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a b s t r a c t

With the evolution of High Performance Computing, multi-core and many-core systems
are a common feature of new hardware architectures. The required programming efforts
induced by the introduction of these architectures are challenging due to the increasing
number of cores. Parallel programming models based on the data flow model and the
task programming paradigm intend to fix this issue. Iterative linear solvers are a key part
of petroleum reservoir simulation as they can represent up to 80% of the total computing
time. In these algorithms, the standard preconditioning methods for large, sparse and
unstructured matrices – such as Incomplete LU Factorization (ILU) or Algebraic Multigrid
(AMG) – fail to scale on shared-memory architectures with large number of cores. Multi-
level domain decomposition (DDML) preconditioners recently introduced seem to be
both numerically robust and scalable on emerging architectures because of their parallel
nature. This paper proposes a parallel implementation of these preconditioners using
the task programming paradigm with a data flow model. This approach is validated
on linear systems extracted from realistic petroleum reservoir simulations. This shows
that, given an appropriate coarse operator in such preconditioners, the method has
good convergence rates while our implementation ensures interesting scalability on
multi-core architectures.

1. Introduction 1

In basin modeling or reservoir simulations, multiphase porous media flow models lead to solve complex non-linear 2

Partial Differential Equations (PDE) systems. These PDEs are discretized following a Finite Volume (FV) scheme which leads 3

to a non-linear system solved with an iterative Newton solver. At each Newton step, the system is linearized and then 4

solved with an iterative methods such as Biconjugate Gradient Stabilized (BiCGStab) [1] or Generalized Minimal RESidual 5

(GMRES) [2] algorithms, well suited for large sparse and unstructured systems. Since this resolution part representing 60% 6

up to 80% of the global simulation time, then the efficiency of linear solvers has a straightforward effect on the simulators 7

performance. The choice of a robust preconditioner is therefore important to reduce the number of iterations required to 8

converge and to optimize in that way the cost of such iterative methods. 9

Nowadays, modern hardware architectures with an increasing number of computational nodes, and with possibly 10

several multi-core processors require an important programming effort. To be efficient on such architectures, several 11

levels of parallelism need to be handled. The coarse grain-size level enables to handle parallelism at the node cluster 12

level and to manage distributed memory. The finer grain-size levels deal with intra-node parallelism and local memory 13
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management. Task programming paradigm is now a common way to manage all these levels of parallelism. Task based1

runtime systems provide tools to guarantee a good load balancing while taking care of data management.2

The need of multi-level parallelism also induces difficulties from the algorithmic point of view. To reduce the number3

of iterations, preconditioners must not only be numerically robust regarding to reservoir simulation’s cases but also4

scalable on multi-core systems. Incomplete LU Factorization (ILU) preconditioner – described in [3] – is widespread, but the5

method is not scalable on recent architectures. The Algebraic Multigrid (AMG) [4] is well-known in the reservoir simulation6

domain for its numerical performances with large, sparse and unstructured matrices. However, it has be shown that the7

parallel method has difficulties to take advantage of modern multi-core architectures [5,6]. Recently, Multi-Level Domain8

Decomposition (DDML) [7] preconditioner has been introduced and seems to be efficient on recent architectures. Such a9

preconditioner can also be tuned by choosing an appropriate coarse space correction such as the one presented in [8]10

which guarantees numerical robustness on heterogeneous coefficient problems.11

The main contributions presented in this paper are:12

• a way to parallelize preconditioning algorithms on multi-core machines by using task programming model using13

HARTS [9] runtime system.14

• a Finite Volume adaptation of the GenEO method presented in [8] to handle linear systems coming from application15

based on Finite Volume discretization.16

• an efficient parallel implementation of this method in the DDML preconditioner, using coarse and fine grain17

parallelism.18

• a study of the numerical robustness and scalability performances of the preconditioner of linear systems coming19

from reservoir simulations.20

This work is organized as follows: after introducing in Section 2 the computational architecture trends that motivates21

our work, Section 3 presents a way to implement algorithms taking advantage of different levels of parallelism and22

memory. Section 4 consists of an overview of common preconditioners used in the reservoir simulation domain. The23

DDML preconditioner with an adaptation of the GenEO method to handle linear systems coming from Finite Volume24

application is detailed in Section 5. Our parallel implementation and various performance issues on many-core systems25

are discussed in Section 6. Our work is compared with related work in Section 7 before concluding in Section 8.26

2. Computer architecture and parallel programming model27

Conceiving parallel algorithms is getting all the more challenging since new computer architectures are getting more28

and more complex. Nowadays, multi-cores chips invade large scale architectures, while the number of cores per node29

continues to increase. Taking advantage of multi-levels of parallelism is the key point to reach high performances.30

Moreover, applications benefit from several levels of memory. For this reason, data exchange optimization is now31

unavoidable. This section relies first on computer architecture trends. We then review some emerging tools that help32

to efficiently program parallel applications.33

2.1. Computational trend34

Nowadays, massively parallel systems based on multi-core architecture increase the complexity of programming. The35

rise of the number of cores imposes to extract even more parallelism from algorithms. As applications may benefit from36

a coarse-grain parallelism at node level and a fine-grain parallelism among available processors in a node, load balancing37

is therefore important among computing units to gain in efficiency. Memory hierarchy and data transfers between local38

memories has to be also considered. Communication optimization at any parallelism level is required to avoid memory39

contention and data latency.40

2.2. Parallel programming model41

Programming efficient programs for these multi-core architectures is challenging. Emerging runtime systems are based42

on parallel programming models. Task-based runtime systems enable to split computations in smaller pieces of work43

