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In this paper, we survey the main superstructure-based approaches in process system engineering, with a particular emphasis on the existing Iiterature for automated superstructure generation. We examine both classical and more recent representations in terms of generality, ease of use, and tractability. We also discuss the implications that different representations may have on strategies for algebraic modeling and optimization. We then review the state-of-the-art in software implementations to support synthesis. Finally, we examine the use of evolutionary-recently referred to as superstructure-free-approaches, in which algorithmic procedures dynamically generate and evaluate candidate process structures.

Introduction

2

 Grassmann and Har-10 junkoski, 2019), which has developed powerful mathematical op-11 timization and simulation tools to address chemical pracess de-12 sign and contrai prablems. In particular, Mixed-Integer Nonlinear 13 Pragramming (MINLP) and Generalized Disjunctive Pragramming 14 (GDP) techniques are well-suited to prabiems invoiving selection 15 among discrete pracess alternatives with nonlinear pracess phe-

 [START_REF] Saif | Superstructure optimization for the synthesis 1198 of chemical process flowsheeti;: application to optimal hybrid membrane sys-1199 tems[END_REF]Barnicki and Siirala, 2004;[START_REF] Westerberg | A retrospective on design and process synthesis[END_REF]. Hierarchical decomposition involves a sequential pracedure in which the pracess design is pragressively defi ned in stages ( or levels ). At each level, specific decisions are made based on engineering judgement and rules-of-thumb, starting with braader decisions of the greatest consequence. For detailed reviews on hierarchical decomposition approaches see the works of [START_REF] Dimian | Process synthesis by hierarchical approach[END_REF] and [START_REF] Goh | Hierarchical decomposition approach for process synthesis of integrated biorefinery[END_REF]. However, interactions between decisions at different detail levels (e .g. separation design and heat integration) are difficult ta capture with hierarchical decomposition (Duran and Grassmann, 1986b;[START_REF] Biegler | Simultaneous optimization and heat integration wlth process slmulators[END_REF]. In contrast, superstructure synthesis attempts ta salve the simultaneous design prablem as a mathematical pragramming prablem. Hybrid appraaches combining ideas from bath hierarchical decomposition and mathematical pragramming have also been studied by Daichendt and Grassmann (1997) and more recently by [START_REF] Zhang | New vistas in chemical product and process design[END_REF]. Targeting techniques are also available, which identify a priori characteristics of advantageous structures by analyzing physical praperties of the chemical system; these have been applied to great effect in heat exchanger networks (Linnhoff and Hindmarsh, 1983;Hohman, 1971 ), and in heat and water integration (Klemes and Kravanja, 2013 ). The composite curves diagram in pinch analysis (Linnhoff and Hindmarsh, 1983) and the attainable region-based methods, intraduced by Horn (1964) and popularized by Glasser et al. (1987), are among the most notable targeting techniques, used in the design of heat exchanger networks and reaction-separation systems. More recent contributions by [START_REF] Feinberg | General kinetic bounds on productivity and selectivity in reactor-separator systems of arbitrary design: principles[END_REF] and [START_REF] Frumkin | Target bounds on reaction selectivity via Fein berg's CFSrR equivalence principle[END_REF] extend ideas of the latter beyond their geometric origins.

Please cite this article as: L Mencarelli, Q. Chen and A. Pagot et al., A review on superstructure optimization appraaches in process system engineering, Computers and Chemical Engineering, https://doi.org/ 10.1016/j.compchemeng.2020.106808 sponse, the community has developed two main approaches: (a) automated superstructure generation methods, and (b) evolutionary "superstructure-free" approaches. ln automated superstructure generation, the superstructure is constructed from a set of alternatives via detenninistic algorithmic procedures; on the contrary, in the superstructure-free approach, candidate structures are dynamically generated during the search process. ln this paper, we provide a critical review of the state-of-theart in superstructure based synthesis, with a focus on the methods BO and tools available to generate appropriate superstructure representations. We then compare these approaches to superstructurefree design strategies. The rest of the paper is organized as follows. In Section 2, we survey the representations and algorithmic procedures proposed in the literature to automate the generation of the superstructure of a given process. We also describe algorithmie post-processing procedures proposed to reduce the complexity or the redundancy of superstructure representations, and to translate the superstructure into a mathematical programming formulation. In Section 3, we discuss implications of the superstructure go representation on modeling and solution strategies. In Section 4, we review current software implementations for process synthesis.

