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ABSTRACT
Real industrial studies often give rise to complex optimization problems involving
mixed variables and time consuming simulators. To deal with these difficulties we
propose the use of a Gaussian process regression surrogate with a suitable kernel
able to capture simultaneously the output correlations with respect to continuous
and categorical/discrete inputs without relaxation of the categorical variables. The
surrogate is integrated into the Efficient Global Optimization method based on the
maximization of the Expected Improvement criterion. This maximization is a Mixed
Integer Non-Linear problem which is solved by means of an adequate optimizer: the
Mesh Adaptive Direct Search, integrated into the NOMAD library. We introduce
a random exploration of the categorical space with a data-based probability distri-
bution and we illustrate the full strategy accuracy on a toy problem. Finally we
compare our approach with other optimizers on a benchmark of functions.
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1. Introduction

The field of research around mixed integer non-linear programming (MINLP) has1

recently focused on designing algorithms specifically dedicated to finding global solu-2

tions. Nevertheless, this latter task is all the more difficult than the model to optimize3

is expensive to evaluate and thus often relies on the construction of a cheap-to-evaluate4

surrogate. Hence, iterative surrogate-based approaches have been developed in the lit-5

erature and can be decomposed, as presented in Muller et al. (2013), as6

(1) Build an initial experimental design and evaluate the optimized function7

(2) Compute the surrogate model based on the available evaluations8

(3) Select the next sample point(s) with respect to some improvement surrogate-9

based criteria10

(4) Update the surrogate model with the new evaluate point(s)11

(5) Iterate through (3) and (4) until a predefined stopping criterion has been met.12

In this context, the Efficient Global Optimization (EGO) method (Jones et al., 1998)13
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has given noticeable results, in particular, when dealing with expensive blackbox14

simulators, as in Kanazaki et al. (2015), Hamza and Shalaby (2014), Comola et al.15

(2016), for instance. EGO is based on a Gaussian process (GP) surrogate (Rasmussen,16

2006) and an adaptive strategy where one or more new points are iteratively selected,17

to be evaluated, with respect to the so called Expected Improvement (EI) criterion.18

This criterion offers a trade-off between exploitation and exploration by adding19

points around potential optima and unexplored areas. We propose to extend the20

EGO strategy to mixed discrete-continuous inputs and will specifically focus on21

the categorical case where no order is presumed on the discrete variables. To deal22

with discrete variables we make use of a dedicated kernel proposed in the literature23

of GP based surrogates (Zhou et al., 2011; Qian et al., 2008). We then integrate24

this surrogate into the EGO strategy. Once the surrogate is able to deal with25

categorical variables, the difficulty lies in the optimization of the EI criterion. This26

latter sub-optimization problem is also a mixed continuous-discrete one, but with27

an EI function that is relatively cheap to evaluate. Up to this point our strategy is28

very similar with the recent work of Pelamatti et al. (2018). But instead of relaxing29

the categorical variables into ordered integer or continuous variables, we use the30

Mesh Adaptive Direct Search algorithm (Audet and J. E. Dennis, 2006) available31

in the NOMAD library to solve the mixed categorical-continuous sub-problem.32

This algorithm initially requires a notion of proximity in order to explore the input33

space and can therefore straightforwardly deal with continuous and ordered integer34

variables. In the presence of categorical variables the discrete space exploration is35

left to the user in the NOMAD implementation. We take advantage of this latter36

opportunity and develop a random exploration strategy of the discrete space, given37

by a discrete probability distribution that can evolve as the optimization proceeds.38

39

In comparison with the current literature that we are aware of, the contribution of40

this article relies on three points. Firstly, we propose to deal, from the beginning41

to the end, with both continuous and discrete variables in the surrogate based42

optimization without relaxing categorical variables to integer or continuous ones.43

Secondly we construct a discrete distribution used to explore the categorical vari-44

ables randomly within the EI maximization with NOMAD. Lastly we propose a45

comprehensive presentation and comparison with some well established radial basis46

functions (RBF) surrogate-based approaches of the literature. Indeed most of the47

literature on RBF-based optimization does not discuss the importance of kernels and48

hyper-parameter choices and the key implication/simplification it can involve in the49

problem formulation.50

51

In section 2, we will introduce the main context and notations, followed in section 352

by a review of the GP surrogate approach: model, kernels and discussion. In section53

4, the EGO algorithm framework adapted to the discrete case is presented, with a54

focus on NOMAD algorithm for the Expected Improvement criterion optimization.55

In section 5, we introduce a novel discrete probability distribution for the random56

sampling of the categorical variables within NOMAD. In section ??, we present a57

couple of surrogate-based methods for comparison and discuss the similarities and58

differences with our approach. Finally in section 6 we apply the proposed methodology59

to a benchmark of test functions and we compare our method with other surrogate60

optimization methods based on RBF.61

62
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2. Context and notations63

Our approach can be placed in the framework of ”engineering models” optimization64

as introduced in Swiler et al. (2014). Our purpose is to tackle optimization prob-65

lems involving computationally expensive simulators with a moderate number of66

optimization variables. Indeed, in the high-dimensional input cases, the number of67

data points necessary to capture the function structure increases more rapidly when68

categorical variables are involved; therefore, dealing with high-dimensional inputs69

with expensive-to-evaluate simulators is rather difficult. We give a hint on the reason70

why this difficulty arises in section 3.3 in the context of Gaussian process based71

optimization.72

73

The function to optimize will be denoted by f and the mixed parameters by w =74

(x, z) where x represents the continuous variable vector of dimension p and z the75

integer/categorical one with dimension q. The discrete vector z is supposed to be76

defined on I =
∏q
i=1 Ii where Ii is a finite discrete set. If zi is categorical then no77

order is pre-supposed and Ii = {1, ...,mi} where mi is the number of levels of the i-th78

categorical variable. The integers 1 to mi are simply representation of the levels. In79

the integer case, Ii is defined as Ii = {a1, ..., ami
} where the aj ’s are ordered integer80

numbers such that j ≤ k implies aj ≤ ak.81

Our aim is to solve the following optimization problem:82

minimize
w∈Rp×I

f(w)

subject to x ∈ B ⊂ Rp,
(1)

where B defines bound constraints. In the sequel we suppose that an initial design of83

experiment (DoE) is given: w = {w1, ..., wn0}, with wi ∈ Rp×I and the corresponding84

responses y = (y1, ..., yn0
) such that yi = f(wi). The DoE will be iteratively enriched85

with respect to an optimization scope as explained in the next sections. The chosen86

initial DoE, of size n0, is the concatenation of independent Latin hypercube samplings87

(LHS) (McKay et al., 1979; Santner et al., 2003), with respect to the continuous88

variables, each of size n0,i. We will further specify the chosen n0,i in the numerical89

section. This kind of DoE displays good properties for GP surrogates in a sample of90

test cases presented in Swiler et al. (2014). The results are competitive with sliced-91

LHS (Qian, 2012) which are theoretically an adequate option for mixed designs but92

more difficult to obtain. For these reasons, we just settle for the independent LHS DoE.93