(i.e., a task), which are scheduled to favor efficient load balancing. Tasks are organized in a Direct Acyclic Graph (DAG),44

according to data flow computations. A task is moved on a computational unit then executed when it is in ready state –45

i.e., when there is no more dependencies on it.46

Our work is based on the HARTS [9] runtime system which relies on abstract concepts to manage the layer between47

application and hardware. It therefore helps to distribute work between computation units and the associated data48

movements between the different memories. The library is based on a hardware model, a task model, a data model49

and an executing model. Its hardware model is based on the Hardware Locality software Hwloc [10] and enables to50

describe various heterogeneous architectures with different kinds of computer units, different levels of memories and51

different kind of connections between each units. Its task model enables to create and manage tasks objects with multiple52

representations for the target devices on which they may be executed. Task creation can be dynamic at runtime. All tasks53

are managed in a central task pool which can be operated by all the working threads. An algorithm is described as a DAG54
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with tasks and their associated dependencies. At runtime, a task can be replayed several times because of the persistence in 1

memory of the DAGs of tasks. The Data model enables to encapsulate the data manipulated by task objects in DataHandler 2

objects, managed and organized in a centralized data manager. It also provides data partitioning tools and partial views 3

of each sub part of the data. Finally the Executing model provides concepts to describe how tasks can be executed on 4

each specific devices with the better performance. 5

3. A task-based linear algebra framework for multi-level parallelism 6

To handle the complexity of programming efficient linear algebra algorithms on new parallel architectures, a specific 7

API dedicated to the linear algebra domain has been developed. It is aimed at expressing at a high level linear algebraic 8

algorithms with an implicit parallelism which hides the complexity of managing multi level parallelism, the various 9

memory configurations and low level optimizations. 10

3.1. Abstract Linear Algebra API 11

Linear solver algorithms, in particular Krylov methods, can be viewed as sequences of successive linear algebra 12

operations which are executed iteratively until reaching the convergence criteria. These operations are mostly level 1 or 13

level 2 BLAS (Basic Linear Algebra Subprograms) vector operations, some sparse matrix–vector products or some specific 14

sparse matrix preconditioning operations. We can consider for example a part of the BiCGStab [1] algorithm, described 15

in Algorithm 1. 16

Algorithm 1: BiCGStab Algorithm

Matrix A;
Vector b, p, pp, r, v;
Scalar a;
do

pp = inv(P).p;
v = A.p;
r += v;
a = dot(p,r);
if(a==0) break;
...;

while (|r|< tol ∗ |b|);

17

These steps are implemented with our abstract algebraic API hiding the parallelism and the underlying technical 18

implementation details. That helps to take advantage of complex architectures with a high level syntax as illustrated 19

in Listing 1 for the BiCGStab algorithm. The API provides data allocators, most of the levels 1 to 2 BLAS functionalities and 20

some specific preconditioning operations. 21

Listing 1: BiCGStab sequence
Part i t ionerType par t i t ioner ;
AlgebraKernelType alg ( par t i t i oner ) ;
Matrix A; Vector p , pp , r , v ;
double alpha ;
SequenceType seq = alg . newSequence ( ) ;
alg . exec ( precond , p , pp , seq ) ;
alg . mult (A , pp , v , seq ) ;
alg . axpy ( 1 . , r , v , seq ) ;
alg . dot (p , r , alpha , seq ) ;
alg . assertNul l ( alpha , seq ) ;
while (! i t e r . stop ( ) )
{

alg . process ( seq ) ;
}

22

At the API level, parallelism is implicit and semantic is sequential. Each API’s function calls sets of tasks according to 23

the data partition and the algorithm. 24

A Partitioner object computes a data distribution according to the number of desired partitions. This object also 25

provides data views and range iterators at execution time to operate task’s data. Data flow dependencies are explicitly 26

expressed. Tasks are then organized in a Direct Acyclic Graph (DAG). One of the main features of the API is to deal with 27

iteration. A Sequence object is a sub-set of tasks that can be replayed several times to enable loop algorithms execution 28

as in Listing 1. 29

3.2. Multi level parallelism 30

A Task decomposition is created from data structure partitioning. Sparse matrices are stored in Compressed Sparse 31

Row (CSR) format. The parallelization of linear algebra algorithms is based on matrix dual graph partition techniques well 32
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Fig. 1. Multi level domain partition.

described in [11]. The dual graph GA(V , E) of a matrix A = (ai,j) is a set V of vertices vi representing the rows i of A, and1

a set E of edges ei,j between vertices vi and vj representing non zero entries ai,j ̸= 0. Graph practitioners aim to split the2

matrix dual graph in sub-domains, while balancing the non-zero entries of the matrix and limiting the communication3

with the neighborhood. Associated to renumbering techniques, algebraic data are split regarding the graph partition, then4

gathered contiguously in memory for memory locality reasons. The graph partition is computed once and then handled by5

the API. The Partitioner object returns a set of range of matrix row indexes. They are associated with contiguous memory6

range. Algorithms are then split in tasks processing each of these ranges of memory.7

Hierarchical partitioning algorithms enable to handle the distributed memory system and several levels of parallelism.8

The first level of partition aims at distributing data between MPI processes, at separating interface data that require9

synchronizations with MPI communication, and at handling coarse grain size parallelism. The other levels of partition10

aim at managing data locality and fine grain parallelism levels. Fig. 1 illustrates a two-level partition leading to 2 coarse11

domains (MPI D0 and MPI D1) processed by 2 MPI processes and 8 finer domains (SD0,0, . . . , SD0,3 for MPI D0 and SD1,0,. . . ,12

SD1,3 for MPI D1) processed by 8 threads (4 by MPI processes) to handle MPI communications and fine level parallelism.13

In this figure, it is noticeable that the boundary between the two coarse domains is only shared by the two subdomains14

SD0,3 and SD1,3. Thus the subdomains SD0,0, SD0,1 and SD0,2 of MPI D0 are not connected to any subdomain of MPI D1. In15

the same way the subdomains SD1,0, SD1,1 and SD1,2 of MPI D1 are not connected to any subdomain of MPI D0. With such16

kind of partition, one can easily understand that only tasks related to SD0,3 and SD1,3 depend on MPI communications.17

The other tasks related to one MPI process can be executed independently of the tasks related to the other processes.18

