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In this paper, we survey the main superstructure-based approaches in process system engineering, with 
a particular emphasis on the existing Iiterature for automated superstructure generation. We examine 
both classical and more recent representations in terms of generality, ease of use, and tractability. We 
also discuss the implications that different representations may have on strategies for algebraic modeling 
and optimization. We then review the state-of-the-art in software implementations to support synthesis. 
Finally, we examine the use of evolutionary-recently referred to as superstructure-free-approaches, in 
which algorithmic procedures dynamically generate and evaluate candidate process structures. 

1. Introduction

2 Conceptual pracess design is a central pillar of chemical engi-

3 neering, concerning the definition, simulation, optimization, and 

4 contrai of chemical pracesses. This design task involves the syn-
5 thesis of complex chemical pracesses thraugh the integration of 

6 simpler unit blacks characterized by physical and chemical prop-
7 erties. Methodological developments in pracess synthesis has been 
8 addressed by the Pracess Systems Engineering (PSE) community 
9 (Klatt and Marquardt, 2009; Cremaschi, 2015; Grassmann and Har-

10 junkoski, 2019), which has developed powerful mathematical op-
11 timization and simulation tools to address chemical pracess de-
12 sign and contrai prablems. In particular, Mixed-Integer Nonlinear 
13 Pragramming (MINLP) and Generalized Disjunctive Pragramming 
14 (GDP) techniques are well-suited to prabiems invoiving selection 

15 among discrete pracess alternatives with nonlinear pracess phe-
16 nomena (Grassmann, 1989; Grassmann et al., 2000; Grassmann, 
11 2002; Trespalacios and Grassmann, 2014; Chen and Grassmann, 
18 2019). 
19 Two main appraaches exist for conceptual pracess design: hi-

20 erarchical decomposition (Douglas, 1985; Siirala and Rudd, 1971) 
21 and superstructure synthesis (Umeda et al., 1972; Chen and Grass-
22 mann, 2017), with superstructure synthesis preferred for its sys-

23 tematic evaluation of a large space of structural alternatives 
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(Saif et al., 2009; Barnicki and Siirala, 2004; Westerberg, 2004). Hi- 24 
erarchical decomposition involves a sequential pracedure in which 25 
the pracess design is pragressively defined in stages ( or levels ). 26 
At each level, specific decisions are made based on engineering 27 

judgement and rules-of-thumb, starting with braader decisions 28 
of the greatest consequence. For detailed reviews on hierarchical 29 
decomposition approaches see the works of Dimian (2003) and 30 
Goh and Ng (2015). However, interactions between decisions at 31 
different detail levels (e.g. separation design and heat integration) 32 
are difficult ta capture with hierarchical decomposition (Duran 33 

and Grassmann, 1986b; Lang et al., 1988). In contrast, superstruc- 34 
ture synthesis attempts ta salve the simultaneous design prab- 35 

lem as a mathematical pragramming prablem. Hybrid appraaches 36 

combining ideas from bath hierarchical decomposition and math- 37 

ematical pragramming have also been studied by Daichendt and 38 
Grassmann (1997) and more recently by Zhang et al. (2016). 39 
Targeting techniques are also available, which identify a pri- 40 
ori characteristics of advantageous structures by analyzing phys- 41 
ical praperties of the chemical system; these have been applied 42 
to great effect in heat exchanger networks (Linnhoff and Hind- 43 
marsh, 1983; Hohman, 1971 ), and in heat and water integration 44 
(Klemes and Kravanja, 2013 ). The composite curves diagram in 45 
pinch analysis (Linnhoff and Hindmarsh, 1983) and the attainable 46 
region-based methods, intraduced by Horn (1964) and popular- 47 
ized by Glasser et al. (1987), are among the most notable target- 48 
ing techniques, used in the design of heat exchanger networks 49 
and reaction-separation systems. More recent contributions by 50 
Feinberg and Ellison (2001) and Frumkin and Doherty (2018) ex- 51 
tend ideas of the latter beyond their geometric origins. 52 
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fla. 1. Abbreviated timeline of superstructure synthesis representations. 

53 Superstructure-based process synthesis, introduced in 
54 Umeda et al. (1972), involves three main sequential steps: (i) 
55 the postulation of a superstructure, which encapsulates the set 
56 of all feasible alternative process structures: (ii) the translation 
57 of the superstructure into a mathematical programming model; 
58 and (iii) the computation of an optimal structure by solving the 
59 mathematical optimization model. The approach gained traction 
60 first in subsystems (Sargent and Gaminibandara, 1976; Grassmann 
61 and Sargent, 1976), then in general flowsheet design (Kocis and 
62 Grassmann, 1989). Early reviews in the area can be found by 
63 Nishida et al. (1981), Westerberg (1991), and Bagajewicz and 
64 Manousiouthakis (1992). 
65 An inherent limitation of superstructure-based approaches is 
66 the need to define an initial superstructure to capture all the de-
67 sired alternatives. A poorly-constructed superstructure may omit 
68 several feasible or optimal process flowsheets. Moreover, the choice 
69 of representation may impact tractability of the resulting op-
70 timization formulation (Yeomans and Grossmann, 1999). In re-
11 sponse, the community has developed two main approaches: (a) 
12 automated superstructure generation methods, and (b) evolution-
73 ary "superstructure-free" approaches. ln automated superstructure 
74 generation, the superstructure is constructed from a set of alterna-
75 tives via detenninistic algorithmic procedures; on the contrary, in 
76 the superstructure-free approach, candidate structures are dynam-
77 ically generated during the search process. 
78 ln this paper, we provide a critical review of the state-of-the-
79 art in superstructure based synthesis, with a focus on the methods 
BO and tools available to generate appropriate superstructure repre-
81 sentations. We then compare these approaches to superstructure-
82 free design strategies. The rest of the paper is organized as fol-
83 lows. In Section 2, we survey the representations and algorithmic 
84 procedures proposed in the literature to automate the generation 
85 of the superstructure of a given process. We also describe algorith-
86 mie post-processing procedures proposed to reduce the complexity 
87 or the redundancy of superstructure representations, and to trans-
88 late the superstructure into a mathematical programming formu-
89 lation. In Section 3, we discuss implications of the superstructure 
go representation on modeling and solution strategies. In Section 4, 
91 we review current software implementations for process synthesis. 