Then, in Section 5, we briefly summarize superstructure-free ap-92 proaches. Methodological conclusions and final remarks follow in 93 Section 6. bedding multiple different representations. In the following subsections, we elaborate on both traditional and new representations and the tools available for their automatic generation. A summary of case studies investigated using these representations can be found in Appendix A, Table A.2.

State-task network representation

The state-task network (STN) representation (see Fig. 2) was first introduced in [START_REF] Kondili | A general algorithm for short-term scheduling of batch operations -1. MIIP formulation[END_REF] for multi-product/multipurpose scheduling problems, and extended ta process flowsheet design by [START_REF] Yeomans | A systematic modeling framework of superstructure optimization in process synthesis[END_REF], in which the representation is applied ta the synthesis of distillation sequences with and without heat integration. The STN representation consists of a directed graph with two main classes of nodes: states and tasks. States, as their name implies, represent a physical or compositional state of the feeds, intermediates, or products. The transition between these states is accomplished through processing tasks. A superstructure task can be conditional or common to ail the altemative structures; this distinction is only made when the superstructure is translated into a mathematical programming formulation.

For conceptual design, the processing tasks also need to be associated with equipment selection. Due to its origins as a multiproduct scheduling representation, the STN supports variable taskequipment (VfE) assignment, in addition to the more traditional one task-one equipment (OIDE) assignment. ln VfE, a single piece of equipment may perform multiple different processing tasks (e.g. batch reactors that perform bath reaction and mixing tasks), and the final equipment-task assignment is given by the optimization result However, OIDE is far more common in overall flowsheet design, with each task associated a priori to a piece of equipment In 

P-Graph representation 165

The process graph (P-graph) concept first appeared in 166 Friedler et al. (1992a). As such, it is a contemporary to the 167 STN, with many similarities between the two representations. The 168 P-graph is a bipartite graph (see Fig. 3), whose vertices consist of 169 material (M-type) and operating unit (0-type) nodes. An operating 110 unit accepts one or multiple input materials, and produces one 171 or more outputs. P-graph material nodes correspond to STN state 112 nodes; P-graph operating units, to STN tasks. The mathematical rigor unpinning the P-graph methodology is 214 a key advantage of the approach; however, its closed implementa-21s tion and complex notation limit its accessibility to a chemical en-216 gineering audience. For more detail, recent reviews on the P-graph 211 approach may be found by [START_REF] Lam | Extended P-graph applications in supply chain and prooess network synthesis[END_REF] 

State-space representation

The state-space representation (SSR) was adapted from the concept of Mstate space" in system theory (Zadeh and Desoer, 1979). In the state-space approach, the design problem is posed as identification of the properties of the input-state--output relations between input and output variables (Bagajewicz and Manousiouthakis, 1992). The input/output variables are defined by the process engineer, while the input-state-output relations between variables yield a given structure. For process synthesis, the structure involves sequential applications of two classes of functians, namely (a) mixing and splitting of streams in the distributian network, and (b) unit operations which determine the process operator.

The SSR was motivated by the ability to easily generate complex distillation configurations such as Petlyuk columns. ln Bagajewicz and Manousiouthakis (1992), the SSR for a distillation network is introduced as the integration of heat-and mass-exchanger operations. The state space approach was further extended by Wilson and [START_REF] Manousiouthakis | IDEAS approach to process network synthesis: application to multicomponent MEN[END_REF], which explores the limits of discretization of the design space. Another similarly-motivated extension was recently developed by

Liesche et al. (2019).

