx
http://www.iata.org/publications/economics/fuel-monitor/Pages/price-analysis.aspx
https://www.gerad.ca/nomad/
https://www.gerad.ca/nomad/
https://doi.org/10.1137/S1052623499352024
https://doi.org/10.1137/S1052623499352024
https://doi.org/10.1007/978-3-319-68913-5
http://arxiv.org/abs/1212.4771
https://arxiv.org/abs/1212.4771
https://arxiv.org/abs/1212.4771
https://arxiv.org/abs/1812.11343
https://arxiv.org/abs/1812.11343
https://doi.org/10.1007/BF02982981
https://doi.org/10.1007/BF02982981


74 Bibliography

[12] B. Choi, J. Lentz, A. Rivas-Guerra, and M. Mignolet, Optimization of intentional
mistuning patterns for the reduction of the forced response effects of unintentional mistun-
ing: Formulation and assessment, Journal of Engineering for Gas Turbines and Power, 125
(2003), pp. 131–140, https://doi.org/10.1115/1.1498270.

[13] A. L. Claudia D’Ambrosio, Mixed integer nonlinear programming tools: an updated
practical overview, Springer Science+Business Media New York 2013, (2013), https://

doi.org/10.1007/s10479-012-1272-5.

[14] R. Conn, C. D’Ambrosio, L. Liberti, and D. Sinoquet, A trust region method for
solving grey-box mixed integer nonlinear problems with industrial applications. https://

mode2016.sciencesconf.org/file/223761.

[15] R. Conn, K. Scheinberg, and L. Vicente, Introduction to Derivative-Free Optimiza-
tion, Society for Industrial and Applied Mathematics, 2009, https://doi.org/10.1137/1.
9780898718768, https://epubs.siam.org/doi/abs/10.1137/1.9780898718768, https:
//arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9780898718768.

[16] A. Costa and G. Nannicini, Rbfopt: an open-source library for black-box opti-
mization with costly function evaluations, Mathematical Programming Computation, 10
(2018), pp. 597–629, https://doi.org/10.1007/s12532-018-0144-7, https://doi.org/
10.1007/s12532-018-0144-7.

[17] S. R. Dennis, J. E., Numerical Methods for Unconstrained Optimization and Non-
linear Equations, Classics in Applied Mathematics, Society for Industrial and Ap-
plied Mathematics, 1996, https://doi.org/10.1137/1.9781611971200, https://doi.

org/10.1137/1.9781611971200, https://arxiv.org/abs/https://doi.org/10.1137/

1.9781611971200.

[18] S. G. Dixon, L., The global optimization problem: an introduction, In: Dixon, L., Szego,
G. (eds.) Towards Global Optimization, North Holland, Amsterdam (1975), pp. 1–15.

[19] E. et al., The distance geometry of music, (2007).

[20] M. M. et al., Necklace swap problem for rhythmic similarity measure, (2005).

[21] B. F.Meunier, Computing solution of the paintshop necklace problem, (2011).

[22] H. Fredricksen and I. J. Kessler, An algorithm for generating necklaces of beads in
two colors, Discrete Mathematics, 61 (1986), pp. 181 – 188, https://doi.org/https://
doi.org/10.1016/0012-365X(86)90089-0, http://www.sciencedirect.com/science/

article/pii/0012365X86900890.

[23] D. Gabric and J. Sawada, Constructing de bruijn sequences by concatenating smaller
universal cycles, Theoretical Computer Science, 743 (2018), pp. 12 – 22, https://doi.

org/https://doi.org/10.1016/j.tcs.2018.06.039, http://www.sciencedirect.com/
science/article/pii/S0304397518304559.