Then, in Section 5, we briefly summarize superstructure-free ap- 92

proaches. Methodological conclusions and final remarks follow in 93

Section 6. 94

2. Superstructure representations 95 

In this section we present the different techniques proposed 96 

in the literature to generate and optimize the superstructure of a 97 

given chemical process. Selection of the appropriate superstructure 98 

representation is a necessary prerequisite in automated superstruc- 99 

ture generation. Over the years, several representations and gen- 100 

eration approaches have been proposed in literature (see Fig. 1); 101 
these can be divided into two classes: the traditional approaches 102 

proposed in the 1990s, and newer representations developed after 103 

the turn of the millennium. The traditional approaches involve net- 104 

work or graph representations in which the chemical process is di- 105

vided into stages (or states) and tasks. These interlinked states and 106 

tasks describe the progressive transformation of the inputs ( or raw 101 

materials) into the desired outputs (or final products) by means 108

of sequential operations (or functions). Computer-aided generation 109 

of alternatives in these approaches can be done with means-ends 110 
analysis (Siirola et al., 1971 ). m 

In recent years, new challenges and opportunities-detailed in 112 
the following review papers-have spurred renewed interest in 113 
process design, Ieading to the development of several new super- 114

structure representations. There have been efforts to design more 115

sustainable processes (Martîn and Adams Il, 2019) for the circular 116

economy (Avraamidou et al., 2020). Interest in process intensifica- 111 
tian renewed interest in representations able to capture selection 118 
and integration of physical and chemical phenomena, in contrast to 119 
traditional equipment-oriented superstructures (Sitter et al., 2019; 120 

Tula et al., 2019a; Tian et al., 2018a). At. the same time, equipment 121 
size reductions from process intensification have led to interest in 122

modular process units (Baldea et al., 2017), with applications in the 123 
oil and gas industry (Tsay et al., 2018). New superstructures that 124 

aim to simplify solution strategies and software platforms to sup- 125

port the use of these new representations have also arisen (Mitsos 126 

et al., 2018; Tula et al., 2019b). Finally, Ryu et al. (2020) explic- m 
itly examines the interactions needed to synthesize a process em- 128 
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129 bedding multiple different representations. In the following sub-
130 sections, we elaborate on both traditional and new representa-
131 tions and the tools available for their automatic generation. A sum-
132 mary of case studies investigated using these representations can 
133 be found in Appendix A, Table A.2. 

134 2.1. State-task network representation 

135 The state-task network (STN) representation (see Fig. 2) was 
136 first introduced in Kondili et al. (1993) for multi-product/multi-
137 purpose scheduling problems, and extended ta process flowsheet 
138 design by Yeomans and Grossmann (1999), in which the repre-
139 sentation is applied ta the synthesis of distillation sequences with 
140 and without heat integration. The STN representation consists of 
141 a directed graph with two main classes of nodes: states and tasks. 
142 States, as their name implies, represent a physical or compositional 
143 state of the feeds, intermediates, or products. The transition be-
144 tween these states is accomplished through processing tasks. A su-
145 perstructure task can be conditional or common to ail the altema-
146 tive structures; this distinction is only made when the superstruc-
147 ture is translated into a mathematical programming formulation. 
148 For conceptual design, the processing tasks also need to be as-
149 sociated with equipment selection. Due to its origins as a multi-
150 product scheduling representation, the STN supports variable task-
151 equipment (VfE) assignment, in addition to the more traditional 
152 one task-one equipment (OIDE) assignment. ln VfE, a single piece 
153 of equipment may perform multiple different processing tasks (e.g. 
154 batch reactors that perform bath reaction and mixing tasks), and 
155 the final equipment-task assignment is given by the optimization 
156 result However, OIDE is far more common in overall flowsheet de-
157 sign, with each task associated a priori to a piece of equipment In 
158 that way, the superstructure more closely resembles a process flow 
159 diagram with conditional flow paths. The STN-OTOE representation 

is still commonly used today, and has inspired new representations 160 

that build on its ideas. As previously introduced, the STN can be 161 

constructed by taking into account all of the tasks needed ta con- 162 
vert a process through means-ends analysis (Siirola et al., 1971), 163
and connecting them via associated intermediate states. 164

2.2. P-Graph representation 165 

The process graph (P-graph) concept first appeared in 166 
Friedler et al. (1992a). As such, it is a contemporary to the 167
STN, with many similarities between the two representations. The 168
P-graph is a bipartite graph (see Fig. 3), whose vertices consist of 169
material (M-type) and operating unit (0-type) nodes. An operating 110 

unit accepts one or multiple input materials, and produces one 171 

or more outputs. P-graph material nodes correspond to STN state 112 

nodes; P-graph operating units, to STN tasks. 173 

Drawing upon ideas from graph theory, 174 

Friedler et al. (1992b) show that combinatorially feasible pro- 11s 
cess structures are subgraphs of the P-graph that satisfy the 176 

following system of axioms. 1n 

Axiom St. Every final product of the process is represented by a 178
M-type vertex in the graph. 179

Axiom S2. A M-type vertex represents a raw material, if and only 180 

if it has no incoming incident arcs. 181 

Axiom 53. Every operating unit defined in the synthesis problem 182 
corresponds to an 0-type vertex in the graph. 183 

Axiom 54. There exists at least one path from each operation unit 184 

node to a node representing a final product 185 

Axiom SS. Every material node should represent an input or an 186 
output to/from at least one operating unit node. 187
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188 Axiom 51 ensures that ail desired products appear in the super-
189 structure, while Axiom S2 defines which nodes are the raw mate-
190 rial input nodes. Axiom 53 ensures that ail considered operating 
191 units appear in the graph. Axiom 54 requires that each operating 
192 unit be connected to at least one final product, i.e. there are no 
193 irrelevant operations. Finally, Axiom 55 enforces that every mate-
194 rial node is connected to at least one operating unit node, i.e. there 
195 are no irrelevant materials. Tue set of structures described by these 
196 axioms is closed under union, and the superstructure corresponds 
197 to the union of ail the structures. 
198 Tue P-graph methodology distinguishes itself among early su-
199 perstructure representations by providing a systematic algorithm 
200 for generating the P-graph (Friedler et al., 1993 ). Tue computa-
201 tional complexity of this algorithm is polynomial in the num-
202 ber of the materials and in the maximal degree of its vertices 
203 (Friedler et al., 1993). An accelerated branch-and-bound (ABB) 
204 strategy was also developed to exploit the P-graph representa-
2os tion by restricting the search to combinatorially feasible structures 
206 and solving the relaxations at branched nodes in reduced space 
2rr, (Friedler et al., 1996). It is noteworthy that contemporary to this, 
2os the same motivations guided development of the logic-based outer 
209 approximation algorithm for Generalized Disjunctive Programming 
210 (Türkay and Grassmann, 1996) (see also Section 3.3). Connections 
211 between the P-graph representation and GDP formulations were 
212 subsequently explored in Brendel et al. (2000). 
213 The mathematical rigor unpinning the P-graph methodology is 
214 a key advantage of the approach; however, its closed implementa-
21s tion and complex notation limit its accessibility to a chemical en-
216 gineering audience. For more detail, recent reviews on the P-graph 
211 approach may be found by Lam (2013) and Friedler et al. (2019). 