The SSR is characterized by matrix operations involving the state variables. The numerical structure of these matrix operators ultimately translates to a physical process structure. Visualization of the SSR (see Fig. 5) involves abstract boxes representing the operators, interconnected by the state variables serving as inputs to or outputs from these operators. The mathematical convenience of the matrix-operator interpretation has gained the SSR significant popularity in process integration (mass/heatjwork exchange) appli-cations (see Table A.2). In [START_REF] Saif | Superstructure optimization for the synthesis 1198 of chemical process flowsheeti;: application to optimal hybrid membrane sys-1199 tems[END_REF], a comprehensive sur-292 vey on the applications of the SSR methodology to optimization of 293 membrane and hybrid membrane process systems for wastewater 294 treatment is presented.

295

The SSR is a very general representation, but given its abstract-296 ness and lack of supporting software tools, it has seen limited up-2':17 take outside of its proven area of process integration {Fig. 6). As with the P-graph approach, the R-graph exploits mathematical properties of graphs to improve solution strategy performance. Here, the R-graph also takes advantage of logical representability benefits conferred by GDP modeling. However, no software tools exist to support the R-graph approach, and the modem-day benefits of BGDP over a traditional GDP are an open question given the prevalence of linear preprocessing for logical relations (Fig. 8). , ---0--------<v --------, A ). However, these screen-396 ing rules may require simplifying assumptions about the process 397 to be made, and may prematurely exclude advantageous process 398 structures.

R-graph representation

Generolized modular framework representation
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Unit, port, conditioning stream representation

The unit, port, conditioning stream (UPCS) representation was introduced by Wu et al. ( 2016), consisting of three elements: (a) units, which can be general process units, source units, or sink units; (b) ports, which correspond ta unit inlets and outlets, and serve as multi-stream mixers and splitters; and (c) conditioning streams, which link outlet and inlet ports, while also handling temperature and pressure change operations.

The UPCS representation is heavily infl uenced by ideas in the STN, the P-graph, the R-graph, and the more recent unit operationport-state (UOPSS) superstructure (Zyngier and Kelly, 2012). The UPCS thus continues the tradition of drawing inspiration from the process scheduling literature [START_REF] Kelly | Production modeling for multimodal operations[END_REF][START_REF] Kelly | The unit-operation-stock superstructure (UOSS) and the quantitylogic-quality paradigm (QJ.QJ') for production scheduling in the process industries[END_REF].

As in the P-graph method, Wu et al. ( 2016) describe an algorithm to generate a UPCS superstructure. First, the set of considered process units are selected based on knowledge of the applicable reaction and separation tasks. Next, inlet and outlet ports are defined for each unit, and streams are created to connect each outlet port to ail inlet ports. From this fully-connected starting point, the authors describe four rules to prune invalid and unnecessary connections, based on the set of Mminimal" and "feasible R camponents for each port Minimal components are those that must be present at an inlet or outlet port. For example, a reactor A + B --+ C would be ineffective without components A or B, so those would be considered minimal components for the reactor inlet port Feasible components are those that may be present at a given port Ail minimal components are also feasible, but a reactor inert I may be considered feasible but not minimal. Rule 1. Ali minimal components for outlet ports should be feasible for connected inlet ports. This two-level decomposition between discrete flowsheet selection and detailed evaluation remains the most common theme among decomposition strategies for process design. Kocis and Grassmann (1989) present a specialized MINLP decomposition approach for synthesis based on Lagrangean decomposition. The discrete elements of an MINLP for process synthesis usually describe logical relationships between superstructure alternatives. With GDP, decomposition may be applied directly on this logical layer. The logic-based outer approximation (LOA) algorithm (Türkay and Grossmann, 1996) exploits this structure to solve the nonlinear subproblems in reduced space, avoiding zero-flow numerical challenges present in MINLP formulations. Logic-based branch and bound (LBB) (Lee and Grassmann, 2000) does the same to solve node relaxations in reduced space, as with the ABB strategy for P-graph [START_REF] Friedler | Combinatorially acoelerated branch and-bound method for solving the MIP mode! of process network synthesis[END_REF].