At the coarser level of parallelism, each MPI process manages algorithms related to level 0 coarse subdomains. These19

algorithms are then organized in smaller tasks related to level 1 finer subdomains. MPI communications are encapsulated20

in tasks related to level 1 subdomains connected to the boundaries between level 0 MPI subdomains. The parallelism21

between tasks of a same MPI processes relies on data dependencies and is managed by HARTS runtime system. These tasks22

may have access to data related to other subdomains of a same MPI process. Reducing the size of boundaries between23

level 1 subdomains aims to reinforce data locality and to prevent access to data that may be far in memory.24

4. Preconditioning methods overview25

Preconditioners aim to improve the convergence rates of iterative linear solver algorithms. The Incomplete Factoriza-26

tion preconditioner (ILU) [3], the Algebraic MultiGrid (AMG) preconditioner [4] are the most common methods used in27

reservoir simulation. The Multi-Level Domain Decomposition (DDML) methods have gained in popularity with the last28

developments proposed in recent research works that improve their convergence rates on heterogeneous problems. In29

this section, these preconditioning techniques and their parallel implementation with a task programming model are30

reviewed. First, ILU preconditioner is detailed, then AMG and finally DDML are considered.31

4.1. Incomplete LU factorization (ILU)32

Given a factorization of a large sparse matrix A such that33

A = LU, (1)34



Please cite this article as: J.-M. Gratien, A robust and scalable multi-level domain decomposition preconditioner for multi-core architecture with large
number of cores, Journal of Computational and Applied Mathematics (2019) 112614, https://doi.org/10.1016/j.cam.2019.112614.

5

Fig. 2. ILU0 BicgStab sequence DAG.

where L is a lower triangular matrix, and U an upper triangular matrix. It is well known that usually in the factorization 1

procedure, the matrices L and U have more non zero entries than A. These extra entries are called fill-in entries. The 2

incomplete LU factorization (ILU) [11] consists in dropping some of these elements. In the zero degree incomplete version, 3

ILU(0), all these entries are dropped. The preconditioning operation, not naturally parallel, solves LUx = y with a backward 4

substitution followed by a forward substitution. 5

This preconditioner, efficient for standard cases (i.e., not ill-conditioned and moderate problem size), is not naturally 6

parallel, since its algorithm is recursive. This algorithm may be parallelized at a coarse grain size as presented in [12,13]. 7

In that case, task programming associated with domain decomposition and renumbering techniques enables to extract 8

different hidden levels of parallelism. Fig. 2 illustrates the DAG of the BiCGStab sequence written in Listing 1 with the ILU0 9

preconditioner and the partition of Fig. 1. The partitioner splits the global domain into 6 not connected interior domains 10

and 2 interface domains connecting the previous ones. The chosen partitioner algorithm aims to maximize the size of 11

the independent interior domains and to minimize the size of interface domains creating dependencies between all the 12

domains. Thus, tasks associated with interior domains can be executed in parallel, while the runtime system scheduler 13

extracts automatically a two levels parallelism between tasks associated with interface domains. We have implemented 14

the ILU0, ILU0 − MPI and ILU0 − MPIX variant of the ILU0 preconditioner with respectively thread parallelism, MPI 15

parallelism and with a hybrid MPI and thread parallelism. 16

In [14] a variant of the ILU0 algorithm is proposed. This variant is well adapted for fine grained parallelization. It 17

consists in replacing the factorization, the backward and forward substitution by several steps of SpMV operations. That 18

enables SIMD optimizations combined with task programming parallelization. This method denoted ILU0F avoids in one 19

hand renumbering techniques which may have a negative impact on the matrix condition number. It depends in the 20

other hand of two parameters niterF and niterS , the number of steps to perform respectively the factorization and the 21

resolution phase of the preconditioner. These parameters have an impact on the robustness of the method regarding the 22

standard coarse grained parallelized algorithm ILU0. Indeed even if the parallelization of ILU0F may be more efficient, 23

more iterations are often required nevertheless to converge with this preconditioner than with ILU0. 24

4.2. Algebraic Multigrid Methods (AMG) 25

Algebraic MultiGrid (AMG) [4] is a complex algorithm widely spread in domains dealing with diffusive problems because 26

of its robustness properties on large sparse and unstructured systems. The setup phase is non-negligible in the total 27

solving time because of the cost at each level of the construction of the coarse grid, the interpolation and the restriction 28
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operators. The setup time may be longer than the solving time when the solver requires few iterations to converge. The1

solving phase is composed of two complementary operations, the smoothing and the coarse grid correction steps. The2

first one attempts to reduce high-frequency error by the application of a smoother, also called the relaxation method. The3

coarse grid correction eliminates low-frequency error. It performs a transfer of information to a coarser grid (also called4

the restriction operator), a coarse-grid system is then solved and finally during the interpolation operation, the solution5

is send back to the fine grid. AMG is an O(n) method where the cost on each level is of the order of the number of degrees6

of freedom of the level. This algorithm is well known for its extensibility as its convergence rate is usually independent7

of system sizes for diffusive problems which is the case of reservoir simulation.8

This preconditioner is provided by the Hypre [15] library under the name of BoomerAMG as a black box with both9

an OpenMP-based [16] and a MPI-based implementation. As in our current version, we cannot manage in a same run10

concurrent pool of threads, for instance the one provided by the OpenMP runtime system of the Hypre library and the11

one provided by HARTS, we focus only on the MPI-based implementation of BoomerAMG. We have integrated it in our12

task-based API using a coarse grained MPI parallelism paradigm. Following this formalism, the setup phase and the solving13

phase of AMG have been split in two different tasks which have been inserted in the DAG. In such MPI version, when we14

use only one thread by MPI processes, tasks are executed sequentially on each of them.15

5. A parallel implementation of the DDML method for FV scheme16

5.1. Multi-Level Domain Decomposition method17

Multi-Level Domain Decomposition preconditioners are based on the classical Additive Schwarz method (ASM) [17]18

introducing a coarse grid correction in order to have a scalable method. The original ASM method is well known to be fully19

parallel however it suffers of slow convergence in iterative algorithms especially for large number of domains due to the20

lack of global information transfer on the all domain. This issue has been fixed by introducing a coarse space correction21

built on top of two main ingredients: a matrix Z ∈ Rn×m where n is the dimension of the linear system,m ≫ n and a coarse22

correction consisting in solving a coarse grid problem of size m×m. The spirit of the method is to use a deflation technique23

by defining a coarse space spanned by the columns of the matrix Z representing the vectors responsible of the stagnation24

of the convergence of the ASM method. The variants of Multi-level Domain Decomposition (DDML) methods [7] differ from25

each other by the chosen coarse operator. From a linear algebra point of view, the stagnation of the convergence rate26

corresponds to a few very low eigenvalues in the spectrum of the preconditioned system.27