218 2.3. State-equipment network representatton 

219 In the state-equipment network (SEN) representation (see 
220 Fig. 4), introduced by Smith and Pantelides (1995), the superstruc-
221 ture nodes are states and equipment, with task assignment to the 
222 equipment determined as an optimization result For some prob-
223 lem classes, e.g. distillation sequence design, SEN requires fewer 

operator (equipment/task) nodes than the equivalent STN repre- 224 
sentation. For a three-component system with sharp separations, 225 
the SEN requires two equipment nodes versus four task nodes for 226 
the STN; for a four-component system, the ratio is four to 10 for 221 
the SEN and STN, respectively. However, with the SEN, the corn- 228 
binatorial complexity is found in the equipment interconnections, 229 
so it is more effective when the equipment selection is known a 230 
priori (Yeomans and Grossmann, 1999), as in distillation sequences 231 
and reactor selection (Ramapriya et al., 2018). 232 

Note that multiple logically-equivalent SEN variants may be 233 
possible with differing assignment of potential tasks to the equip- 234 
ment, as seen in Section 2.3 for a distillation sequence superstruc- 235 
ture. Variant 1 (Fig. 4a) has a more intuitive flow pattern, with the 236 
first separation taking place in the first column, and the second 237 
separation taking place in the second column. Variant 2 (Fig. 4b) 238 
groups the tasks by the split taking place, with the AIB separation 239 
in the first column, and the BIC separation in the second column. 240 

As a result, variant 2 potentially has less physical property vari- 241 

ation between discrete task selections at either the condenser or 242 
reboiler end of the column, with a high concentration of the same 243 
pure component This could improve computational performance 244 
in optimization algorithms. The relative merits of these two vari- 245 
ants remains an open question. 246 

Related to both the STN and SEN is the Resource-Task Network 247 
(RTN) representation, introduced by Pantelides (1994), in which 248 
the resource nodes can refer to material states (as in the STN) 249 
and/or equipment (as in the SEN). Tue RTN is more common in 250 
process scheduling applications, but can be useful in simultane- 251 
ous scheduling and design problems. We omit a detailed discussion 252 
here and refer the interested reader to recent reviews on schedul- 253 
ing formulations (Harjunkoski et al., 2014; Brunaud et al., 202oi 254 

Tue recent Processing Step-Interval Network, proposed by 255 
Bertran et al. (2016), can aise be seen as an extension of the 256 
STN/SEN, with influence from early heat exchanger network mod- 257 
els (Yee and Grassmann, 1990). The representation adds structure 258 
and nuance to the states through the use of processing intervals. 259 
An example of its use can be found in Garg et al. (2019) for the 260 
production bio-succinic acid. 261 
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252 2.4. State-space representation 

263 The state-space representation (SSR) was adapted from the 
264 concept of Mstate space" in system theory (Zadeh and Des-
265 oer, 1979). In the state-space approach, the design problem is 
266 posed as identification of the properties of the input-state--output 
267 relations between input and output variables (Bagajewicz and 
268 Manousiouthakis, 1992). The input/output variables are defined by 
269 the process engineer, while the input-state-output relations be-
210 tween variables yield a given structure. For process synthesis, the 
211 structure involves sequential applications of two classes of func-
212 tians, namely (a) mixing and splitting of streams in the distribu-
273 tian network, and (b) unit operations which determine the process 
274 operator. 
275 The SSR was motivated by the ability to easily generate 
276 complex distillation configurations such as Petlyuk columns. ln 
211 Bagajewicz and Manousiouthakis (1992), the SSR for a distil-
278 lation network is introduced as the integration of heat- and 
279 mass-exchanger operations. The state space approach was fur-
280 ther extended by Wilson and Manousiouthakis (2000), which 
281 explores the limits of discretization of the design space. An-
282 other similarly-motivated extension was recently developed by 
283 Liesche et al. (2019). 
284 The SSR is characterized by matrix operations involving the 
285 state variables. The numerical structure of these matrix operators 
286 ultimately translates to a physical process structure. Visualization 
281 of the SSR (see Fig. 5) involves abstract boxes representing the op-
288 erators, interconnected by the state variables serving as inputs to 
289 or outputs from these operators. The mathematical convenience of 
290 the matrix-operator interpretation has gained the SSR significant 
291 popularity in process integration (mass/heatjwork exchange) appli-

cations (see Table A.2). In Saif et al. (2009), a comprehensive sur- 292

vey on the applications of the SSR methodology to optimization of 293

membrane and hybrid membrane process systems for wastewater 294 

treatment is presented. 295 

The SSR is a very general representation, but given its abstract- 296

ness and lack of supporting software tools, it has seen limited up- 2':17 
take outside of its proven area of process integration {Fig. 6). 298

0]. 

2.5. R-graph representation 299 

Parkas et al. (2005b,c) adapt the SEN-OfOE to create the R- 300

graph representation, in which nodes correspond to the inlet and 301

outlet ports of each candidate process unit. The inlet ports function 302 

as multi-stream mixers, while the outlet ports correspond to split- 303

ters. Directed edges between the ports represent process streams, 304 

which always originate from an outlet port and end at an in- 305 

let port The R-graph representation also features source and sink 306 

units, corresponding to raw materials and products, respectively. 307 
The source unit only bas an outlet port, while the sink unit only 308 

has an inlet port By definition, ail R-graph nodes must be con- 309 
nected to another node in the graph. 310 

The R-graph is motivated by modeling concerns that may arise 311 
in the traditional STN or SEN approach. First is the problem of mut- 312

tiplicity and redundancy, whereby a superstructure encodes multi- 313 
ple equivalent solutions, needlessly increasing the computational 314 

cost of the search algorithm. These redundant structures are eas- 315 
ily created when unit bypasses are possible. In addition, no unique 316 

algebraic description is generally available for a given superstruc- 317 

ture. Simple algebraic transformations can give rise to an infinite 318 

number of mathematical programming formulations that an yield 319 

the same engineering solution. 320 
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321 Farkas et al. (2005b) address superstructure multiplicity by 
322 proposing techniques to consider only R-graphs that are non-
323 isomorphic. They then introduce the "basic" GDP (BGDP) model
324 in the spirit of the GDP formulation in Yeomans and Gross-
325 mann (1999), but exploiting the R-graph to avoid introduc-
326 ing additional logical relations that would be required to de-
327 fine certain substructures. Kocis and Grassmann (1988) and 
328 Szitkai et al. (2002) perform a computational analysis on litera-
329 ture synthesis problems, demonstrating the procedures to build 
330 the BGDP and various mathematical representations (Farkas et al., 
331 2005c). The methodology is then applied to distillation column de-
332 sign and optimization by Farkas et al. (2005a). 
333 As with the P-graph approach, the R-graph exploits mathemati-
334 cal properties of graphs to improve solution strategy performance. 
335 Here, the R-graph also takes advantage of logical representability 
336 benefits conferred by GDP modeling. However, no software tools 
337 exist to support the R-graph approach, and the modem-day bene-
338 fits of BGDP over a traditional GDP are an open question given the 
339 prevalence of linear preprocessing for logical relations (Fig. 8).