94

We now describe the first step of the proposed methodology which consists of the95

construction of a Gaussian process surrogate of f .96

3. Gaussian process surrogate with mixed inputs97

3.1. GP Surrogate Model98

Gaussian process models are flexible and efficient surrogates of complex computer99

codes. The popularity of GP stems among other things from the availability of the100

prediction distribution estimate. For the purpose of optimization, the availability of101

the prediction distribution estimation opens up the possibility to devise refinement102

strategies based on some measure of improvement in the regions of interest. We will103
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discuss this latter point in the next section.104

We now present a specific Bayesian approach of the GP regression, as presented in105

Helbert et al. (2009), that will be used in the numerical tests. The GP regression is106

based on the hypothesis that the function f is a realization of a Gaussian process fG107

defined by a linear regression trend µ : Rp × I → R, a constant variance σ2 and a108

correlation function Kθ : (Rp × I)2 → [−1, 1] with hyper-parameters θ. The constant109

variance and the hyper-parameters are assumed known at this stage. For the sake110

of simplicity, the trend regression term will only take into account the continuous111

variables such that112

µ(w) =

l∑
i=0

βihi(x),

where, for i = 0, 1, ..., l, hi are known functions (that have been chosen by the user113

from his prior information on the function trend), βi are random coefficients modeled114

with some improper prior distribution and l is a non-negative integer. A mixed variable115

trend could be considered but not treated in this work. The conditional random process116

f cG := fG knowing that fG(w1) = y1, ..., fG(wn) = yn

is then known to also be Gaussian. f cG has known mean µc and correlation function117

Kc such that118

µc(w) = hT (x)β̂ + rT (w)R−1(y −Hβ̂) (2)

and, in particular, the prediction variance σ2
c (w) = σ2Kc(w,w) is given by119

σ2
c (w) = σ2

[
1− rT (w)R−1r(w) + vT (w)(HTR−1H)−1v(w)

]
(3)

where the correlation matrix R of the DoE is defined by Rij = Kθ(w
i, wj), i, j =120

1, . . . , n. The cross-correlation vector between the prediction and the observations is121

denoted by r(w) =
[
Kθ(w,w

i)
]n
i=1

, while H is the matrix defined by Hij = hj(x
i),122

1 ≤ i ≤ n, 1 ≤ j ≤ d and v(w) = HTR−1r(w)− h(x). The vector β̂ is explicitly given123

by124

β̂ = (HTR−1H)−1HTR−1y. (4)

Hence, for known hyper-parameters θ and variance σ2, the predictor is given by µc (2)
as in Sacks et al. (1989).
We calibrate the hyper-parameters and the variance by maximizing the log-likelihood.
This log-likelihood is the logarithm of the probability of observing the experimental
data with our GP model parametrized by θ and σ2, i.e.

L(θ, σ2) = ln
[ 1

(2πσ2)n/2|R|1/2
exp

(
− 1

2σ2
(y −Hβ̂)TR−1(y −Hβ̂)

)]
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The first-order optimality conditions result in analytical formula for σ2 as a function125

of θ, namely,126

σ2(θ) =
1

n
(y −Hβ̂)TR−1(y −Hβ̂). (5)

This latter expression of σ2(θ) is plugged in the log-likelihood. The ”plugged-in” or127

”concentrated” log-likelihood then boils down to128

L(θ, σ2(θ)) = −1

2

[
n ln

(
σ2(θ)

)
+ ln(|R|) + n+ n ln(2π)

]
(6)

and has to be maximized with respect to θ. The gradient of the ”concentrated”129

log-likelihood is analytical so that this non-linear optimization problem is generally130

tackled with a multi-start BFGS algorithm (Roustant et al., 2012).131

132

Finally, the surrogate of the objective function is the conditional mean µc given by133

(2) in which we have plugged-in the hyper-parameter solution of the log-likelihood134

(6) optimization. In the sequel, we designate this surrogate by f̂ . For the prediction135

variance we also use the version with the plugged-in optimal hyper-parameters in (3)136

denoted by σ̂c in the following.137

138

We will now give more insight on the importance of the correlation kernel choice139

and the nature of the θ hyper-parameters in the continuous-discrete mixed variables140

context.141

3.2. Correlation kernel for mixed-inputs142

In this section we do not intend to present in details the large amount of literature on143

the correlation kernel choice and its implications in GP. Our aim is to give a sufficient144

intuition of its importance and to present the kernel we selected.145

We first notice in (2) that the prediction at any point w can be written as the sum of146

a trend term and a linear combination of r(w) = Kθ(w,wi). Hence the GP predictor is147

deeply impacted by the kernel choice. The mixed kernel, defined in (Rp×I)2, is typically148

constructed with the association of two separate kernels: one for the continuous part149

defined in (Rp)2 and another one for the categorical part defined in I2 such that150

Kθ(w,w
′) = KθCont

(x, x′)×KθCat
(z, z′)151

with w = (x, z) ∈ Rp× I and w′ = (x′, z′) ∈ Rp× I. The vectors θCont and θCat are the152

hyper-parameters associated with their respective kernels. These latter will be defined153

in next paragraphs.154

Correlation kernel for continuous variables. The continuous kernel part is the155

standard product of 1-D correlation kernels such that156

KθCont
(x, x′) =

p∏
i=1

Kθi(xi, x
′
i)

157
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with θCont = (θ1, ..., θp). In our context these hyper-parameters are called correlation158

lengths.159

For the continuous part, the degree of smoothness of the stationary GP surrogate is di-160

rectly linked to the degree of smoothness of the associated positive definite correlation161

kernel (Rasmussen (2006), section 4.1.1). Moreover, for a 1-D kernel, the correlation162

length is associated with a notion of regularity, which is defined in Adler (1981) as163

the mean number of up-crossings of a given level u by the GP (a continuous random164

process achieves an up-crossing of a given level when its values crosses the level from165

below). The smaller (higher) the correlation length the higher (smaller) is the mean166

number of up-crossings. In the numerical applications we selected the anisotropic sta-167

tionary Matern-5/2 correlation kernel which offers enough flexibility to adequately168

capture the variability of numerous objective function depending on the choice of the169

correlation lengths:170

KθCont
(xi, xj) =

p∏
k=1

(
1 +

√
5|xik − x

j
k|

θk
+

5(xik − x
j
k)

2

3θ2
k

)
exp

(
−
√

5|xik − x
j
k|

θk

)
.

171

Note that the correlation lengths, θCont, do not depend on the categorical levels which172

by construction implies that the correlation lengths are similar for all levels. In order173

to limit the number of hyper-parameters (and therefore the potential number of black-174

box simulations required to assess them) we assume this independence between the175

continuous hyper-parameters and the categorical levels. A version with dependence176

between continuous and categorical parameters is presented in Qian et al. (2008) and177

used in Han et al. (2009) in a Bayesian context. Thus the continuous/categorical inde-178

pendence hypothesis could be relaxed but at a computational cost which we will avoid179

for the benchmark tests presented in this paper.180

Correlation kernel for categorical variables. In order to treat the categorical181

variables, different types of correlation kernel can be constructed and recent works in182

the literature focus on the implications and the relevance of the choice of these kernels.183

Again, here our goal is only to give an understanding of the nature and importance184

for the model of the kernel for categorical variables. For more details we invite the185

reader to see for instance: Pinheiro and Bates (1996), Qian et al. (2008), Pinheiro and186

Bates (2009), Zhou et al. (2011), Zhang and Notz (2015), Roustant et al. (2018) and187