Our work is focused on the Generalized Eigenvalue in the Overlap method (GenEO) [8], which incorporates the low28

frequency modes in the coarse grid construction. This method is interesting as it enables to achieve scalability on highly29

heterogeneous problem. The coarse operator is originally designed for finite element discretizations. It requires to build30

and then to solve independent generalized eigenvalue problems on each sub-domain. In the standard method this is31

realized using the basis function structures of the FE discretization method. This is not possible in the context of Finite32

Volume discretizations as such structures are not available. To build equivalent generalized eigenvalue problems, at a33

algebraic level, we have introduced some algebraic sub-matrices extraction procedure with modifications that mimic the34

behavior of FV boundary conditions on sub-domains boundaries.35

To better explain the introduced extraction procedure, we consider for instance the following PDE representing an36

elliptic model diffusion problem 5.1:37

We denote Ω ⊂ Rd with d ∈ {1, 2, 3}, ΓD ∪ ΓN = ∂Ω38

The problem reads:39

find u : Ω → R verifying:40 ⎧⎨⎩
∇ · (−κ∇u) = 0 in Ω,

u = g on ΓD,

∂nu = f on ΓN .

41

We suppose that in the discretization of our PDE on Th, a simplicial triangulation of Ω , we need to solve the linear42

system Ax = b with x, b ∈ Rn. The vector x represents the values of the discrete solution uh on the degrees of freedom.43

Domain decomposition methods consist in introducing a domain partition Ω = ∪iΩi with p sub-domains without44

overlap. Sub-domains completed with an overlap are denoted Ωδ
i . We introduce p sub-meshes T i

h with Th = ∪iT i
h. At45

the continuous level, p independent sub-problems Pi are defined and their discretization leads to p independent linear46

systems Aix = bi.47

To ensure the extensibility, DDML methods introduce a coarse grid correction with the form I − ZE−1ZT where48

E = ZTAZ is the matrix of the coarse problem. The GenEO method consists in defining Z with the lowest eigenvectors of49

several independent generalized eigenvalue problems built by discretizing the Dirichlet-to-Neumann (DtN) map on each50

sub-domain, defined in the following way:51
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For any function uΓi : Γi → R 1

uΓi → DtNΩi (uΓi ) =
∂v
∂ni

|Γi where v satisfies: 2⎧⎨⎩
∇ · (−κ∇v) = 0 in Ωi,

v = uΓi on Γi,

v = 0 on ∂Ωi ∩ ∂Ω.

3

The idea is to incorporate the smallest eigenvalues, responsible of the convergence stagnation. 4

We define the deflation matrix Z as: 5

Z =

⎛⎜⎜⎜⎜⎝
W1 0 . . . 0

0 W2
...

...
. . . 0

0 . . . 0 Wp

⎞⎟⎟⎟⎟⎠ (2) 6

where Wk =
[
DkXk1, . . . , DkXkνk

]
are defined with νk eigenvectors kXki corresponding to the νk smallest eigenvalues λki 7

of the following generalized eigenproblems Gk: DtNΩk (u) = λu. 8

The variational formulation reads: Find (v, λ) such that 9

∀w,

∫
Ωk

κ∇v · ∇w = λ

∫
∂Ωk

κvw 10

At a algebraic level, this formulation can be written as follows: 11

ÃkXk = λkDkÃ0
kDkXk 12

where: 13

• Ãk is restriction on Ωδ
k . 14

• Ã0
k represents restriction on overlap. 15

• Dk stands for the Unity partition as defined in [7]. 16

This defines p generalized eigenvalue problems Pk : Akx = λBkx of size nk dimension of Ωδ
k . The matrices Ak and Bk 17

come from the discretization of the continuous generalized eigenvalue problems with the discretization scheme used to 18

discretize the main PDE problem. 19

Let Th = ∪kτi where τi denotes the cells of the mesh. Let ∂τi = ∪jσj where (σj) denotes the faces of the cells τi. 20

In the original context of Finite Element or Discontinuous Galerkin, it is generally possible to have access to the local 21

matrices representing the local contribution of basis function to the global linear system. We denote φk the basis function 22

of the FE discretization method. The matrix Ãk is built considering only the internal basis functions of Ωδ
k , the basis 23

functions related to the internal cells: 24

(Ãk)i,j =

∑
τ∈Ωδ

k

aτ (φj, φi) 25

That only requires to know Aτ
= (aτ (φk, φl))k,l. 26

In the context of Finite Volume schemes, we have introduced an extraction procedure to build in an algebraic way 27

the matrices Ai and Bi. This consists in extracting the two matrices from the assembled global matrix A, with some local 28

transformations designed on each boundary Γi to mimic the behavior of partial assembly of basis function contribution. 29

In Finite Volume methods based on flux formulation, the discretization procedure consists in integrating the strong 30

formulation of the PDE on each cell τk : 31

eqk :

∫
τk

∇ · κ∇u. 32

In our system Ax = b, the vector solution x = (xi) represents usually the discrete values of the piecewise constant 33

function uh on the degrees of freedom. The lines k of the matrix A related to the equation eqk may be written for our 34

model problem as follows: 35∑
σ∈∂τk

Fσ (x) = 0. 36

where σ are the faces of τk and Fσ (x) =
∑

j∈Jσ T σ
j xj represents the linear discretization of the flux across the face σ . 37

For τk ∈ Ωδ
k , considering the discrete flux Fσ (x) =

∑
j∈Jσ T σ

j xj, we can partition Jσ = Jint ∪ Jext into Jint related to indices 38

of degrees of freedom in Ωδ
k and Jext related to indices of degrees of freedom external to the domain. For instance, let us 39

consider a two-point flux approximation. In Fig. 3, the equation related to the cell τi reads: ai,ixi+ai,j1xj1+ai,j2xj2+ai,j3xj3 = 40
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Fig. 3. FV discretization on the overlap.