340 2.6. Generolized modular framework representation 

341 The generalized modular framework (GMF) representation was
342 introduced by Papalexandri and Pistikopoulos (1996) to simplify 

iABC {A){BC) 

oA oB 

{B){C) 

BC oC 

Fig. 8. Group contribution bilsed flowsheet for 3 component sharp split distillation 
sequence. 

superstructure generation with an aim to identify advantageous 343 

structural alternatives without needing to explicitly pre-postulate 344 

them, much like the state-space representation. GMF was also first 345 

developed with a focus on mass and heat exchange networks, with 346 
a later distillation sequendng example by Proies et al. (2005) (see 347

Fig. 7). GMF is one of the first major representations to explicitly 348 

facilitate design of reactive separation systems (Papalexandri and 349 

Pistikopoulos, 1996). The reaction-separation superstructure intro- 350 

duced by Llnke and Kokossis (2003) can be seen as a extension 351 

based around similar ideas. More recently, GMF has also been ex- 352 

tended to explore operability issues of design (Tian et al., 2018b). 353
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354 2. 7. Group contribution based methodology

355 The group contribution based process flowsheet synthe-
356 sis approach is detailed by d'Anterroches and Gani (2004, 
357 2005 ), drawing inspiration from group contribution methods 
358 in thermodynamic property prediction for molecular design 
359 (Fredenslund, 2012). In property prediction, a function is developed 
360 relating the contribution of different molecular groups (atoms with 
361 different bonding relationships) to the value of a physical property 
362 of interest For molecular design, this prediction function is used to 
363 determine the optimal molecular groups that constitute a poten-
364 tially nove! molecule. Applied to flowsheet synthesis, a group can 
365 be represented by a proœss unit or a set of units, with the goal to 
366 determine which collection of process units contribute to give the 
367 best flowsheet performance. The approach, computer-aided flow-
368 sheet design (CAFD), is illustrated for the design of a distillation 
369 column by d'Anterroches and Gani (2005). 
370 As with molecular design, a difficulty of this method is ob-
371 taining parameters for the prediction function that determines the 
312 contribution of various potential process groups to an overall de-
373 sign objective, and their ability to satisfy process specifications. 
374 However, if parameters are found that give accurate predictions, 
375 evaluation of different process alternatives is generally compu-
376 tationally inexpensive. Tula et al. (2014, 2015) present a recent 
377 overview of the CAFD framework (Fig. 9). 

378 2.8. Phenomena-building black approach

379 In the early 2010s, renewed interest in proœss integration 
380 and nontraditional process units led to the development of the 
381 phenomena-building block (PBB) approach by Lutze et al. (2013), 
382 extending phenomena-centric ideas promoted by Hauan and 
383 Lien (1998). As with earlier strategies like the state-space and GMF 
384 representations, PBB allows for a broader design space that can au-
385 tomatically generate processes with novel combinations of chemi-
386 cal and physical phenomena taking place within process units. A 
387 major challenge with approaches that attempt to propose novel 
388 equipment is the selection of an appropriate optimization objective 
389 function. As a proxy, many methods use thermodynamic insights, 
390 seeking to minimize either energy or exergy use in the process. 
391 Kuhlmann and Skiborowski (2016) propose use of development 
392 of an PBB equipment database as one solution to this challenge. 
393 Other strategies avoid this problem entirely by proposing screening 
394 rules that Ieave a tractable set of promising candidate flowsheets 
395 to evaluate (Holtbruegge et al., 2014). However, these screen-
396 ing rules may require simplifying assumptions about the process 
397 to be made, and may prematurely exclude advantageous process 
398 structures. 

2.9. Unit, port, conditioning stream representation 399 

The unit, port, conditioning stream (UPCS) representation was 400 

introduced by Wu et al. (2016), consisting of three elements: (a) 401 
units, which can be general process units, source units, or sink 402 
units; (b) ports, which correspond ta unit inlets and outlets, and 403 
serve as multi-stream mixers and splitters; and (c) conditioning 404 
streams, which link outlet and inlet ports, while also handling tem- 405 
perature and pressure change operations. 406 

The UPCS representation is heavily influenced by ideas in the 407 
STN, the P-graph, the R-graph, and the more recent unit operation- 408 
port-state (UOPSS) superstructure (Zyngier and Kelly, 2012). The 409 
UPCS thus continues the tradition of drawing inspiration from the 410 
process scheduling literature (Kelly, 2004; 2005). 411 

As in the P-graph method, Wu et al. (2016) describe an algo- 412 
rithm to generate a UPCS superstructure. First, the set of consid- 413 

ered process units are selected based on knowledge of the applica- 414 
ble reaction and separation tasks. Next, inlet and outlet ports are 415 
defined for each unit, and streams are created to connect each out- 416 
let port to ail inlet ports. From this fully-connected starting point, 417 
the authors describe four rules to prune invalid and unnecessary 418 
connections, based on the set of Mminimal" and "feasibleR campo- 419 
nents for each port Minimal components are those that must be 420 
present at an inlet or outlet port. For example, a reactor A + B --+ C 421 
would be ineffective without components A or B, so those would 422 
be considered minimal components for the reactor inlet port Fea- 423 
sible components are those that may be present at a given port 424 
Ail minimal components are also feasible, but a reactor inert I may 425 
be considered feasible but not minimal. 426 

Rule 1. Ali minimal components for outlet ports should be feasible 427 
for connected inlet ports. 428 

Rule 2. Ail minimal components for inlet ports should be feasible 429 
in at least one connected outlet port 430 

Rule 3. Ail outlet ports connected to a reactor inlet port must con- 431 
tain at least one feasible component that is minimal for the reactor 432 
inlet 433 

Rule 4. Ali minimal components for a separator inlet port must be 434 
feasible in connected outlet ports. 435 

Rule 1 ensures that inlet ports do not receive infeasible corn- 436 
ponents from connections to outlet ports. Rule 2 ensures that each 437 
inlet port receives its necessary components. Rule 3 reduces the 438 
number of streams connected to a reactor inlet lt is worth not- 439 
ing that in some systems, inerts may be important to the reaction 440 
controllability, so care should be given to which components are 441 
deemed feasible versus minimal. Rule 4 avoids unnecessary mix- 442 
ing and separation by preventing, among other possibilities, a pure 443 
component at a separator outlet from being immediately remixed 444 
into the separator inlet 445 
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Fig. 10. Building block-based superstructure for a 3 component sharp split distillation sequenœ. 