Pelamatti et al. (2018).188

Hereafter, the ith categorical level is the value taken by zi, and a global-level, denoted189

by c, is defined as a set of values assigned to the vector of categorical variables z. The190

total number of global-levels is given by191

NGL =

q∏
i=1

mi, (7)

with mi the number of levels of the ith categorical variable. The most flexible approach192

is then achieved by choosing the correlation kernel, defined on the finite set I2, as the193

correlation matrix T whose N2
GL elements are the correlations between global-levels194

pairs. This correlation kernel is thus defined as195

KθCat
(ci, cj) = Tci,cj , (8)
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for two global-levels ci and cj . Since the hyper-parameters represent correlations be-196

tween global-levels, the matrix T must be unit diagonal, symmetric and positive def-197

inite. In total generality, the elements of the matrix T are the NGL(NGL − 1)/2 cat-198

egorical hyper-parameters. Another approach considers independently the correlation199

between levels for each categorical variable. This involves q correlation matrices T (k)
200

of size m2
k and the kernel is defined as201

KθCat
(ci, cj) =

q∏
k=1

T
(k)
cki ,c

k
j
, (9)

where ci and cj are two global-levels with, respectively, k-component: cki and ckj .202

In this case the number of hyper-parameters is reduced to
∑q

i=1mi(mi − 1)/2. In203

both cases, the kernels (8) and (9) take values in [−1, 1]. The latter approach can204

be justified by an hypothesis on the underlying structure of the GP model; i.e., it205

is supposed to be a weighted sum of independent GPs with the same correlation206

function KCont (one GP per level), see Qian et al. (2008) for further details.207

208

The reduced number of hyper-parameters therefore comes with an underlying209

hypothesis on the structure of the GP which might not be adequate in some cases,210

in the sense that even the maximum log-likelihood solution θ could give a poor211

representation of the objective function if the underlying GP model structure is too212

far from the real function. In this case the approach (8) with NGL hyper-parameters213

might be more appropriate if affordable. In the sequel we will use (9) as categorical214

kernel for computational cost reasons.215

216

To simplify the log-likelihood optimization task which is a difficult positive definite217

constrained optimization problem with respect to the correlation matrix, we adopt218

the spherical parametrization of the Cholesky decomposition of each matrix T (k) as in219

Zhou et al. (2011). This latter trick transforms the previous constrained log-likelihood220

optimization problem into a box constrained one that can be solved with a BFGS221

algorithm (Byrd et al., 1995). In the sequel, θCat is the categorical hyper-parameter222

vector of size223

NθSC =

q∑
i=1

mi(mi − 1)

2
(10)

composed of the spherical coordinates associated with the correlation matrices.224

3.3. Discussion on the dimension of the input variables and225

hyper-parameters226

We could further try to reduce the number of correlation parameters to be estimated227

but this would imply further simplifications of the model. Since our aim is to use228

this model to approximate black-box functions, on which little information on229

regularity is known, we prefer to adopt a flexible kernel. In fact our objective is230

to find the best trade-off between the flexibility of the model (good approximation231

skills) and its estimation cost (number of experiments required to well determine the232

hyper-parameters). We will discuss these points in the following.233
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234

Kernels for categorical variables often boil down to the product of correlation factors235

between the different levels. To save computational expenses, one can assume the236

same correlation between all the levels or at least per group (group to be defined237

as proposed in Roustant et al. (2018)). In this paper, we decided to not introduce238

this kind of prior information. Nevertheless, the kernel flexibility comes with a239

price. Indeed, the selected categorical kernel (9) involves a number of correlations to240

estimate that can increase rapidly with the number of levels as shown in (10). The241

more hyper-parameters we introduce, the greater is the flexibility of the surrogate242

model but in return more data points are required to capture enough information to243

”feed the flexibility”. In this context, we will limit ourselves to applications with a244

few categorical variables with moderate number of levels. A large range of industrial245

problems falls in this framework (Swiler et al., 2014). Indeed, prior knowledge of246

mechanical engineers is often used to limit the number of possible levels of the247

categorical variables. For instance, in optimal design of a mechanical system, a few248

types of materials, predefined shapes or structures are selected beforehand.249

250

4. Efficient Global Optimization with mixed inputs251

4.1. Global optimization based on the Expected Improvement criterion252

Once the hyper-parameters are tuned on the current DoE, the GP model is completely253

defined and can be used in an adaptive optimization scheme. The Efficient Global254

optimization strategy (Jones et al., 1998) relies on the posterior distribution of the GP255

model which enables us to assess the distribution of the following random improvement256

of f minimization:257

258

I(w) = fmin − f cG(w) (11)

and the related Expected Improvement (EI)259

EI(w) = E
(

max
(
0, I(w)

))
(12)

where fmin = min(y1, ..., ynk
) and nk the size of the DoE at the k-th iteration of the260

method. This criterion gives a measure of the expected improvement achievable at a261

new point w (i.e. expectation to go below the current minimum) based on the known262

responses at the known available simulated points w1, ..., wnk
and the GP surrogate263

estimated distribution. The Gaussian hypothesis enables the implementation of the264

following closed formula of the EI criterion (Schonlau, 1997)265

EI(w) = (fmin − f̂(w))Φ
(fmin − f̂(w)

σ̂c(w)

)
+ σ̂c(w)φ

(fmin − f̂(w)

σ̂c(w)

)
(13)

where φ is the standard univariate Gaussian distribution and Φ its cumulative266

distribution function. This criterion offers a built-in exploration-exploitation measure267

for the optimization strategy.268

269
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We can now define the next point to simulate in our optimization scheme as the270

point that maximizes the EI criterion. After evaluating the new point we can update271

the GP model with the same hyper-parameters or update the θ’s too by maximizing272

the updated log-likelihood. In the numerical results we will update the GP and the273

hyper-parameters at each step.274

275

At this stage, we can mention the work of Taddy et al. (2009) and Gramacy and Taddy276

(2010) where a Tree GP (TGP) strategy is presented. On a tree structure, they propose277

to construct a GP surrogate for each global-level independently: corresponding to the278

leaves of the tree. The EI criterion (only depending on the continuous variables) is279

evaluated on a sampled grid and the locations ranked with respect to their EI values280

in an iterative manner. This seems to us rather costly and does not take into account281

any correlation between the levels. Indeed a dense grid, per global-level, has to be282

evaluated at each step. Nevertheless, this strategy is interesting as it enables to select,283

from the ranking, not only one point but a batch of points to be evaluated at each284

iteration. Adding only one point at the time would be equivalent to a simple grid285

search per global-levels. We believe that doing one optimization per global-level would286

give better results. This latter ”per level” optimization strategy will be evaluated in287

the numerical section and as mentioned will be considered equivalent or better than a288

TGP with one point added at the time. Since our actual implementation of EGO does289

not add batches of points, we will not compare it to the corresponding batch-TGP in290

this paper.291

4.2. NOMAD for the EI criterion optimization292

The maximization of the EI criterion is also a mixed continuous-discrete problem293

but with an objective function relatively cheap to evaluate. Sampling strategies are294

sometimes preferred to optimize the improvement criterion (Muller et al., 2013) but295

this seems inefficient since the parameter space to explore can be very large especially296

with categorical variables.297

To tackle this EI-maximization task we used the derivative free Mesh Adaptive Direct298