0 with ai,i = Tj1 + Tj2 + Tj3 , ai,j1 = Tj1 , ai,j2 = Tj2 and ai,j3 = Tj3 . The discretization of fluxes on the faces of τi involve the1

indices of J = {j1, j2, j3}. We have then Jint = {j1, j2} and Jext = {j3}.2

At an algebraic level, considering only the global matrix, we cannot handle local matrices or partial assembly based3

on basis function. In order to mimic the discretization of the Neumann boundary condition with a Two-Point Flux4

Approximation, we introduce extra equations between external unknowns (xi)i∈Jext and internal ones (xi)i∈Jint . With these5

extra equations, external matrix entries can then be eliminated with a kind of Schur procedure that leads to modify the6

internal matrix entries. For instance, in the case of 3, with a two-point approximation of the Neumann boundary condition,7

we introduce the equation xi = xj3. We eliminate the extra diagonal entry Ti,j3 and modify the diagonal entry as follows8

ai,i = ai,i + ai,j3 .9

(Ãk)i,j =

∑
j∈Vi∩Ωδ

k

Tij(ui − uj)

Ãk =

(
AII AIO

AOI ÃOO

)
(3)

The new restricted equation is written: ãi,ixi + ai,j1xj1 + ai,j2xj2 = 0 with a TPFA diagonal correction: ãi,j = ai,j − ai,j310

To summarize, our method consists in building each generalized eigenvalue problem for each sub-domain Ωδ
i by11

extracting the matrices Ai and Bi from the global matrix A: only the lines related to the equations linked to the cells12

τk ∈ Ωδ
i are considered; the external entries of these lines are dropped, some corrections are realized to mimic the13

discretization of a Neumann boundary condition.14

5.2. Elements on the DDML preconditioner extensibility and robustness theoretical analysis15

The GenEO preconditioner has been originally developed in the context of the Finite Element and Galerkin methods.16

A theoretical analysis of its extensibility and its robustness for diffusive problems is realized in [8].17

The variational formulation of the diffusive problem 5.1 reads:18

Find u ∈ H1
0 (Ω) such that ∀v ∈ H1

0 (Ω),
∫

Ω
κ∇u · ∇v =

∫
Ω
f v.19

For any domain D ⊂ Ω we use the norms ∥.∥L2(D) and seminorm |.|H1
D

20

The discretization of 5.2 on a mesh Th with a P1 Finite Element method leads to solve a linear system Ax = b.21

We denote λmin ≤ · · · ≤ λm ≤ · · · ≤ λmax the eigenvalues of the preconditioned system M−1
GenEOA, where M−1

GenEO22

represents the GenEO preconditioner. We consider a domain partition Ω = ∪iΩi with p non overlapping sub-domains23

and Ωδ
i the sub-domains completed with their overlap. We denote {Ei}1≤i≤p and {Ri}1≤i≤p, a partition of unity related to24

{Ωi}1≤i≤p and its matrix representation.25

The analysis detailed in [8] proves that the bound of the condition number:26

cond(M−1
GenEOA) =

λmax

λmin
27

depends neither on the number of sub-domains p nor on the variation of the values of the tensor κ . Here are the key28

elements of this analysis.29
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Definition 1. Let be k0 = maxτ∈Th (#{Ωj : 1 ≤ j ≤ p, τ ∈ Ωj}), the maximum number of sub-domains sharing one grid 1

cell τ ∈ Th. 2

Lemma 1. λmax(M−1
GenEOA) ≤ k0 + 1 3

Definition 2. Given a coarse space VH ⊂ Vh, some local sub-spaces {Vh,0(Ωj)}1≤j≤p and a constant C0, a C0-stable 4

decomposition of v ∈ Vh is a family of functions {zj}0≤j≤p that satisfies: 5

• v = Σ
p
j=0R

T
j zj, with z0 ∈ VH , zj ∈ Vh,0(Ωj) for j ≥ 1 6

• and ∥z0∥2
+ Σ

p
j=1∥zj∥

2
≤ C2

0∥v∥
2. 7

Theorem 2. If every v ∈ Vh admit a C0-stable decomposition (with uniform C0) then λmin(M−1
GenEOA) ≥ C−2

0 . 8

Corollary 1. cond(M−1
GenEOA) ≤ C2

0 (k0 + 1). 9

Lemma 3. The GenEO method consists in building a C0-stable decomposition with C2
0 = 2+ k0(2k0 + 1)max1≤j≤p(1+

1
λ
j
mj+1

). 10

Considering the p generalized eigenproblems Gj defined in the previous section, a number of mj of eigenvectors 11

corresponding to the lowest eigenvalues of each Gj are selected to build a coarse space VH and a family of projectors 12

{Πj}1≤j≤p to build the local sub-spaces {Vh,0(Ωj)}1≤j≤p of the C0-stable decomposition. 13

Remark 1. For any 1 ≤ j ≤ p, let mj := min{m : λ
j
m+1 >

δj
Hj

} where δj is a measure of the width of the overlap of Ωδ
j and 14

Hj = diam(Ωj), then 15

cond(M−1
GenEOA) ≤ 2 + k0(2k0 + 1)max1≤j≤N (1 +

Hj

δj
) 16

which proves the extensibility of the method regarding the number of sub-domains p and its robustness regarding the 17

values of the tensor κ . 18

The DDML method aims to extend the GenEO method to linear systems coming from problems discretized with Finite 19

Volume methods. 20

Using TPFA (Two-Point Flux Approximation) methods, the discretization of diffusive problems on Cartesian or 21

K-orthogonal meshes leads to linear systems with properties equivalent to the ones obtained using P1 FE methods. It 22

is then reasonable to extend the analysis realized for the GenEO method to this case. 23

For the large family of MPFA (Multi-Point Flux Approximation) [18], VAG (Vertex Approximation Gradient) [19], DDFV 24