By shifting temperature and pressure change complexity ta the tian in the spatial domain for plug flow reactors and membranes 
streams, UPCS generates visually simpler superstructures than the can also be represented as a series of linked grid blacks. However, 
STN-OTOE. Use of ports also reduces bypass redundancy, as with the structure of the BBS creates a difficult mathematical program-
the R-graph representation. However, even after screening with the ming problem. 
described connectivity rules, autamated superstructure generation The BBS therefore challenges the state-of-the-art in modeling 
techniques often produce rnany more interconnections than are ac- and solution techniques. To tackle tractability considerations, two 
tive in the final solution. As a result, the authors also introduce main avenues of investigation have arisen: new solution tech-
simplification strategies that reduce the number of conditioning niques tailored to the block-grid structure and the careful appli-
streams that must be considered. These simplifications are made cation of problem-specific engineering expertise. SymmetrY is a 
based on engineering judgement and restrict the generality of the prominent feature of the BBS, due to the versatility of its blocks. 
strategy. However, they reflect real optimization tradeoffs between Each block in the BBS is identical, except the boundary blocks, 
the generality of a superstructure representation, the fidelity of which have fewer interconnections. Li et al. (2018) therefore pro-
the physical property calculations, and the computational tractabil- pose symmetry-breaking constraints to reduce the resulting corn-
ity of its solution. By distinguishing between minimal and feasible binatorial redundancy. Iterative strategies that explore partitions of 
components, the UPCS provides more chemical engineering nuance the feasible region in a "frame-by-frame" manner have also been 
than the P-graph, while also providing a general algorithm for gen- proposed (Li et al., 2018). However, as with most problems, spe-
erating its representation. cialized process knowledge can be a much more powerful tool. 

By carefully applying domain restrictions, e.g. pre-specifying flow 
2.10. Building black-based superstructure directions, black boundaries, raw material/product black identi-

ties, reaction blacks, etc., the problem can be made much more 
The building block-based superstructure (BBS) (Demirel et al., tractable. To aid in this, Li et al. (2018) proposes the use of Mjump 

2017) is the most recent contribution that attempts ta provide streams" to connect arbitrary blacks with each other, avoiding the 
a very general representation, capable of capturing aspects of need for specifying empty blocks to accomplish the desired con-
navel equipment design. The representation consists of a two- nectivity. An example of their use can be seen in Fig. 10, where the 
dimensional grid of blocks, pictured in Fig. 10. Each black rep- distillate and bottoms of the first column are connected to the feed 
resents a control volume, capable of admitting flow across its of the second column. Engineering knowledge also plays a role in 
boundaries ta/from its adjacent blacks. Flow across these bound- superstructure generation. In general, it is an open question how 
aries can be fully restricted, semi-restricted (to represent mem- many rows and columns should be postulated in the initial su-
brane/separation systems), or fully open. Each block admits raw perstructure. For the special case of distillation sequence design, 
material feed inta and product withdrawal from the control vol- the number of BBS rows should correspond to the number of col-
urne, as well as chemical reactions. Each black also admits tem- umn trays ta be considered. In this example, the BBS representa-
perature and pressure change operations. The control volume of tian, pre-specified for the three component sharp split distillation 
each black is assumed to be well-mixed, with uniform composi- sequence design, resembles the SEN variant 1 (see Fig. 4a). How-
tian, temperature, and pressure in its exit streams. ever, successive restrictions of the design space based on engineer-

Unlike the graph-based representations, the BBS approach ing knowledge can compromise solution novelty-a central feature 
prioritizes generality and graphical accessibility over solution of the BBS representation-and so these restrictions should be ap-
tractability. By allowing a broad range of operations in each grid proached carefully. Ultimately, the BBS provides an initial start-
cell, the BBS permits the representation of diverse equipment de- ing point for approaching the central tradeoff in superstructure-
signs without the need to explicitly postulate alternatives, includ- based synthesis (between generality, model fidelity, and tractabil-
ing navel combinations of phenomena that may lead to new equip- ity) that emphasizes the former two factors, and the solution strat-
ment designs. Moreover, the two-dimensional grid layout facili- egy should be tailored accordingly. 
tates an elegant visualization of the optimal structure. Discretiza-
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527 3. Modellng and solution strategies 

528 This paper is focused primarily on discussing different super-
529 structures, but we will briefly touch on the modeling and solution 
530 strategies here, because they can often be a factor in selection of 
531 the representation. The dassic approach involves posing a math-
532 ematical programming formulation as a large-scale mixed-integer 
533 nonlinear programming (MlNLP) problem (Grossmann et al., 2000). 
534 Discrete decision variables capture structural alternatives; continu-
535 ous variables, the process conditions ( e.g. temperatures, flowrates, 
536 pressures, and equipment sizes). This formulation, expressed 
537 within an algebraic modeling platform, would then be sent to a 
538 numerical solver to obtain optimal values of the decision variables. 
539 In general, process design is a computationally difficult prob-
540 lem, with nonconvex functions involved describing the process 
541 units and their interconnections. These complications can lead to 
542 intractable formulations, which modelers often address by impos-
543 ing simplifying assumptions ( e.g. ideal thermodynamics and lin-
544 ear approximations) or tailored restrictions of the search space. 
545 Grossmann and Santibanez (1980) address the use of linear ap-
546 proximations in superstructure optimization problems. In addition, 
547 more general advanœd strategies have been developed to effec-
548 tively model and salve this difficult dass of problems. In the fol-
549 lowing subsections, we present several themes common among 
550 these strategies: logic-based modeling, surrogate models, and de-
551 composition algorithms. 