Search (MADS) algorithm (Audet and J. E. Dennis, 2006). MADS is a robust opti-299

mization method which can be used on a very wide range of non-linear optimization300

problems. Nevertheless, when the direct search algorithm is not coupled with a surro-301

gate model, the number of simulations required to reach the optimum can sometimes302

be impractical when dealing with expensive-to-evaluate black-box models. For these303

reasons we decided not to use MADS on the main optimization problem (1) but it304

appears as a good tool for the EI maximization sub-problem.305

We will now briefly describe the MADS algorithm and introduce our randomized306

approach for the categorical space exploration in the next section.307

The MADS algorithm consists of iteratively evaluating new trial points on an308

adaptive mesh. Each iteration is divided into two steps: the search and the poll309

steps. In the search step, a given number of trial mesh points are evaluated around310

the current best point. If a better point (smaller value of the function) is found311

the mesh is coarsened, if no improvement is achieved, the poll step is invoked. In312

the poll step, new points to evaluate are chosen along random positive spanning313

directions within a limited distance of the current best point. This distance is314

controlled by a poll size parameter which is greater than or equal to the current315

mesh size. This latter choice enables a possible dense exploration within the area316

9



centered on the current best point and ensures convergence of the algorithm under317

mild hypotheses on the objective function (Audet and J. E. Dennis, 2006). Then,318

(Abramson et al., 2009) added to the MADS algorithm the notion of discrete319

neighbourhood, introduced in (Audet and Dennis, 2000). Also an additional extended320

poll step is introduced and triggered when no improvement is found in the two321

previous steps: a poll step is then performed around each point associated with322

an objective function value close enough to the current best one. This additional323

step can, in practice, help the algorithm to escape from some local optima. The324

described method is implemented in the NOMAD software and offers the option of a325

user-defined neighbourhood notion for the categorical variables for the poll step. We326

will use this capacity to define a probability based notion of proximity in our approach.327

328

5. Random sampling of categorical variables within NOMAD for EI329

optimization330

Often in the literature, categorical variables are coded as integers and then treated331

as real numbers or ordered integers. In this way the notion of neighbourhood is332

straightforward: often based on some lp norm. In other cases categorical variables are333

coded as binaries (Potdar et al., 2017). In the binary space a notion of proximity is334

based on the number of flips necessary to pass from one global-level to another one335

(Hamming distance). These approaches can be useful when the user is able to define336

an imposed order on the categories or if the ”binary flipping” proximity model has a337

real physical meaning. If this kind of information is not available, the ordering or/and338

the notion of proximity is clearly arbitrary and might skew the exploration in the339

optimization.340

341

In this context it seems natural to assume that, without any prior information avail-342

able, no proximity assumption should be introduced. A better approach seems to343

model the categorical variables as random variables with a discrete probability on the344

global-levels. So that, at each stage k of the optimization process of (1) (nk points345

have been evaluated), the probability for the randomized categorical vector Zk to take346

the global-level ci is pk,i for i = 1, ..., NGL.347

Within NOMAD, the aim of the extended poll step is to propose a new categorical348

position from the current one. Since no proximity assumption between categorical349

variables is considered, we suppose that the proposed random position, ZPollk , should350

be chosen independently from the current one: ZCurrentk . But ZPollk has to be different351

from the current position. So that the probability of switching from one current global-352

level to another in the poll step is given by353

P(ZPollk = ci|ZCurrentk = cj , Z
Poll
k 6= cj) =

pk,i
1− pk,j

(14)

for i 6= j and 0 otherwise. Hence, at each step in the NOMAD algorithm, the user-354

defined neighbor of the current categorical variable is determined by sampling a global-355

level poll point according to the probability (14). Multiple global-level-polls points356

could be sampled similarly.357

A first and natural idea to model the discrete probabilities (pk,i)i=1,...,NGL
is to consider358
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a uniform distribution so that359

P(ZPollk = ci|ZCurrentk = cj , Z
Poll
k 6= cj) =

1

NGL − 1
. (15)

In this case all global-levels (different from the current one) have the same probability360

to be chosen in the extended poll step of iteration k. In order to take advantage of361

the information on the distribution of the objective function evaluations on each362

global-level, we propose another approximation of pk,i in (14) based on a non-uniform363

discrete probability on the global-levels. We know, in particular, which global-levels364

have been more or less explored and which global-level is associated with the smallest365

objective function values. This information is already integrated within the EI366

function definition and its maximization should provide us the best next points in367

unexplored areas or areas where minimal objective function values are expected.368

Nevertheless, the extended poll step based on (15) does not explicitly use this369

information. We thus propose to integrate, in the extended poll step, the information370

learned from simulations of previous optimization iterations. This leads us to explore371

the global-levels randomly with respect to an ”informative” probability distribution372

defined hereafter.373

374

To give a hint on the relevance of the proposed discrete distribution, we can study the375

improvement criterion376

ICat(z) = max(0, fmin −M(z)),377

with fmin = min(y1, ..., ynk
) and378

M(z) = min
x∈B

f cG(x, z)
379

and z ∈ {c1, ..., cNGL
}. For each z, M(z) is a real random variable with cumulative380

distribution Ψz
1, mean M̄(z) and standard deviation σM (z). The expectation of this381

criterion can be developed as382

E(ICat(z)) = (fmin − M̄(z))Ψz

(
fmin

)
+ σM (z)E

[M(z)− M̄(z)

σM (z)
1M(z)≤fmin

]
, (16)

where 1 stands for the indicator function. Unfortunately, the quantity (16) can not383

be further computed since the distribution of M(z) is unknown and too costly to ap-384

proximate empirically. Nevertheless, we will see that the proposed discrete probability385

presents some similarities with the terms involved in (16). We also should keep in mind386

that the prior information we hope to integrate in the EI exploration (13) has to be387

available at a small computational cost at least smaller than an intensive sampling388

of EI function, which can become cumbersome when the number of global-levels in-389

creases.390

We propose that the discrete distribution on the global-levels integrates the density391

of evaluated points at each global-level. To achieve this goal, we introduce pgk,i as the392

probability that the global-level ci has not been fully explored. The quantity pgk,i should393

thus be close to one when the global-level ci needs more exploration. This quantity is394

1Ψz is not necessary Gaussian
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similar to the term σM (ci) in (16) which is large when uncertainty for the global-level395

ci is large. Furthermore, the discrete distribution should integrate the potential of each396

global-level to contain the global minimum. For this purpose we introduce pmk,i as the397

probability that the global-level ci has a high potential of containing the minimum.398

Therefore, pmk,i will present some similarity with the term Ψz(fmin) involved in (16).399

Finally, pk,i, the probability of global-level ci, is given by a weighted sum of the two400

previously introduced probability distributions, that is401

pk,i = P(Zk = ci) = αkp
g
k,i + (1− αk)pmk,i ∀i = 1, ..., NGL (17)

where k stands for the optimization iteration and αk ∈ [0, 1] is a weight parameter.402