Rule 2. Ail minimal components for inlet ports should be feasible in at least one connected outlet port Rule 3. Ail outlet ports connected to a reactor inlet port must contain at least one feasible component that is minimal for the reactor inlet

Note that strategies presented in this section differ from hierarchical decomposition [START_REF] Douglas | A hierarchical decision procedure for process synthesis[END_REF] in that the decomposition takes place within an computational solution framework with mathematical guarantees on convergence to optimality. In particu-Jar, LBB and a global optimization extension to LOA, GLOA (Lee and Grassmann, 2001 ) Superstructure-free approaches avoid the need for integer vari-743 ables to model the on/off state of a unit. This often expedites tl1e 744 rate at which new candidate flowsheets are generated. However, 745 rigorous lower-bounding guarantees ta assert matl1ematical opti-746 mality without exhaustive enumeration are lost. In applications for 747 which these mathematical lower bounds are unimportant or out-748 weighed by other considerations, superstructure-Cree approaches 749 can be a valuable search heuristic. 750

Condusions 751

Process design is a central challenge of chemical engineering, 752 for which superstructure optimization is a powerful analysis tao!. 753 When selecting the correct superstructure representation for a 754 given design problem, tl1e relevant factors are generality, ease of 755 use, and tractability. The representation must capture the relevant 756 choices in processing unit or phenomenological alternatives, clearly 757 represent the space of options, and support formulation of a math-758 ematical programming problem that is amenable to available opti-759 mization strategies. In this review, we present the main contribu-760 tians that led to development of the existing representations, and 761 offer the reader our perspective on their relative strengths with re-762 spect ta different criteria. We discuss algorithms that exist for au-763 tamated generation of both the process alternatives as well as tl1eir 764 superstructure representation. We also discuss implications that a 765 choice of representation can have on the modeling and solution 766 phases of superstructure-based synthesis. 

  Fig. 2. State-Task Network (STN) superstructure for a 3 component sharp split distillation sequence.

  that way, the superstructure more closely resembles a process flow diagram with conditional flow paths. The STN-OTOE representation is still commonly used today, and has inspired new representations 160 that build on its ideas. As previously introduced, the STN can be 161 constructed by taking into account all of the tasks needed ta con-162 vert a process through means-ends analysis (Siirola et al., 1971), 163 and connecting them via associated intermediate states.

  164

  SEN variant 1 (b) SEN variant 2 fis. 4. Stan:-Equipment Network {SEN) superstructure for a 3 component sharp split distillation sequence. 188 Axiom 51 ensures that ail desired products appear in the super-189 structure, while Axiom S2 defines which nodes are the raw mate-190 rial input nodes. Axiom 53 ensures that ail considered operating 191 units appear in the graph. Axiom 54 requires that each operating 192 unit be connected to at least one final product, i.e. there are no 193 irrelevant operations. Finally, Axiom 55 enforces that every mate-194 rial node is connected to at least one operating unit node, i.e. there 195 are no irrelevant materials. Tue set of structures described by these 196 axioms is closed under union, and the superstructure corresponds 197 to the union of ail the structures. 198 Tue P-graph methodology distinguishes itself among early su-199 perstructure representations by providing a systematic algorithm 200 for generating the P-graph (Friedler et al., 1993 ). Tue computa-201 tional complexity of this algorithm is polynomial in the num-202 ber of the materials and in the maximal degree of its vertices 203 (Friedler et al., 1993). An accelerated branch-and-bound (ABB) 204 strategy was also developed to exploit the P-graph representa-2os tion by restricting the search to combinatorially feasible structures 206 and solving the relaxations at branched nodes in reduced space 2rr, (Friedler et al., 1996). It is noteworthy that contemporary to this, 2os the same motivations guided development of the logic-based outer 209 approximation algorithm for Generalized Disjunctive Programming 210 (Türkay and Grassmann, 1996) (see also Section 3.3). Connections 211 between the P-graph representation and GDP formulations were 212 subsequently explored in Brendel et al. (2000). 213

  and Friedler et al. (2019).