(Discrete Dual Finite Volume) [20] and Hybrid Mimetic Mixed (HMM) [21] methods, the Gradient Discretization (GD) 25

formalism presented in [22] gives an abstract unified framework providing tools for functional analysis. Such framework 26

including conforming and non conforming FE methods like the Pk, the RTk methods give a unified perspective enabling to 27

extend the analysis of GenEO method. Considering then the extra stability terms, usually required to guaranty numerical 28

properties such as coercivity, symmetry and positiveness of matrices, . . . of these methods, this perspective may enable to 29

extend the DDML method to linear systems coming from the discretization of diffusive problem using more these large 30

family of FV methods. 31

5.3. A task based parallel implementation with HARTS 32

Considering Z the deflation matrix, E the coarse matrix E = ZTAZ , M the block diagonal matrix representing the ASM 33

preconditioner, the DDML preconditioner algorithm consists in computing: 34

um+1
= um

+ P−1(b − Aum) 35

as follows: 36

• Compute residual: rm = b − Aum
37

• Compute restriction: rc = ZT rm 38

• Solve coarse problem: Evm
= rc 39

• Compute interpolation: em = Zvm
40

• Compute residual: rm+1
= b − A(um

+ em) 41

• Solve local problem: Mem+1
= rm+1

42

• Update iterate: um+1
= um

+ em+1
43
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Fig. 4. Multi-Level Domain Decomposition meth. DAG.

This can be written algebraically as follows:1

um+1
= um

+ ZE−1ZT (b − Aum) + M−1(b − A(um + ZE−1ZT (b − Aum)))2

= um +
[
M−1(In − AZE−1ZT ) + ZE−1ZT ] (b − Aum).3

Introducing the following operators:4

• Comp Res. Op: y = b − Ax5

• Interp. Op: y = Zx6

• Restric. Op: y = ZT x7

• Coarse Op: y = E−1x8

• Local Solv. Op y = M−1x9

we have implemented our DDML method with the task programming framework based on HARTS described in Section 3.1.10

The algorithm is composed of several parallel operations (Comp Res. Op, Interp. Op, Restric. Op and Local Solv. Op) that can11

be applied independently to each partition domain. There is also Coarse Op the coarse operation applied to solve a global12

coarse system. All these operations are implemented within tasks organized in a DAG as illustrated in Fig. 4.13

The two most consuming phases are the resolution of the local problems implemented by the Local Solv tasks and14

the resolution of the coarse problem implemented the Coarse Op task. To solve the local problems we use either direct15

LU solvers or iterative methods (such as BiCGStab or ILU(0)-preconditioned BiCGStab method. The coarse problems16

with generally small sizes are solved with a direct sparse LU solver. Linear solver algorithms are implemented with17

structures of the Eigen [23] library. We use also implementations with our own data structures and algorithms with18

specific optimizations like SIMD instructions. BLAS operations (AXPY tasks), the deflation operations (Interp. Op, Restric.19

Op) are implemented using the MKL library.20

5.4. Parallelization issues on shared and distributed memory architecture21

To build algebraically the independent general eigenvalues problems with only the global assembled matrix, various22

parallel issues have to be handled. The parallelization of the method is based on a multi level partition of the mesh Th23

on which the PDE problem has been discretized. The first level aims to manage coarse grain parallelism with MPI, while24

the other levels aim to manage fine grain parallelism. Fig. 5 illustrates a two level mesh partition with two MPI domains25

P0 and P1. Each of the MPI domains is partitioned at a second level in two other sub-domains. P0 is divided in the two26

sub-domains sD0P0 and sD1P0. For each sub-domain Ωk, the overlap is divided in two parts, the first one related to the27

intersection between sub-domains of the same MPI domain (for instance SD0P0 and sD1P0), and a second one related to28

the intersection of sub-domains of different MPI domains (for instance sD0PO and sub-domains of the MPI domain P1).29

Data related to overlaps shared between sub-domains are duplicated. Some synchronizations are required then to30

ensure the coherency of these duplicated data. Within a same MPI domain, these synchronizations are realized with31

simple data copy operations thanks to the shared memory. The overhead due to the cost of such operations is related to32

the performance of the memory bandwidth. For the overlaps between sub-domains that do not belong to the same MPI33

domain, some MPI communications are required. The overhead due to the cost of these communications is related to the34

performance of the interconnect network.35
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Fig. 5. Two level partition for Hybrid MPI-X parallelism.

Table 1
Number of iterations.
Task Op Size S(np)

LocalSolv. Op nl ∗ nl ↘

(Rest./Inter.)Op nl ∗ nev ↘

(Blas,Res)Op nl ↘

Coarse Op nc ∗ nc ↗

In the building phase of the generalized eigenvalue problem Aix = λBix on each sub-domain Ωδ
i , the extraction of 1

the matrices Ai and Bi requires matrix manipulations on the entries related to the intersection of Ωδ
i with the other 2

sub-domains Ωj. When the two sub-domains belongs to the same MPI domain, these manipulations are simple as all 3

equation entries are available in memory. This is not the case when they belong to two different MPI domains. The 4

matrix entries of the external part of the matrix are not available and some MPI communications are required. The 5

restricted equation extraction has to be realized on the processor where the whole equation is available in memory, then 6

a communication is required to send the results to the processor on which the eigenvalue problem is built. For instance 7

on sub-domain sD0P0 the manipulations related to the overlap shared with the MPI domain P1 have to be computed on 8

the MPI process managing domain P1. The results have then to be communicated to the processor managing domain P0 9

where the generalized eigenproblem of sub-domain sD0P0 is built and solved. 10

5.5. Parallel performance analysis 11

In this section we analyze the influence of the sizing parameters of the DDML algorithm on the performance of the 12

method. We denote nt the global size of the linear system, np the number of sub-domain of the mesh partition and nev 13

the number of eigenvalues used to build the coarse system. We denote nl the average size of the local problem on each 14

sub-domains and nc the size of the coarse system. We have then nl =
nt
np

and nc = np ∗ nev . To ensure the extensibility of 15

the methods nev could be automatically determined with the formula given by [8]. In practice, nev is increased manually 16

according to np. 17

In Table 1 we gather the sizes of the main algebraic operators involved in the algorithm and their evolution with 18

respect to np the number of sub-domains. 19

Analyzing Table 1, we can notice that the cost of the parallel operators Local Solv. Op, (Rest./Inter.) Op, (Blas,Res) Op 20

decreases when np increases. As these problems are independent and can be solved in parallel, increasing the number of 21

domains reduces the global cost of these local operators. The cost of the coarse operator is proportional to the number of 22

partitions times the number of eigenvalues to incorporate. The performance of this sequential part increases then with 23
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Table 2
Available data structures and direct solver algorithms.
Matrix format Algo Mem Optim