As k increases, the discrete distribution pgk,i should converge to the zero discrete403

distribution since all global-levels will be fully explored. The probabilities pmk,i should404

converge to a discrete distribution that is zero for all i except for the one associated405

with the global-level containing the global minimum.406

407

We define hereafter approximations of pgk,i and pmk,i. The probability that the global-408

level ci is not fully explored is approximated by409

p̂gk,i = 1−
(nk,i
nk

)l
, (18)

with nk,i the number of evaluated points in the global-level ci at iteration k, nk the410

total number of evaluations of the objective function at iteration k and l > 0 (l = 1/2411

in the numerical results). Then, the probability p̂gk,i depends on the proportion of412

points currently evaluated in the corresponding level. Selecting a decreasing sequence413

αk in (17), with respect to k, will force αkp̂
g
k,i to go towards zero, and in a sense to414

mimic σM (ci) in (16).415

The probability that the global-level ci contains the minimum is approximated by416

p̂mk,i =
SRk,i∑NGL

j=1 S
R
k,j

, (19)

with SRk,i an approximation of Ψz(fmin) in (16) for z = ci. The chosen model for SRk,i is417

detailed in appendix A. It is defined as a function of the mean of the function values418

available for global-level ci and the associated standard deviation.419

Hence, NOMAD extended poll provides a global-level sampled according to (14)420

with pk,i given by (17) and pgk,i, p
m
k,i respectively by (18) and (19).421

422

To summarize, the randomized approach for the extended poll step is based on423

available evaluated objective function data (initial DoE and from previous iterations),424

and is a trade-off between focusing on under-explored global-levels and the ones425

with potential optimality. The selected discrete distribution can be seen as a prior426

information integrated in the extended poll step. In the uniform case (15), the prior is427

non-informative, and we expect the NOMAD optimization to converge asymptotically,428

since all levels will be fully explored with probability one. When the proposed poll429

step proposition is given by (14) combined with (17), as described, we expect an430

accelerated recovery of the optimal EI which is illustrated by our numerical tests. The431

proof of convergence of the NOMAD algorithm with this latter extended poll scheme432

12



seems tricky and dependent on the tuning parameters αk, bk,i and σ̂k,i. Nevertheless,433

we are confident that it will at least converge to a local minimum which seems434

sufficient for the iterative (with respect to k) EI optimization. Convergence analysis435

will be the subject of a further work.436

437

6. Numerical results438

6.1. Two competitive approaches439

In the numerical part we will compare our approach, denoted by Cat-EGO, to two440

different methods based on a radial basis function (RBF) surrogate: RBFOpt and441

MISO-CSTV(f). We will refer to the latter one as MISO. For details on the two algo-442

rithms we refer the reader to the corresponding papers, Gutmann (2001); Costa and443

Nannicini (2018) for RBFOpt and Muller (2016) for MISO.444

Hereafter, we list the main differences bewteen these two methods and our approach.445

First of all, MISO performs a local continuous optimization with categorical variables446

fixed at the values corresponding to the current best point. Concerning RBFOpt, an447

automatic selection of the kernel within the predefined set K is performed by using448

a cross-validation scheme. One last significant difference between the MISO/RBFOpt449

strategies and ours is the initial DoE size. It is of the order of magnitude of 2(p+q+1)450

for MISO and RBFOpt. This value corresponds to an approximation of the minimal451

number of data points required for the surrogate to be well fitted. Since our kernel452

has much more hyper-parameters, an adequate size of the initial DoE has to be much453

larger in order to sufficiently feed the surrogate model learning stage. Our DoE size454

is generally between 3 × p × NθSC
, with NθSC

given by (10), and 3 × p × NGL with455

NGL given by (7). This latter size gives more robustness to the hyper-parameter op-456

timization but becomes rapidly prohibitive if the problem involves a large number of457

global-levels NGL.458

The differences in DoE size appear as a consequence of the treatment of the categor-459

ical variables as continuous by both MISO and RBFOpt. This offers a much simpler460

function basis approach but also drastically reduces the potential to learn information461

within categorical global-levels. More precisely, no correlation is estimated between462

the global-levels. This correlation information helps for the global-level exploration:463

indeed, if two global-levels are detected as strongly correlated, then only one has to464

be explored. Another consequence of treating categorical variables as continuous is465

that a continuous interpolation between the global-levels is done: it assumes that the466

underlying regularity of this hypothetical continuous approximation of the categor-467

ical variables can be captured by the selected radial basis function. Moreover, the468

radial basis function model implicitly assumes stationarity of the approximated func-469

tion with respect to all variables, which is a very strong assumption when imposed on470

the categorical variables (when treated as continuous).471
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6.2. A baseline function: exploration improvement for categorical472

variables473

We consider a two-dimensional toy problem with one categorical variable with 10 levels
defined as

f(x, z) =



cos(3.6π(x− 2)) + x− 1 if z = 1,
2 cos(1.1π exp(x))− x

2 + 2 if z = 2,
cos(2πx) + 1

2x if z = 3,
x(cos(3.4π(x− 1))− x−1

2 ) if z = 4,

−x2

2 if z = 5,
2 cos(π4 exp(−x4))2 − x

2 + 1 if z = 6,
x cos(3.4πx)− x

2 + 1 if z = 7,
x(− cos(7π2x)− x

2 ) + 2 if z = 8,

−x5

2 + 1 if z = 9,

− cos(5π2x)2√x− ln(x+0.5)
2 − 1.3 if z = 10.

This problem has several local minima with close function values (see Figure 1). Some474

correlations between the individual one-dimensional functions associated with given475

levels can be observed: e.g. functions at levels 7 and 10 are strongly correlated whereas476

functions at levels 4 and 7 are anti-correlated.477

NOMAD implementation for integer variables is compared on the minimization of478

this function with the two proposed randomized poll steps for categorical variables:479

uniform sampling and improved sampling which takes into account the current480

simulated data distribution. The methods are run 100 times with different initial481

points (the best of 5 randomly sampled points) in order to measure the robustness482

of the methods. Figure 2 and 3 illustrate the effect of randomized categorical poll483

steps on NOMAD results: the percentiles of runs reaching the global minimum area484

increases from 40% to 60% (Figure 3) and the associated objective functions are485

closer (see outliers in Figure 2 (right)). In comparison to the uniform strategy, the486

improved approach shows more robust results with an higher rate of global minima487

discovery.488

489

In a second analysis, we compare the three NOMAD implementations on a ”real”490

EI function optimization. For this aim, we ran 800 times the EGO algorithm up to491

the tenth iteration: EGO is run 80 times from random design of 5 experiments and492

each iteration is performed 10 times to take into account the randomness of the EI493

minimization methods. We present the results obtained for the next optimization (for494

each of the 800 runs) of the EI function (the eleventh iteration) with the three NOMAD495

implementations and two ”per level” optimizations. The last two methods consist of496

continuous optimizations with NOMAD and a multi-start BFGS method with fixed497

categorical variable. For the mentioned example, ten 1D continuous optimizations are498

run and the best EI of the 10 runs is considered as the solution. For NOMAD methods499

applied on the mixed continuous-categorical space, 30 individual initial points are500

uniformly sampled in the full space and NOMAD is run from the best point (minimal501

EI). NOMAD-per-level is initialized by the best point of 3 uniformly sampled points502

for each level and BFGS is run 3 times from 3 uniformly sampled initial points per503

level.504

Figure 4 displays the absolute EI errors of the solutions of the 5 methods compared505

to the best EI among the solutions of all methods. We observe that the EI errors506

14



obtained by the 5 methods are very close. NOMAD-per-level is more robust with a507

very small errors for all runs, whereas the BFGS per level approach is less robust.508