552 3.1. Logic-based modeling 

553 Process design problems offer significant mathematical struc-
554 ture in the discrete domain, a feature exploited by the graph-based 
555 superstructures (P-graph, R-graph, UPCS). Likewise, the struc-
556 tural relationships described by a superstructure can be encoded 
557 through logic-based modeling. Generalized Disjunctive Program-
558 ming (GDP) (Raman and Grossmann, 1994) offers an intuitive way 
559 to express the logical-OR (disjunctive) relationship between differ-
560 ent process alternatives, while also capturing the connection be-
561 tween these logical dauses and the algebraic relations that de-
562 scribe each respective alternative (Chen and Grossmann, 2019). 
563 GDP also allows imposition of logical statements; for example, that 
564 selection of a cheaper reactor necessitates feed pretreatment 
565 GDP is an extension of disjunctive programming from the op-
566 erations research community (Balas, 2018) to allow for nonlinear 
567 algebraic relationships. Therefore, it unlocks a suite of solution 
568 strategies that may be applied to the synthesis problem, including 
569 systematic reformulations ta different MINLP representations that 
570 may yield improved computational performance (Trespalacios and 
571 Grossmann, 2014). GDP modeling also preserves logical structure 
572 for tailored decomposition algorithms (see Section 3.3). 

573 3.2. Surrogate models 

574 In process design, many process unit alternatives may fea-
575 ture complex first-principle models describing transport, thermo-
576 dynamic, and/or kinetic relationships that are relevant to the prob-
577 lem, but tao computationally expensive to include directly in the 
578 optimization formulation. In this case, surrogate models ( or meta-
579 models) pay a key role-replacing these expensive models with a 
580 more tractable approximation that is trained with simulated data 
581 from the model, or with experimental measurements (Cozad et al., 
582 2014). Standard optimization algorithms can then be applied us-
583 ing the surrogate models, as in Mencarelli et al. (2019), or trust 
584 region-based methods can be used (Eason and Biegler, 2016). If the 
585 surrogate does not provide derivative information, then derivative-
586 free "black box" algorithms may be necessary (Rios and Sahini-
587 dis, 2013 ). 

Different classes of surrogates can be used, ranging from lin- 588 

ear surrogates ta Gaussian processes to artificial neural networks 589 

(ANNs). ln Super-0, piecewise linear representations of different 590 

process segments can be used as the building blacks of a super- 591 

structure optimization (Bertran et al., 2016). Henao and Maravelias 592 

(2010, 2011 ) introduce a surrogate-based superstructure framework 593 

based on the STN-OTOE approach. Fahmi and Cremaschi (2012) in- 594 

tegrate GDP and ANNs-the trained ANN surrogates are substituted 595 

in place of the first-principle models in a GDP formulation. Kriging 596 

interpolators have also been used (Davis and Ierapetritou, 2015; 597 

caballero and Grossmann, 2008). Recently, Schweidtmann and Mit- 598 

sos (2019) introduced a framework for global optimization of su- 599 

perstructure synthesis problems with ANNs. 600 

Note that in this work, we do not touch on training and pa- 601 

rameter estimation concerns associated with using surrogate mod- 602 

els. Instead, we refer the reader to a recent review paper in the 603 

area of surrogate modeling for process design (McBride and Sund- 604 

macher, 2019). 605 

3.3. Decomposition algorithms 606 

Decomposition algorithms that partition a problem into multi- 607 

ple tractable subproblems are commonly used to tackle large-scale 608 

optimization challenges. Classic examples of this include the Outer 609 

Approximation (DA) (Duran and Grassmann, 1986a) and General- 610 

ized Benders Decomposition (GBD) (Geoffrion, 1972) algorithms, 611 
which separate the design problem into a master problem that 612 

salves a linear approximation of the full space problem and a sub- 613 

problem that evaluates a fixed flowsheet configuration taking into 614 

account the nonlinear relationships. At each iteration, the solution 615 

of the master problem proposes a new realization of the discrete 616 

variables for the subproblem, and the nonlinear subproblem so- 617 

lution, if feasible, gives new candidate solution points. The sub- 618 

problem solution also gives new variable values at which ta add 619 

linearizations to augment the master problem; OA and GBD differ 620 

in the generation of these linearizations. Termination occurs when 621 

the solution of the master problem converges with the solution of 622 

the subproblem. 623 

This two-level decomposition between discrete flowsheet se- 624 

lection and detailed evaluation remains the most common theme 625 

among decomposition strategies for process design. Kocis and 626 

Grassmann (1989) present a specialized MINLP decomposition ap- 627 

proach for synthesis based on Lagrangean decomposition. The dis- 628 

crete elements of an MINLP for process synthesis usually de- 629 

scribe logical relationships between superstructure alternatives. 630 

With GDP, decomposition may be applied directly on this log- 631 

ical layer. The logic-based outer approximation (LOA) algorithm 632 

(Türkay and Grossmann, 1996) exploits this structure to solve 633 

the nonlinear subproblems in reduced space, avoiding zero-flow 634 

numerical challenges present in MINLP formulations. Logic-based 635 

branch and bound (LBB) (Lee and Grassmann, 2000) does the same 636 

to solve node relaxations in reduced space, as with the ABB strat- 637 

egy for P-graph (Friedler et al., 1996). 638 

Note that strategies presented in this section differ from hi- 639 

erarchical decomposition (Douglas, 1985) in that the decomposi- 640 

tion takes place within an computational solution framework with 641 

mathematical guarantees on convergence to optimality. In particu- 642 

Jar, LBB and a global optimization extension to LOA, GLOA (Lee and 643 

Grassmann, 2001 ), offer convergence guarantees to within an e toi- 644 

erance. The other discussed decomposition strategies assume con- 645 

vexity, yielding a numerical heuristic for nonconvex chemical pro- 646 

cess flowsheet problems. Hybrid strategies have also been pro- 647 

posed in which physical insights are used as rules of thumb to 648 

screen the solution space before applying a mathematical program- 649 

ming algorithm (Bommareddy et al., 2011 ). 650 
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651 4. Software implementations 