  Fig. S. State-Spaoe Representation (SSR) superstructure for a 3 component sharp split distillation sequenoe. Boxes oepresent state-spaoe operators. Arrows oepresent state variables that are inputs to or outputs from their respective operators.

299Fig. 7 .

 7 Fig. 6. R-graph superstructure for a 3 component sharp split distillation sequence.AABC Material 1

  Fig. 8. Group contribution bilsed flowsheet for 3 component sharp split distillation sequence.

  drawing inspiration from group contribution methods 358 in thermodynamic property prediction for molecular design 359[START_REF] Fredenslund | Vapor-Liquid Equilibria Using UNIFAC: AGroup-Contribution Method[END_REF]. In property prediction, a function is developed 360 relating the contribution of different molecular groups (atoms with 361 different bonding relationships) to the value of a physical property 362 of interest For molecular design, this prediction function is used to 363 determine the optimal molecular groups that constitute a poten-364 tially nove! molecule. Applied to flowsheet synthesis, a group can 365 be represented by a prooess unit or a set of units, with the goal to 366 determine which collection of process units contribute to give the 367 best flowsheet performance. The approach, computer-aided flow-368 sheet design (CAFD), is illustrated for the design of a distillation 369 column by d'Anterroches and Gani (2005). 370As with molecular design, a difficulty of this method is ob-371 taining parameters for the prediction function that determines the 312 contribution of various potential process groups to an overall de-373 sign objective, and their ability to satisfy process specifi cations. 374 However, if parameters are found that give accurate predictions, 375 evaluation of different process alternatives is generally compu-376 tationally inexpensive. Tula et al. (2014, 2015) present a recent 377 overview of the CAFD framework (Fig. 9). 378 2.8. Phenomena-building black approach 379 In the early 2010s, renewed interest in prooess integration 380 and nontraditional process units led to the development of the 381 phenomena-building block (PBB) approach by Lutze et al. (2013), 382 extending phenomena-centric ideas promoted by Hauan and 383 Lien (1998). As with earlier strategies like the state-space and GMF 384 representations, PBB allows for a broader design space that can au-385 tomatically generate processes with novel combinations of chemi-386 cal and physical phenomena taking place within process units. A 387 major challenge with approaches that attempt to propose novel 388 equipment is the selection of an appropriate optimization objective 389 function. As a proxy, many methods use thermodynamic insights, 390 seeking to minimize either energy or exergy use in the process. 391 Kuhlmann and Skiborowski (2016) propose use of development 392 of an PBB equipment database as one solution to this challenge. 393 Other strategies avoid this problem entirely by proposing screening 394 rules that Ieave a tractable set of promising candidate flowsheets 395 to evaluate (Holtbruegge et al., 2014

Rule 4 .

 4 Ali minimal components for a separator inlet port must be feasible in connected outlet ports. Rule 1 ensures that inlet ports do not receive infeasible cornponents from connections to outlet ports. Rule 2 ensures that each inlet port receives its necessary components. Rule 3 reduces the number of streams connected to a reactor inlet lt is worth noting that in some systems, inerts may be important to the reaction controllability, so care should be given to which components are deemed feasible versus minimal. Rule 4 avoids unnecessary mixing and separation by preventing, among other possibilities, a pure component at a separator outlet from being immediately remixed into the separator inlet Please cite this artide as: L Mencarelli, Q, Chen and A. Pagot et al, A review on superstructure optimization approaches in process system engineering. Computers and Chemical Engineering. https://doi.org/10.1016/j.compchemeng.2020.106808

Fig. 10 .

 10 Fig. 10. Building block-based superstructure for a 3 component sharp split distillation sequenoe.

3. 3 .