The latter method might converge to local solutions, whereas, NOMAD is a more509

global method. On the other hand, in Figure 5 we observe that the number of510

iterations necessary to reach the global EI is much larger for NOMAD-per-level511

and NOMAD-integer, and slightly larger for the BFGS method compared to the512

2 NOMAD methods with the randomized poll steps for categorical variables. The513

accuracy of the strategies that consider each level independently comes with an514

higher number of simulation cost. On this example, no significant differences are515

noticeable between the uniform and the improved strategies. The same analysis has516

been achieved with different EI-shaped functions associated with different iterations517

of EGO, and similar conclusions are obtained on these cases.518

519

Since the EI maximization is only a sub-optimization problem of the global cat-EGO520

strategy, we now present the results of Cat-EGO on the toy example for the EI521

maximization with the two proposed randomized NOMAD implementations and the522

two ”per-level” approaches with NOMAD and multi-start BFGS. The Cat-EGO523

results are compared for 2 simulation budgets of 40 and 50. First, in Figures 6 and524

7, we observe that the random sampling based strategies (Uniform and Improved525

sampling) are more robust with regard to reaching the global optima with high526

accuracy (0.001) for all the stopping criteria. The lack of robustness of multi-start527

BFGS (for high accuracy) can be explained by the local optimization approach528

of BFGS on the EI function which makes difficult ”exploitation” of Cat-EGO. To529

improve the exploration in this method, we should add more initial points for the530

multi-start approach but it will become cumbersome for higher dimensions. On the531

other hand, after a sufficient number of iterations (as for 40 and 50 simulations), the532

multi-start BFGS strategy is very efficient in finding the settings of the categorical533

variables at optimality (see percentages of success with accuracy 0.1: 85% and 90%).534

NOMAD per level is less efficient in reaching the ”right” level (74% and 78%) but is535

more accurate in the optimization in continuous variable due certainly to its global536

optimization skills (68% and 75% for accuracy 0.001 comapred to 49% and 63% for537

multi-start BFGS approach). In comparison to the two random sampling NOMAD538

strategies, the 2 ”per-level” EI maximization approaches are less efficient in reaching539

the global optimum with high accuracy for the 2 simulation budgets: from 72% to540

86% for accuracy 0.001.541

The uniform sampling approach gives better results than the improved sampling542

approach when the number of simulations is large enough: for a budget of 50543

simulations, its percentage of success for the two accuracies are larger. The improved544

sampling results in better percentages of success during the first iterations (see results545

for the budget of 40 simulations) but seems to bias approximatively 5% to 7% of the546

100 runs, leading to a smaller percentage of success in comparison with the uniform547

sampling after 50 simulations. We remind that the tuning parameter αk (17) was set548

to zero in the numerical results and we expect a better behavior from the improved549

strategy with an adequate adaptive tuning of αk, increasing the exploration of levels550

of the categorical variables compared to exploitation when necessary (the uniform551

sampling performs only exploration).552

553

In the next section the Cat-EGO will always be run with the NOMAD improved554

random sampling poll step.555
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Figure 1. Toy problem with one continuous variable and one categorical variable with 10 levels. The global

minimum is located at x = 0.808 on level 10 of the categorical variable, the associated objective function value
is -2.329. Solutions obtained by 100 runs of NOMAD with 3 different poll step strategies (adapted to integer,

uniform sampling, ”improved” sampling).

(a) Histograms of minimal objective functions (b) Box-and-whisker plots of minimal objective functions

Figure 2. Minimal objective functions for 100 runs of NOMAD with 3 different poll step strategies (adapted
to integer, uniform sampling, ”improved” sampling). (a) Histograms of minimal objective functions. (b) Box-

and-whisker plots of minimal objective functions, red lines indicate the medians (middle quartiles), the boxes

include 50% of the values, the whiskers cover 99.3% of the values (under Gaussian distribution assumption),
the red crosses being considered as outliers. The circles are the 100 minimal objective functions.
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(a) Accuracy of 0.1 (percentiles of success) (b) Accuracy of 0.001 (percentiles of success)

Figure 3. Box-and-whisker plots of the number of simulations necessary to reach the minimal objective

functions with two given accuracies (0.1 and 0.001) for 100 runs of NOMAD with 3 different poll step strategies

(adapted to integer, uniform sampling, ”improved” sampling). The accuracy is on the absolute error of minimal
objective function compared to global optimum. See legend of Figure 2 for details on Box-and-whisker plots.

Figure 4. Absolute errors between the maximum EI of each method and the overall maximum EI. The results

are presented in a Box-and-whisker plot accounting for 800 repetitions obtained by NOMAD with 3 different

poll step strategies (adapted to integer, uniform sampling, ”improved” sampling), one NOMAD per level and
one multi-start BFGS per level.
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Figure 5. Number of simulations necessary to reach the maximal EI for 800 repetitions obtained by NO-
MAD with 3 different poll step strategies (adapted to integer, uniform sampling, ”improved” sampling), one

continuous NOMAD per level and one multi-start BFGS per level.

(a) Accuracy of 0.1 (percentiles of success) (b) Accuracy of 0.001 (percentiles of success)

Figure 6. Number of simulations necessary to reach the maximal objective function for Cat-EGO with 2 given

accuracies for a fixed simulation budgets of 40 simulations. Starting from 100 initial design of experiments of
5 points, 4 EI sub-optimization methods are evaluated: NOMAD with the 2 randomized poll step strategies
(uniform sampling and ”improved” sampling) and 2 ”per level” strategies: Multi-start BFGS and NOMAD.
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(a) Accuracy of 0.1 (percentiles of success) (b) Accuracy of 0.001 (percentiles of success)

Figure 7. Number of simulations necessary to reach the maximal objective function for Cat-EGO with 2 given
accuracies for a fixed simulation budgets of 50 simulations. Starting from 100 initial design of experiments of

5 points, 4 EI sub-optimization methods are evaluated: NOMAD with the 2 randomized poll step strategies

(uniform sampling and ”improved” sampling) and 2 ”per level” strategies: Multi-start BFGS and NOMAD.

6.3. Benchmark: global skills of Cat-EGO556

Note that in the sequel the NOMAD solver is run from an initial point which gives557

the highest EI value within the LHS sample used by Cat-EGO method (of size558

3 or 5× p×NGL as described further).559

560

We test our method on 15 box-constrained problems from the literature (Hock561

and Schittkowski (1981), Lukšan and Vlček (2000), and GECCO benchmark COCO562

(2017)) listed in Table 1. These test problems for continuous optimization are trans-563

formed into mixed integer problems. For Hock and Schittkowski (1981) and COCO564

(2017), following Liuzzi et al. (2012), we define integer variables zi by restricting some565

continuous variables (every even index of variable vector) to take a finite number of566

values, mi; i.e.,567

∀ even i = 1, 2, ..., q, xi ∈
{
xi + h

(x̄i − xi)
zi − 1

}
, for zi = 0, 1, . . . ,mi − 1, (20)

with xi and x̄i the respective lower and upper bounds of the original variable xi.568

569

Minimax problems

min
x∈[x;x̄]