652 Well-established commercial software tools exist for process 
653 simulation, but not yet for process synthesis (Tula et al., 2018). 
654 As a result, standard industrial practice for synthesis remains ei-
655 ther trial-and-error using simulators, guided by engineering intu-
656 ition or an expert system package, or the development of special 
657 purpose implementations in algebraic modeling systems. However, 
658 to provide general capabilities for systematic superstructure syn-
659 thesis, new tao! sets are needed. 
660 To be successful, our community needs software taols ta ac-
661 commodate two classes of users: general users who wish to tackle 
662 an understaod problem, and advanced users whose design chal-
663 lenges lead them ta push the state-of-the-art. The former desire a 
664 tool with an accessible interface that will consistently deliver re-
665 Hable answers for their analyses. The latter, frequently academics 
666 or researchers at national labs and major corporations, demand all 
667 of the above in addition ta the ability ta adapt or extend the taol 
668 for unknown or unforeseen challenges. The needs of general users 
669 limits technology transfer from academia inta industry. Academic 
670 software rarely benefits from the funding required to create an el-
671 egant user interface. Moreover, the finesse required to reproduce 
6n academic results often necessitates hiring a student from the rel-
673 evant research group. On the other hand, without investing in ad-
674 vanced functionality and flexibility for advanced users, innovation 
675 in tl1e tool will eventually stagnate, and tl1ese users may opt ta 
676 develop a more capable alternative. Developers must balance these 
677 issues among other considerations when choosing where ta devote 
678 limited resources. 
679 Actively developed syntl1esis software packages include Pro-
680 CAFD (Tula et al., 2017), P-Graph Studio (Friedler et al., 2019), 
681 MIPSYN (Kravanja and Grassmann, 1990), SYNOPSIS (Tian et al., 
682 2018b), and Pyosyn (Chen et al., 2019), ail of which find their roots 
683 in academia. ProCAFD is the most sophisticated of tl1ese tools in 
684 its support of general users, with a graphical user interface and 
685 the ability to automatically generate process alternatives from a 
686 set of raw materials, products, and reactions. It builds upon pre-
687 existing work in the ICAS (Gani et al., 1997) tao! set. P-Graph Stu-
688 dio also features a graphical interface; however, it is less adapted 
689 to chemical engineering use, requiring more user input to set up 
690 the problem. MIPSYN, on the other hand, has a simple graphical 
691 interface, but includes a notion of chemical engineering unit mod-
692 els to aid tl1e user. MIPSYN poses synthesis problems as MINLP 
693 or reformulations of GDP models (Ropotar and Kravanja, 2009), 
694 which are solved via an integration with tl1e GAMS algebraic mod-
695 eling platform (Brook et al., 1988 ). SYNOPSIS and Pyosyn are bath 
696 newer synthesis frameworks, created as part of two Department 
697 of Energy projects: RAPID (Bielenberg and Palau-Rivera, 2019) and 
698 IDAES (Miller et al., 2018}, respectively. SYNOPSIS is built upon the 
699 GMF superstructure representation, though the tool itself has not 
100 yet been publicly released. As with MIPSYN, an integration witl1 
101 GAMS allows solution of the resulting MINLP models. Pyosyn, on 
102 the other hand, does not prescribe a choice of superstructure, in-
703 stead focusing on support for high level modeling representations 
704 and solution strategies. Pyosyn supports GDP modeling with the 
705 open-source Pyomo.GDP (Chen et al., 2018} library, which also en-
706 ables a suite of solution schemes (Chen and Grassmann, 2019). 
101 Specialized chemical engineering support is provided by the IDAES 
708 unit mode! library (Lee et al., 2018), with network representation 
709 capabilities using Pyomo.Network. 
110 Most of the described tools have a closed-source code base, 
111 witl1 some providing free academic licenses upon request This has 
112 the advantage of protecting intellectual property and generating a 
713 revenue stream ta fund continued research, general user-oriented 
714 features such as improved graphical interfaces, and custamer sup-
715 port. However, the community must also support open platforms 

that allow for protatyping of new innovations and integration of 716 

tl1ese taols witl1 existing capabilities; otherwise, it risks stagnation 717 

as in the process simulation domain. 718 

5. Superstructure-free approadtes 719 

Given tl1e challenges of properly generating and solving the su- 720 

perstructure synthesis problem, evolutionary "superstructure-free" 721 

approaches have been a longstanding fixture of chemical engineer- 122 
ing practice (Nishida et al., 1981 ). Boonstra et al. (2016) discuss the 723 
distinction between superstructure-based and superstructure-free 724 

approaches. Superstructure-free approaches also tend to adopt a 725 
two-level decomposition approach, separating the discrete topolog- 726 

ical decision and the detailed flowsheet evaluation, as detailed in 727 

Section 3.3. However, instead of a mathematical programming ap- 728 

proach ta propose flowsheets from the combinatarial search space, 729 

an evolutionary algorithm dynamically generates alternative struc- 730 
tures, which are then evaluated by an optimization algorithm. 731 
Preuss et al. (2014) compare use of an evolutionary algorithm for 732 
tl1e upper level and a purely MILP-based approach. 733 

Voll et al. (2012) describe a two-phase hybrid proce- 734 

dure, combining an evolutionary algoritl1m and a determinis- 735 
tic optimization phase for the energy supply system problem. 736 
Neveux (2018) present a similar approach: a structure is generated 737 

according to the following mutation rules: (i) block addition be- 738 

tween two existing blacks, (ii) block removal, and (iii) permutation 739 
of two streams. An NLP is then solved to evaluate the performance 740 

of the structure generated. Machine leaming has also been pro- 741 

posed as a flowsheet identification technique (Zhang et al., 2019). 742 

Superstructure-free approaches avoid the need for integer vari- 743 

ables to model the on/off state of a unit. This often expedites tl1e 744 

rate at which new candidate flowsheets are generated. However, 745 

rigorous lower-bounding guarantees ta assert matl1ematical opti- 746 

mality without exhaustive enumeration are lost. In applications for 747 

which these mathematical lower bounds are unimportant or out- 748 

weighed by other considerations, superstructure-Cree approaches 749 

can be a valuable search heuristic. 750 

6. Condusions 751 

Process design is a central challenge of chemical engineering, 752 

for which superstructure optimization is a powerful analysis tao!. 753 
When selecting the correct superstructure representation for a 754 
given design problem, tl1e relevant factors are generality, ease of 755 

use, and tractability. The representation must capture the relevant 756 

choices in processing unit or phenomenological alternatives, clearly 757 

represent the space of options, and support formulation of a math- 758 

ematical programming problem that is amenable to available opti- 759 

mization strategies. In this review, we present the main contribu- 760 
tians that led to development of the existing representations, and 761 

offer the reader our perspective on their relative strengths with re- 762 

spect ta different criteria. We discuss algorithms that exist for au- 763 

tamated generation of both the process alternatives as well as tl1eir 764 

superstructure representation. We also discuss implications that a 765 

choice of representation can have on the modeling and solution 766 
phases of superstructure-based synthesis. 767 

Finally, we highlight tl1e central tradeoff tl1at exists in tack- 768 

ling superstructure optimization problems: between the generality 769 

of tl1e representation, tl1e fidelity of tl1e process unit/phenomena 770 

models, and the tractability of solution strategies. The systematic 111 

and integrated analysis of alternative structures is tl1e key advan- 772 

tage of the superstructure-based approaches; however, they often 773 

yield large-scale non-convex mathematical programming formula- 774 

tians, which are difficult to salve. We highlight various mode!- 775 

ing and optimization strategies that aim to overcome this chai- 776 
lenge. In some cases, authors have chosen ta pursue evolution- 777 
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1able 1 
Acronyms. 