 3 Decomposition algorithms Decomposition algorithms that partition a problem into multiple tractable subproblems are commonly used to tackle large-scale optimization challenges. Classic examples of this include the Outer Approximation (DA) (Duran and Grassmann, 1986a) and Generalized Benders Decomposition (GBD) (Geoffrion, 1972) algorithms, which separate the design problem into a master problem that salves a linear approximation of the full space problem and a subproblem that evaluates a fixed flowsheet configuration taking into account the nonlinear relationships. At each iteration, the solution of the master problem proposes a new realization of the discrete variables for the subproblem, and the nonlinear subproblem solution, if feasible, gives new candidate solution points. The subproblem solution also gives new variable values at which ta add linearizations to augment the master problem; OA and GBD differ in the generation of these linearizations. Termination occurs when the solution of the master problem converges with the solution of the subproblem.

  , offer convergence guarantees to within an e toierance. The other discussed decomposition strategies assume convexity, yielding a numerical heuristic for nonconvex chemical process flowsheet problems. Hybrid strategies have also been proposed in which physical insights are used as rules of thumb to screen the solution space before applying a mathematical programming algorithm[START_REF] Bommareddy | Computer alded flowsheet design using group contribution methods[END_REF].Please cite this artide as: L Mencarelli, Q, Chen and A. Pagot et aL, A review on superstructure optimization approaches in process system engineering, Computers and Chemical Engineering, https:Jldoi.org/10.1016/j.compchemeng.2020.1068084. Software implementationsWell-established commercial software tools exist for process simulation, but not yet for process synthesis[START_REF] Tula | Time for a new class of methods and computer aided tools to address the challenges facing us?[END_REF]. As a result, standard industrial practice for synthesis remains either trial-and-error using simulators, guided by engineering intuition or an expert system package, or the development of special purpose implementations in algebraic modeling systems. However, to provide general capabilities for systematic superstructure synthesis, new tao! sets are needed.To be successful, our community needs software taols ta accommodate two classes of users: general users who wish to tackle an understaod problem, and advanced users whose design challenges lead them ta push the state-of-the-art. The former desire a tool with an accessible interface that will consistently deliver re-Hable answers for their analyses. The latter, frequently academics or researchers at national labs and major corporations, demand all of the above in addition ta the ability ta adapt or extend the taol for unknown or unforeseen challenges. The needs of general users limits technology transfer from academia inta industry. Academic software rarely benefits from the funding required to create an elegant user interface. Moreover, the finesse required to reproduce 6n academic results often necessitates hiring a student from the relevant research group. On the other hand, without investing in advanced functionality and flexibility for advanced users, innovation in tl1e tool will eventually stagnate, and tl1ese users may opt ta develop a more capable alternative. Developers must balance these issues among other considerations when choosing where ta Pyosyn (Chen et al., 2019), ail of which find their roots in academia. ProCAFD is the most sophisticated of tl1ese tools in its support of general users, with a graphical user interface and the ability to automatically generate process alternatives from a set of raw materials, products, and reactions. It builds upon preexisting work in the ICAS (Gani et al., 1997) tao! set. P-Graph Studio also features a graphical interface; however, it is less adapted to chemical engineering use, requiring more user input to set up the problem. MIPSYN, on the other hand, has a simple graphical interface, but includes a notion of chemical engineering unit models to aid tl1e user. MIPSYN poses synthesis problems as MINLP or reformulations of GDP models (Ropotar and Kravanja, 2009), which are solved via an integration with tl1e GAMS algebraic modeling platform (Brook et al., 1988 ). SYNOPSIS and Pyosyn are bath newer synthesis frameworks, created as part of two Department of Energy projects: RAPID (Bielenberg and Palau-Rivera, 2019) and IDAES (Miller et al., 2018}, respectively. SYNOPSIS is built upon the GMF superstructure representation, though the tool itself has not yet been publicly released. As with MIPSYN, an integration witl1 GAMS allows solution of the resulting MINLP models. Pyosyn, on the other hand, does not prescribe a choice of superstructure, instead focusing on support for high level modeling representations and solution strategies. Pyosyn supports GDP modeling with the open-source Pyomo.GDP (Chen et al., 2018} library, which also enables a suite of solution schemes (Chen and Grassmann, 2019). Specialized chemical engineering support is provided by the IDAES unit mode! library (Lee et al., 2018), with network representation capabilities using Pyomo.Network. Most of the described tools have a closed-source code base, witl1 some providing free academic licenses upon request This has the advantage of protecting intellectual property and generating a revenue stream ta fund continued research, general user-oriented features such as improved graphical interfaces, and custamer support. However, the community must also support open platforms that allow for protatyping of new innovations and integration of 716 tl1ese taols witl1 existing capabilities; otherwise, it risks stagnation 717 as in the process simulation domain. of properly generating and solving the su-720 perstructure synthesis problem, evolutionary "superstructure-free" 721 approaches have been a longstanding fixture of chemical engineer-122 ing practice (Nishida et al., 1981 ). Boonstra et al. (2016) discuss the 723 distinction between superstructure-based and superstructure-free 724 approaches. Superstructure-free approaches also tend to adopt a 725 two-level decomposition approach, separating the discrete topolog-726 ical decision and the detailed flowsheet evaluation, as detailed in 727 Section 3.3. However, instead of a mathematical programming ap-728 proach ta propose flowsheets from the combinatarial search space, 729 an evolutionary algorithm dynamically generates alternative struc-730 tures, which are then evaluated by an optimization algorithm. 731 Preuss et al. (2014) compare use of an evolutionary algorithm for 732 tl1e upper level and a purely MILP-based approach. 733 Voll et al. (2012) describe a two-phase hybrid proce-734 dure, combining an evolutionary algoritl1m and a determinis-735 tic optimization phase for the energy supply system problem. 736 Neveux (2018) present a similar approach: a structure is generated 737 according to the following mutation rules: (i) block addition be-738 tween two existing blacks, (ii) block removal, and (iii) permutation 739 of two streams. An NLP is then solved to evaluate the performance 740 of the structure generated. Machine leaming has also been pro-741 posed as a flowsheet identification technique[START_REF] Zhang | Pattern recognition in chemical process 1299 flowsheets[END_REF]. 742