CSR SparseLU Low seq
Dense DenseLU High seq
Bande SIMDBDLU Medium simd
BlockTile ParLU High par

the number of sub-domains. Thus a compromise has to be done to optimize the performance of the parallel region while1

limiting the cost of coarse operator. The associated task of this last operator is indeed a synchronization point for all the2

threads. To reduce the complexity of the global algorithm, we chose a number of partitions that enables to reduce the3

cost of each local resolution and to fit local memory caches while preserving a size of the coarse problem that limits the4

penalty of this synchronization part preventing it to become a real bottleneck.5

We can analyze also the impact of the sizing parameters on the choice of data structures and solver algorithms. In6

Table 2 we gather the various available matrix formats and solver algorithms. We indicate their impact on memory and7

eventually their optimization features.8

Analyzing this table, we can understand that the choice of the matrix format and the solver algorithms deeply depends9

on the sizing parameters (nt , np and nev). Regarding the target hardware architecture, the algorithm to choose the best10

matrix format and algorithms for LocalSolv. Op and the CoarseOp may be complex and require expertise.11

6. Experiments12

6.1. Experimental protocol13

The experiments have been run on a node of a linux machine1 with a Knights Landing processor which handles 3214

bi-cores processors, 16 GB of MCDRAM high bandwidth memory and 64 GB of DRAM standard memory. The KNL processor15

cores topology was configured with the Quadrant mode. The MCDRAM memory was configured as a cache for DRAM.16

The library has been compiled with the Intel 2018 compiler with GCC 7.3 compatibility, activating AVX512 vector17

instructions. Data structures are split via a graph partitioner based on the Metis library. All the BLAS kernels are performed18

with the MKL library with MKL_NUM_THREADS = 1 to deactivate the internal library multi-threading feature. The coarse19

systems of the DDML preconditioners are solved with the SuperLU algorithm provided by the Eigen 3.4 library. For the20

local systems on each subdomains, either a AVX512 optimized LU algorithm with matrices with a Band Structure format21

is used, or the SuperLU algorithm of Eigen 3.4 library with matrices with the CSR format.22

The linear systems used for the experiments were extracted either from simple 2D Laplacian problems on a unit square23

discretized with grids of size Nx ×Nx leading to systems of size Nrows = Nx ∗Nx, or from the simulation of the well known24

realistic reservoir study case SPE10 [24] leading to systems of size Nrows = 106.25

6.2. Sizing parameters influence performance analysis26

In this section, we analyze the influence on the performance of the solver of the sizing parameters Nrows the linear27

system global size, np the number of subdomains used in the DDML method and nev the number of eigenvalues used to28

build the coarse system. We solve linear systems with Laplacian matrices of sizes Nrows = 2.5 ∗ 104 and Nrows = 106. We29

evaluate the performance using np = 64 and np = 128 and with values of nev in {4, 8, 16, 24, 32}.30

The benchmark is realized with two configurations of the solver, the first one Cth with a thread based parallelization31

and a second one Cmpi with an MPI based parallelization.32

In Figs. 6 and 7 we plot in function of the number of cores nc , the inverse 1
Tnc

of the execution time Tnc of the resolution33

with configuration Cth, for Nrows = 2.5 ∗ 104 and Nrows = 106, respectively.34

In Figs. 8 and 9, we plot as well the same results with configuration Cmpi, for Nrows = 2.5 ∗ 104 and Nrows = 106,35

respectively.36

Analyzing these figures, we can see the effects of both np and nev on the performances of the solver. Considering the37

smaller case, Nrows = 2.5 ∗ 104 the best performances are obtained for np = 64 while for the larger case, Nrows = 106, the38

best performances are obtained for np = 128. We observe the influence of nev on the performances depending on both39

Nrows and the number of cores nc. We obtain the best performance with nc = 32 and nev = 24 for Nrows = 2.5 ∗ 104, and40

with nc = 32 and nev = 32 for Nrows = 106. The runs on 64 cores suffer from the fact that the resolution of the coarse41

problem is not parallelized, and this effect is all the more important since nev or np is high. All these observations are42

coherent with the fact that the size of the coarse system is equal to nev ∗ np.43

1 Linux machine of LIP at ENS Lyon.
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Fig. 6. Configuration Cth , Laplacian matrices: Nrows = 2.5104 .

Fig. 7. Configuration Cth , Laplacian matrices: Nrows = 106 .

Fig. 8. Configuration Cmpi , Laplacian matrices: Nrows = 2.5104 .

6.2.1. Preconditioners benchmark on SPE10 study case 1

We tested different configurations of the preconditioners on a linear system extracted from a simulation of the SPE10 2

reservoir study case. This study case is well known for its highly heterogeneous data leading to ill conditioned linear 3

systems. For the ILU(0) preconditioner, we test the ILU0, ILU064 and ILU0mpi configurations corresponding respectively 4

to the multi-thread version using a number of partitions equal to the number of cores and to the multi-thread version 5

using 64 partitions and to the MPI version. For the DDML preconditioner, we have tested the DDML4, DDML8, DDML16 and 6

DDML32 configurations corresponding to a number of eigenvalues nev equal to respectively 4, 8, 16 and 32, and a number 7

of partitions equal to 256. We have also tested the AMG preconditioner using the MPI version of the Hypre library without 8

multi-threading. The option parameters of the AMG algorithm have been tuned for linear systems extracted from realistic 9
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Fig. 9. Configuration Cmpi , Laplacian matrices: Nrows = 106 .