Acronyms (alphabetical order) 

ANN 
BGDP 
CAFD 
CAMD 
GDP 
GMF 
MlNLP 
NIP 
OTOE 
PBB 
PSE 
SEN 
SSR 
STN 
UOPSS 
uoss 

UPCS 
vrE 

Artilicial neural network 
Basic generalized disjunctlve problem 
Computer aided flowsheet design 
Computer aided molecular design 
Generalized disjunctive programming 
Generalized modular framework 
Mlxed lnteger nonllnear programmlng 
Nonlinear problem 
One task-one equipment 
Phenomena building blocks 
Process system engineering 
State equipment network 
State-space representation 
State-task network 
Unit-operation-port-state superstructure 
Unit-operation-stock superstructure 
Unit, port, conditioning stream 
Variable task-equipment 

ary usuperstructure-free" approaches in which alternative process 
structures are dynamically generated and evaluated from a base 
case flowsheet This may lead to faster search speeds in the dis­
crete design space, at the expense of losing finite time mathemat­
ical convergence guarantees. 
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Appendix A. superstructure syntbesis case studies 

Table A.2 summarizes literature case studies that have been ex­
amined with each representation. We denote with "•" those exam­
ples involving solution of an MINLP or nonlinear GDP, "•" those in­
volving solution of an MILP (including linear approximation of an 
MINLP), and "-" where the problem was solved by other means. 

'Jable A.2 
Superstructure design examples and case studies. 

• Pierce and Realff (1996): multi-chip module scheduling 
and design 
• caballero and Grossmann (2001 ): 5 hydrocarbon
distillation sequence 
- Tao et al. (2003 ): azeotropic separation design 
• Ahadi-Oskui et al. (2006): cogeneration power plant, 32
alternatives

- Montolio-Rndriguez et al. (2007): aœtic acîd
production

( continued on next page) 

'Jable A.2 (conttnued) 

STN 

P-Graph 

SEN 

State-Space 

R-graph 

GMF 

• Karuppiah et al. (2008): corn-based ethanol plant 
synthesis 
• Drobez et al. (2009): biogas process design 
• Henao and Maravelias (2011 ): plant subsystems using 
surrogate models (amine scrubbing, malic anhydride)
• Martin and Grossmann (2013): biorefinery optimization
• Wang et al. (2014): thermal power plant design
- Halim and Srinivasan (2006): waste minimization
• Liu et al. (2006): process retrofit downstream
bioprocessing
• Voll et al. (2013): distributed energy system design
(linearized MlNLP) 
• Vance et al. (2013 ): sustainable energy supply chain, 21 
structures 
• Heckl et al. (2015): multi-period design for corn
processing
• Ong et al. (2017): biorefinery design (linearized MINLP)
• Edeleva and Stennikov (2018): energy systems
optimlzation 
• How et al. (2018): biomass supply chain network
design
• Aviso and Tan (2018): polygeneration
• �les et al. (2018): plant energy supply 
• Chin et al. (2019): heat-integrated water network 
(linearized NIP) 
• Bartos and Bertok (2019): production line balancing 
- XU et al. (2015): downstream bioprocess design 
• 5everal other examples exlst with a slmilar modeling
and solution approach: automotive ammonia production,
biomass networks, benzaldehyde production, carbon 
capture storage, reaction pathway identification,
enterprise wide supply, steam supply, and heat
integration. We refer interested readers to the recent
review paper of Friedler et al. (2019).
• Smith and Pantelides (1995): ethylbenzene production
- Dünnebier and Pantelides (1999): thermally linlced
distillation columns 
- Linke and Kokossis (2007): extension for Denbigh 
reaction systems 
• Nie et al. (2012): scheduling and dynamic optimization 
of batch processes
• Moreno-Benito et al. (2016): batch process development
with dynamics
• Cui et al. (2017): coal-based methanol distillation
sequenœ 
• Madenoor Ramapriya et al. (2018): biorefinery design 
• Bagajewicz et al. (2002): water treatment network, 8
process units
• Dong et al. (2008): integrated heat and water network 
design, 3 process units
• Uao et al. (201 OJ; hydrogen distribution network
retrofit, moderate size
• Zhou et al. (2012b): water allocation with heat 
integration 
• Zhou et al. (2012a): hydrogen distribution network
design for hydrotreating
• Saif and Elkamel (2013): membrane network design
• Hong et al. (2016): heat-integrated water network, 15 
process units
- Pichardo and Manousiouthakis (2017): hydrogen
production from natural gas
• Béicking et al. (2019); membrane network design with
experimental validation 
• Emhamed et al. (2007): desalination facility location
• Proios et al. (2005): 4 component heat-integrated
distillation seguence design 
• Algusane et al. (2006): reactive adsorption column
design 
• Damartzis et al. (2016): amine-based C02 capture
process design
• Tian et al. (2018c): heat exchanger network synthesis
with safety and operability

• Tian et al. (2020): methyl tert-butyl ether (MTBE)
reactive distillation

( continued on nm page J 
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Process Group 

PBB 

UPCS 

Building Blodc 

- Tula et al. (2015): hydrodealkylation of toluene
- Lucay et al. (2015): minerai concentration
• Kuhlmann and Skiborowski (2017): ethanol dehydration
- Kuhlmann et al. (2018): transesterification of propylene
carbonate 
- Garg et al. (2019): bio-succinic acid production
• Kuhlmann et al. (2019): ethyl tert-butyl ether (ETBE)
production
• Wu et al. (2017): bio-process design (25 binaries)
• Fasahati et al. (2019): cyanobacteria biorefinery
• Peng et al. (2019): concentrated solar power plant
design
• Ng et al. (2019): lignocellulosic biorefinery design
• Matsunarni et al. (2020): solid drug manufacturing
• Li et al. (2018 ): process integration
• Li et al. (2018 ): fuel gas network synthesis-4 headers, 5
sinks

The references in the table below are curated from the list of arti­
cles citing each representation's source publication, as identified by 
their respective publishers. See Table 1 for definition of acronyms. 

Supplementary material 

Supplementary material associated with this article can be 
found, in the online version, at doi:10.1016/j.compchemeng.2020. 
106808. 
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