F (x) := max
1≤z≤m

(fz(x)),

defined in Lukšan and Vlček (2000), are transformed into mixed categorical-continuous
problems

min
x∈[x;x̄],1≤z≤m

F̃ (x, z) :=


f1(x) if z = 1
f2(x) if z = 2
. . .
fm(x) if z = m

Functions from Hock and Schittkowski (1981) are smooth functions whereas the two570
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Test names ncont (p) ncat (q) nlevels (m) ref
EDV52 3 1 6 Lukšan and Vlček (2000)
RosenSuzuki 4 1 4 Lukšan and Vlček (2000)
SPIRAL 2 1 2 Lukšan and Vlček (2000)
Wong1 7 1 5 Lukšan and Vlček (2000)
HS2 1 1 4 Hock and Schittkowski (1981)
HS2 rand 1 1 4 Hock and Schittkowski (1981)
HS229log 1 1 4 Hock and Schittkowski (1981)
HS229log rand 1 1 4 Hock and Schittkowski (1981)
HS2 1 1 11 Hock and Schittkowski (1981)
HS229 1 1 11 Hock and Schittkowski (1981)
HS3 1 1 11 Hock and Schittkowski (1981)
bbob 10 3 2 1 4 COCO (2017)
bbob 21 3 2 1 4 COCO (2017)
bbob 22 3 2 1 4 COCO (2017)
bbob 21 5 3 2 4 COCO (2017)

Table 1. Benchmark functions: number of continuous variables, number of categorical variables and number

of levels for each categorical variable.

other benchmark functions are more complex with several local minima (see, for in-571

stance, Figures 9 and 8).572

The procedure to test the Cat-EGO method on these benchmark functions consists of573

• an initial design of experiments built from concatenation of NGL Latin hypercube574

designs, one for each global-level; the size of each design is k×p, with k = 3 and575

5, depending on the total number of levels,576

• a limited budget of simulations, which is a common stopping criterion in practical577

applications of blackbox optimization for expensive simulators (Moré and Wild,578

2009). Here, we chose a budget of 300 simulations.579

Figure 10 illustrates the behavior of cat-EGO during the iterations: starting from580

an initial simulation set of 40 points built from concatenated Latin Hypercube designs581

of 10 points per level, the maximization of the expected improvement criterion leads582

to a compromise between space exploration and local minimization. This criterion583

relies strongly on the learnt model and especially on the learnt correlations between584

global-levels: Figure 11 displays the evolution of the correlations Tcicj between the585

4 levels during the iterations. A strong correlation has been detected between levels586

1 and 4, between 2 and 3 and between 3 and 4 whereas levels 2 and 5 are anti-587

correlated. We observe then in Figure 10 that the exploration of the continuous domain588

is complementary within the correlated levels whereas same zones of continuous space589

may be explored when levels are not correlated: e.g. levels 1 and 3. The adapted590

structure of our model allows then to save some simulations thanks to the correlation591

information learnt from the simulated data, as shown on Table 2. In comparison,592

RBFOpt and MISO methods explore much more at each level leading to a larger593

number of simulations, as shown in Figures 12 and 13.594

The results on the 15 functions are summarized in Table 2. Figures 14 and 15 display595

the mean relative error of objective functions (compared to the best value found by596

the 4 optimizers) for the 15 functions of the benchmark. The Cat-EGO method is the597

most robust, leading to a mean error of 1%, whereas the other optimizers fail to obtain598
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Figure 8. Function bbob21 of benchmark from COCO (2017) in 3 dimensions: 2 continuous variables and 1
categorical variable with 4 levels.

Figure 9. Function HS2 from Hock and Schittkowski (1981) in 2 dimensions: 1 continuous variable and 1

categorical variable with 4 levels.
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Figure 10. Simulation locations along EGO optimization iterations for test case bbob 21 3. The initial design

of experiments is indicated with red squares. Black crosses are the additional simulated points determined by
Expected Improvement maximization. The red arrow indicates the global optimum.

Figure 11. Evolution of EGO model correlations of categorical variables with simulations for test case

bbob 21 3.
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Figure 12. Simulation locations along RBFOpt optimization iterations for test case bbob 21 3. The red arrow

indicates the global optimum.

Figure 13. Simulation locations along MISO optimization iterations for test case bbob 21 3.
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Cat-EGO NOMAD RBFOpt MISO
EDV52 106 -1457.98 300 -99.00 166 -1455.51 300 -1458.00
RosenSuzuki 184 -113.13 300 -79.88 68 -79.87 300 -79.88
SPIRAL 235 0.00 300 0.00 297 0.00 300 0.03
Wong1 231 -1387.95 300 -3375.62 290 -2377.18 300 -3369.54
HS2 (10 levels) 124 0.05 177 6.16 104 0.05 242 0.05
HS2 38 0.05 244 0.92 217 0.40 220 0.05
HS2 rand 34 0.05 257 0.05 78 0.40 116 4.94
HS229 (10 levels) 52 0.00 211 0.09 215 0.00 167 0.00
HS229 log 56 -0.73 140 -0.75 86 -0.77 124 -0.75
HS229 log rand 35 -0.75 253 -0.77 63 -0.77 116 -0.77
HS3 45 0.00 15 0.00 296 0.00 11 0.00
bbob 10 3 151 -47.55 300 -54.62 194 -54.62 300 -54.62
bbob 21 3 68 40.78 169 42.75 221 40.78 300 40.78
bbob 22 3 154 -992.84 99 -995.06 296 -998.74 300 -995.06
bbob 21 5 164 41.01 300 44.61 177 49.07 300 42.61

Table 2. Comparison of Cat-EGO, NOMAD, RBFOpt and MISO optimizers on benchmark functions. Bold

values indicate the runs which reach the best values in less than 300 simulations.

an acceptable accuracy in the allocated simulation budget (300) on several test cases,599

as shown with the outliers on box-and-whisker plots of Figure 14.600

6.4. Behavior of the method for a larger size problem601

In this section we apply the 4 methods on a larger size test case with 2 continuous602

variables and 4 categorical variables with 3 feasible values for each, that leads to 81603

feasible categorical combinations. The test case is a modified version of ”bbob 21”604

function from GECCO benchmark COCO (2017) (see Table 1). The 4 categorical605

variables are build from arbitrary discrete values of the 4 last original variables. The606

global optimum is 0 at point x1,...,6 = 1 (z3,...,6 = 2).607

Cat-EGO method is applied with two sizes of initial design of experiments: one of608

162 points (a concatenated Latin Hypercube designs of 2 points per level) and one609

global Latin hypercube design of 70 points (5 times the number of hyper-parameters).610

Figure 16 illustrates the results obtained with cat-EGO, MISO, RBFOpt and NO-611

MAD for a maximal budget of 600 simulations. The cat-EGO method obtains a smaller612

value of the objective function in a smaller number of evaluations.613

Figures 17, 18 illustrate the learning ability of cat-EGO models: the evolution of614

the correlation matrix during the iterations is displayed. Starting from a larger design615

of experiments (162 points) leads at the first iteration to a better estimate of the616

correlations: Figure 18 illustrates that the correlation matrix at the first iteration617

is very similar to the final one (after 600 simulations), whereas the correlations are618

different between the first and the last iterations of cat-EGO run started from a619

design of experiments of 70 points. When starting with 70 initial points, even with an620

imperfect correlation matrix but informative enough, we observe that cat-EGO reaches621

very quickly the optimal value of the objective function. The difference between the 70622

points and 162 points initial DoE results (Figure 16) is probably due to an exploration-623

exploitation trade-off but this is not a definitive conclusion since this is only one run624

result.625

in Figures 19 and 20 we observe how the function value evolves during the iterations626
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Figure 14. Box-and-whisker plots of mean relative error over the 15 benchmark functions versus simulations

for Cat-EGO, NOMAD, RBFOpt and MISO optimizers.