[24] H.-M. Gutmann, A radial basis function method for global optimization, Journal of Global
Optimization, 19 (2001), pp. 201–227, https://doi.org/10.1023/A:1011255519438,
https://doi.org/10.1023/A:1011255519438.

https://doi.org/10.1115/1.1498270
https://doi.org/10.1007/s10479-012-1272-5
https://doi.org/10.1007/s10479-012-1272-5
https://mode2016.sciencesconf.org/file/223761
https://mode2016.sciencesconf.org/file/223761
https://doi.org/10.1137/1.9780898718768
https://doi.org/10.1137/1.9780898718768
https://epubs.siam.org/doi/abs/10.1137/1.9780898718768
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9780898718768
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9780898718768
https://doi.org/10.1007/s12532-018-0144-7
https://doi.org/10.1007/s12532-018-0144-7
https://doi.org/10.1007/s12532-018-0144-7
https://doi.org/10.1137/1.9781611971200
https://doi.org/10.1137/1.9781611971200
https://doi.org/10.1137/1.9781611971200
https://arxiv.org/abs/https://doi.org/10.1137/1.9781611971200
https://arxiv.org/abs/https://doi.org/10.1137/1.9781611971200
https://doi.org/https://doi.org/10.1016/0012-365X(86)90089-0
https://doi.org/https://doi.org/10.1016/0012-365X(86)90089-0
http://www.sciencedirect.com/science/article/pii/0012365X86900890
http://www.sciencedirect.com/science/article/pii/0012365X86900890
https://doi.org/https://doi.org/10.1016/j.tcs.2018.06.039
https://doi.org/https://doi.org/10.1016/j.tcs.2018.06.039
http://www.sciencedirect.com/science/article/pii/S0304397518304559
http://www.sciencedirect.com/science/article/pii/S0304397518304559
https://doi.org/10.1023/A:1011255519438
https://doi.org/10.1023/A:1011255519438


Bibliography 75

[25] S. K. Hock W, Test examples for nonlinear programming codes, Lecture Notes in Eco-
nomics and Mathematical Systems, Berlin: Springer, 87 (1981).

[26] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, Online appendix for aij
article “algorithm runtime prediction: Methods & evaluation”, Elsevier, (2013), :http:

//www.cs.ubc.ca/labs/beta/Projects/EPMs/EPMs-online-appendix-opt.pdf.

[27] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, Algorithm run-
time prediction: Methods & evaluation, Artificial Intelligence, 206 (2014), pp. 79
– 111, https://doi.org/https://doi.org/10.1016/j.artint.2013.10.003, http://

www.sciencedirect.com/science/article/pii/S0004370213001082.

[28] M. N. Izzat Alsmadi, String matching evaluation methods for dna comparation, Interna-
tional Journal of advanced Science and Technology, 47 (2012).

[29] M. Jiang, On the sum of distances along a circle, Discrete Mathematics, 308 (2008),
pp. 2038 – 2045, https://doi.org/https://doi.org/10.1016/j.disc.2007.04.025,
http://www.sciencedirect.com/science/article/pii/S0012365X07002555.

[30] M. Jiang., A linear-time algorithm for hamming distance with shifts, Theory Comput Syst,
44 (2009), p. 349–355, https://doi.org/10.1007/s00224-007-9088-4.

[31] S. Le Digabel, Algorithm 909: NOMAD: Nonlinear optimization with the MADS algo-
rithm, ACM Transactions on Mathematical Software, 37 (2011), pp. 1–15.

[32] H. Liao, J. Wang, J. Yao, and Q. Li, Mistuning Forced Response Charac-
teristics Analysis of Mistuned Bladed Disks, Journal of Engineering for Gas Tur-
bines and Power, 132 (2010), https://doi.org/10.1115/1.4001054, https://doi.org/
10.1115/1.4001054, https://arxiv.org/abs/https://asmedigitalcollection.asme.
org/gasturbinespower/article-pdf/132/12/122501/4881737/122501_1.pdf. 122501.

[33] L. S. . R. Liuzzi, G., Derivative-free methods for bound constrained mixed-integer op-
timization, Comput Optim Appl, 53 (2012), p. 505–526, https://doi.org/10.1007/

s10589-011-9405-3.

[34] S. Lucidi and V. Piccialli, An algorithm model for mixed variable programming, SIAM
Journal on Optimization, 15 (2005), https://doi.org/10.1137/S1052623403429573.
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