767Finally,

  we highlight tl1e central tradeoff tl1at exists in tack-768 ling superstructure optimization problems: between the generality 769 of tl1e representation, tl1e fidelity of tl1e process unit/phenomena 770 models, and the tractability of solution strategies. The systematic 111 and integrated analysis of alternative structures is tl1e key advan-772 tage of the superstructure-based approaches; however, they often 773 yield large-scale non-convex mathematical programming formula-774 tians, which are difficult to salve. We highlight various mode!-775 ing and optimization strategies that aim to overcome this chai-776 lenge. In some cases, authors have chosen ta pursue evolution-777 Please cite this article as: L Mencarelli, Q, Olen and A. Pagot et al., A review on superstructure optimization approaches in process system engineering. Computers and Chemical Engineering. https:/fdoi.org/10.1016/j.compchemeng.2020.106808
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  the table below are curated from the list of arti cles citing each representation's source publication, as identified by their respective publishers. See

uoss UPCS vrE Artilicial neural network Basic generalized disjunctlve problem Computer aided flowsheet design Computer aided molecular design Generalized disjunctive programming Generalized modular framework Mlxed lnteger nonllnear programmlng Nonlinear problem One task-one equipment Phenomena building blocks Process system engineering State equipment network State-space representation State-task network Unit-operation-port-state superstructure Unit-operation-stock superstructure Unit, port, conditioning stream Variable task-equipment ary usuperstructure-free" approaches in which alternative process structures are dynamically generated and evaluated from a base case flowsheet This may lead to faster search speeds in the dis crete design space, at the expense of losing finite time mathemat ical convergence guarantees. Autbor Statement The students Luca Mencarelli and Qi Chen did most of the work while Prof. Grossmann and Dr. Alexandre Pagot supervised it and gave feedback as well as suggestions for improvement
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Appendix A. superstructure syntbesis case studies

Table A.2 summarizes literature case studies that have been ex amined with each representation. We denote with "•" those exam ples involving solution of an MINLP or nonlinear GDP, "•" those in volving solution of an MILP (including linear approximation of an MINLP), and "-" where the problem was solved by other means. 
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