Figure 15. Mean relative error over the 15 benchmark functions versus simulations for Cat-EGO, NOMAD,

RBFOpt and MISO optimizers.
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Figure 16. Evolution of the best current objective function value obtained with cat-EGO, MISO, RBFOpt

and NOMAD for a maximal budget of 600 simulations.

Figure 17. Model correlations learnt for categorical variables - between 81 combinations (the global-levels)

taken pairwise - from the available simulation data points for 3 iterations of cat-EGO method started from a

design of experiments of 70 points. The red lines indicate the row and the column associated with the global
optimum.

with respect to the two different initial DoE sizes and when this value corresponds to627

points on the level containing the global minimum. The initial 70-points DoE has a628

very promising point on the optimal level which can explain the fast exploitation of629

this level. On the other hand, the initial 162-points DoE does not have much direct630

information on the optimal level but the correlations, being well estimated, push the631

exploitation of the optimal level quickly after the initial DoE. Indeed, the estimated632

correlations between the levels can drastically accelerate the exploration of the mixed633

variable space. Figures 21 and 22 illustrate how, at each iteration, the added point on634

a given global-level gives information on levels that are correlated with the currently635

explored one.636
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Figure 18. Model correlations learnt for categorical variables - between 81 combinations (the global-levels)

taken pairwise - from the available simulation data points for 3 iterations of cat-EGO method started from a

design of experiments of 162 points. The red lines indicate the row and the column associated with the global
optimum.

Figure 19. Objective function values during the iterations of Cat-EGO started with an initial design of

70 points. The red crosses highlight the values corresponding to a point on the global-level containing the
minimum.
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Figure 20. Objective function values during the iterations of Cat-EGO started with an initial design of
162 points. The red crosses highlight the values corresponding to a point on the global-level containing the

minimum.

Figure 21. Global-levels visited during the iterations of cat-EGO with a 70 points initial DoE. The black dots
indicate which global-level is visited at the corresponding iteration. At each iteration, the colors correspond to

the degree of correlation between the visited global-level (where the black dot lies) and the other global-levels.
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Figure 22. Zoom on 21 for the first simulations.

7. Conclusions and perspectives637

We presented a strategy to tackle box-constrained mixed-integer global optimization638

problems involving expensive black box models and moderate number of input vari-639

ables. The proposed approach appears to be a robust method for finding global so-640

lutions of optimization problems. This success comes from the use of a probabilistic641

surrogate model (Gaussian processes) flexible enough (thanks to its hyper-parameter642

structure and their estimation) to capture relevant information on the optimized func-643

tion with respect to the continuous and the categorical variables. The GP approach644

also offers a quantification of the uncertainties on the objective function, enabling the645

construction of a built-in, optimization oriented, improvement criterion: the expected646

improvement (EI). For the EI sub-maximization task, we introduced a random explo-647

ration of the categorical variable space via a data based probability distribution. This648

latter enabled a faster recovery of an optimal solution of the main problem. On the649

other hand, the introduced flexibility comes with the price of a larger DoE as initial-650

ization and a larger computational time for the choice of the new points in the iterative651

scheme. Nevertheless, the method is still affordable when dealing with expensive-to-652

evaluate simulators and gives more robust results. In particular, we demonstrated the653

efficiency of the Cat-EGO strategy on a serie of test examples. We obtained on these654

test functions more robust results compared to RBFOpt and MISO. We are convinced655

that, on other test functions for which the kernel used by RBFOpt and MISO are well656

adapted, these latters will perform better in terms of minimal number of simulations657

required to reach the global optimum. This is explained because our method requires658

and uses a significant part of the simulations to learn the hyper-parameters. If the659

objective function is simple enough for the RBFOpt or MISO to be relevant then our660
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hyper-parameters learning stage is not necessary. In total generality, faced with an661

unknown objective function, we emphasize that it is more reasonable to tackle it with662

a flexible kernel (with more hyper-parameters), as the one we used.663

At this stage we suggest the following future research directions:664

• On the one hand, reducing the number of categorical hyper-parameters with a665

learning strategy such as the one introduced in (Roustant et al., 2018) and, on666

the other hand, enabling different correlation lengths (one per global-level) in667

the continuous kernel part as in (Han et al., 2009),668

• Further refinement of the discrete probability used in the NOMAD poll step in669

particular the adaptive calibration of the weight in (17),670

• Penalizing the log-likelihood with the norm of the hyper-parameters with an671

adaptive penalization parameter driving the flexibility of the kernel. At the be-672

ginning of the method the size of the DoE is small with respect to the number of673

hyper-parameters. At this stage, the hyper-parameter optimization problem is674

not well posed (strongly non-convex). We thus propose to penalize their norm.675

This indeed inflates the hyper-parameters values, which leads to a very regular676

approximation of the function (with a small mean number of up-crossings for677

the continuous variables and high correlations for the categorical ones) and also678

a better posed hyper-parameter optimization problem.679

Appendix A680

We define the following rough global-level potential of improvement measure as

Sk,i = f̄k,i − 2σk,i,

where f̄k,i is the mean of the objective function values in the global-level ci and σk,i681

the corresponding standard deviation. This measure Sk,i takes into account the mean682

value of function evaluations in the global-level but also a measure of the variability of683

the continuous part within the global-level (σk,i). A small value of Sk,i corresponds to684

a global level with high minimization potential. Sk,i can be seen as an approximation685

of M̄(z) in (16) with z = ci. We then calculate the quantity686

SRk,i =
1

1 + exp(−bk,i fmin−Sk,i

σ̂k,i
)

(21)

which is a sigmoid function parametrized by bk,i evaluated at (fmin − Sk,i)/σ̂k,i. This687

quantity approximates Ψz(
fmin−M̄(z)
σM (z) ) in (16) for z = ci. The coefficient bk,i should be688

selected in order to approximate the cumulative distribution Ψci and σ̂k,i should be689

an approximation of σM (ci).690

As presented, the proposed exploration scheme depends on the parameters αk,691

bk,i and σ̂k,i. For the numerical results we directly set αk = 0 so that only pmk,i, the692

probability that the global-level ci has high potential of containing the minimum,693

is considered in (17). We imposed bk,i = 1 for all k and i since estimating the694

distribution seems too expensive. We also imposed σ̂k,i = 1 for all k and i, since an695

accurate approximation of this term is also expensive to compute and by definition696

Sk,i already integrates some insight on the standard deviation of the corresponding697

global-level. Nevertheless, setting σ̂k,i constant implies that the probability pmk,i will698
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not converge to 1 for the level containing the minimum and 0 otherwise. This is not699

an issue here since the limit in k will not be reached within the limited number of700

iterations to be expected (a few hundreds), and furthermore, the probability will701

still be large in the global-level containing the objective function minimum. A finer702

analysis of the tuning of the parameters αk, bk,i and σ̂k,i is postponed to further work.703

704
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