Fig. 10. Comparison of the residual of preconditioned BiCGStab of SPE10 matrix system.

Table 3
Number of iterations.
ILU0 ILU064 ILU0mpi AMG
370 382 370 3

DDML4 DDML8 DDML16 DDML32
33 15 9 6

reservoir simulation. The strong threshold is set to 0.15, the coarsening option to PMIS with the extended interpolation1

option. The other parameters are set to the default settings of the version 2.10 of the library.2

In Fig. 10 we plot the residual of the linear solver in function of the number of iterations.3

The analysis of the figure shows that the convergence behavior of the DDML method is close to the behavior of the4

AMG preconditioner, the state of art preconditioner in reservoir simulation.5

In Table 3 we gather the number of iterations Niter required to converge for a tolerance value of 10−4.6

We plot in Fig. 11(a) the execution time in function of the number of cores nc . In 11(b) we plot the parallel speed-up7

S =
T1
Tnc

where T1 and Tnc are the execution time on 1 and nc cores, respectively.8

For the preconditioner DDML, we can see in Table 3 that when the number of eigenvalues nev grows, Niter decreases.9

The best performances are obtained for nev = 16. The DDML preconditioner has a very good parallel efficiency up to10

the 32 cores. Beyond 32 cores, its efficiency decreases. This is due to the fact that the coarse solver, not yet parallelized,11

becomes a bottleneck all the more since its cost grows with nev as for instance nev = 32. The ILU0 preconditioner12

is the less efficient preconditioner. The required number of iterations Niter is much greater than for the two previous13

preconditioners. The parallel efficiency of ILU0 decreases quickly with the number of cores nc .14
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Fig. 11. KNL Single node performance results.

7. Related works 1

Our work has been motivated by the works described in the reference duplication [7] in which multi level decom- 2

position domain methods are studied on a large range of diffusive problems, among them Darcy problems, elasticity 3

problems, Helmholtz problems . . . . Most of these works refer to Finite Element discretization methods. In [25] the authors 4

realize a performance study on a large scale multi-node cluster with MPI parallelization. In [26], an overview of Two-Level 5

methods is realized and the DDML method is compared to other similar multi level methods. The AMG remains a state of 6

art method in Reservoir simulation and its MPI version is very efficient. In [16], some improvements of AMG for shared 7

memory machines are presented. These improvements rely mainly on the OpenMP paradigm. Other Multi level methods 8

are available in package like Trilinos (the ML method) [27] and Dune-ISTL [28]. 9

The API of our framework is very similar to those provided by popular frameworks like PETSc [29], Hypre [15], 10

Trilinos [30]: it exposes at a high level linear algebra functions while hiding the low level complexity of parallelism 11

thanks to a Partitioner object aimed at splitting matrices and vectors into continuous and coherent sub vectors and sub 12

matrices. Definitely the originality of our approach is to clearly separate the definition in a declarative way of algorithms 13

by sequences of function objects, from the execution of these sequences that can be performed several times within 14

iterative loops. That enables cross optimizations between different linear operators within each sequence, but also at the 15

iterative level for multiple executions of a same sequence. Such optimizations are more difficult to realize in frameworks 16

where operations are provided as black boxes. Recently, developers of PETSc introduce the GPU implementation of the 17

library [31]. However, it shows that moving from one architecture to another is not easy and requires a huge programming 18

effort. In our work, we can show how such integration like for instance the introduction of new kernel implementations 19

with SIMD optimizations, is easier in our framework designed on top of a runtime system. Contrary to PETSc for the GPU 20

implementation, we do not have to take care about data allocation and movement between the CPU and the GPU as it is 21

managed through the runtime system. 22

Approaches based on runtime systems for sparse linear algebra with large unstructured matrices is only tackled in few 23

research works like in the GHOST framework [32]. In fact, runtime systems like Cilk [33] do not manage data dependencies 24

while the well known ones like Ompss [34], StarPU [35] have proved their efficiency for coarse grained parallelism, but 25

not really for very fine grained parallelism. This issue, all the more important for sparse linear algebra since many-core 26

processors or GP-GPU become a common feature in hardware architectures, is discussed on the other hand in [36] with 27

Xkaapi runtime. 28

8. Conclusion and future work 29

This paper demonstrates the interest of using an abstract linear algebraic API aiming at implementing parallel 30

algorithms. The API has been developed on top of HARTS, a task-based runtime system which manages complex parallel 31

architectures. It provides common sparse linear algebra kernels. A distributed task queue is set up to enhance load 32

balancing and a scheduling policy is provided to enforce data locality. 33

Furthermore an adaptation of the GenEO method presented in [8] has been proposed to handle at an algebraic level 34

linear systems coming from the Finite Volume discretization of diffusive problem. Some details on the implementation of 35

the proposed variant of the GenEO method in the DDML preconditioner with our task based linear framework have been 36

given. 37
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This new approach has been benchmarked with large sparse linear systems coming from reservoir simulation, showing1

the ability of the API to provide efficient preconditioners on KNL architectures with both thread based and MPI based2

parallelism. It also confirms that DDML preconditioner is able to scale very well on this architectures, meanwhile some3

optimizations are still required on the local and coarse solvers. In reservoir simulation, with highly heterogeneous data4

that lead to ill conditioned linear system, AMG remains a state of art preconditioner.5

As a perspective, to become really competitive regarding the AMG preconditioner, we still need to improve the6

numerical behavior of the DDML method to be able to reduce the number of iterations as much as AMG. Concerning7

our implementation, we will introduce parallel direct solver to solve the coarse system for large number of domains and8

eigenvectors. We are working on a hybrid version DDML-MPIX of our DDML preconditioner which can perform on several9

nodes with KNL processors or standard multi-core processors like our ILU0-MPIX preconditioner. Even if the KNL micro10

architecture will not be anymore supported by Intel, our methodology remains interesting for the recent architectures11

like the Skylake, KabyLake that integrate AVX512 instructions, large number of cores, right now up to 28 per processor,12

up to 56 within one dual socket node.13
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