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compounds fractions, we should impose an equality inter-mode! and Sundmacher, 2019), but al! the methodologies usually struc-constraints, enforcing the sum of the fractions is equal to 1 : in this ture the surrogate modeling inta roughly four main steps: (i) delatter case the inter-mode! constraints depend contemporaneously sign of experiments (DOE), (ii) numerical simulations or experi-from a set of models responses (for instance, in the previous exmental measurements, (iii) surrogate model selection and identiample, the sum of the responses of ail models should be 1, so that fication, and (iv) model testing. At step (i) the design space is conal! the models responses appear in the corresponding inter-mode! veniently sampled in order ta define a set of input data configura-constraint). tians. At step (ii) several experiments are performed or a simulatar

The presence of output constraints in derivative-free context is used to obtain the output data corresponding to the input con-has been investigated in recent papers. For instance, Conn and figurations. Therefore, at step (iii) a spedfic surrogate mode! is se-Le Digabel (2013) illustrate a hybrid methodology which cornlected and trained with respect ta the so-called training set, which bines quadratic models as surrogate models and mesh-adaptive is composed of input and output data couples, i.e., the parameters direct search for constrained black-box problems, i.e., optimizaof the surrogate mode! are estimated. Finally, at step (iv) the per-tion problems in which the analytic expression of bath the obformances of the mode! are analyzed with respect ta the so-called jective and the constraints is not available or it is tao corntest set If the performances of the surrogate mode! in terms of plex ta evaluate. Boukoulava et al. (2017) and Boukoulava and complexity and accuracy are not satisfactory, then the procedure Floudas (2017) introduce a data-driven methodology that cornrestarts from step (i).

bines surrogate modeling approach and deterministic global op-In our applications, we adopt a one-shot approach, i.e., we con-timization algorithm, by extending the parallel AlgoRithms for sider al! the sampling points at once, so that our approach is corn-Global Optimization of coNstrAined grey-box complITational probposed of three main steps: (i) we sample the design space in order lems (p-ARGONAlIT) algorithm (Beykal et al., 2018b). Moreover, to obtain a training set of input{output values which opportunely p-ARGONAlIT has been extended ta multi-objective optimization cover the entire design space, (ii) we build the surrogate mode] by problems in Beykal et al. (2018a). For a review in constrained using ail the sampling data, and (iii) we test the performance of derivative-free optimization we refer the interested reader to the our mode! on the test set survey [START_REF] Boukoulava | Global optimization advances in mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimization[END_REF]. Moreover, surrogate models are also used in a posterior opti-Therefore, the contribution of this paper is threefold: (i) we mization step ta retrieve the optimal operating conditions for the briefly summarize the main (recent) approaches to surrogate modchemical process for instance in a superstructure framework (we eling together with sampling strategies and dimensionality reduerefer the interested reader to the survey Mencarelli et al., 2019a).

tion techniques focusing on constrained regression problems, (ii) In this approach a superstructure is defined by the set of ail the we extend a well-known dimensionality reduction technique such possible alternative structures of a given chemical process: in sur-as principal component analysis (PCA) to the case of regression rogate driven superstructure approach the mode! units (reactars, problem with constraints for the response, and fi nally (iii) we prodistillation columns, or even entire sub-processes) are replaced by pose a nove! methodology by combining the previous version of their surrogate models [START_REF] Henao | Surrogate-based process synthesis[END_REF]2011) and the PCA with subset selection (SS) in order to further reduce the disuperstructure is described by a general disjunctive problem (GDP) mensionality of the surrogate mode!, i.e., the number of parameor a mixed integer (non)Iinear problem (MI(N)LP), which is then ters of the mode!. In fact, since the modelling step is usually folsolved to determine the optimal alternative structure.

lowed by an optimization phase where the first-principle models As aforementioned, we assume in our applications that a proare substituted by the surrogate mode! and the resulting optimizacess simulatar is available, but tao time consuming ta be used dition problem is solved, considering a mode! with a low number of rectly (Mencarelli et al., 2019b ). Moreover, we would like to de-parameters is crucial to salve the final optimization problem in a velop an appropriate surrogate mode! in order ta exploit its an-reasonable amount of time. Obviously, the dimensionality reduealytic expression and derivatives during the posterior optimiza-tion procedure should maintain an acceptable quality of the surrotian phase, instead of directly applying a derivative-free approach.

gate mode! in terms of accuracy in data representation. We have already shown that mesh-adaptive algorithms, such as

The rest of the paper is organized as follows. In Section 2 we NOMAD Audet et al. and Le Digabel (2011 ) 

Sampllng step

In this section, we review the main techniques adopted for the sampling step. In particular, we report the papers which deal with sampling strategies for constrained problems: in our applications, in fact, the design space is described by a set (linear) constraints (see Section 4).

Two main sampling approaches have been exploited in the literature: (i) geometrical designs, and (ii) statistical designs. To the best of our knowledge, this distinction is introduced for the first time in [START_REF] Vu | Surrogate-based methods for 1135 black-box optimization[END_REF]. In geometrical designs the DOE is defined by taking into account the geometrical shape of the design space; while in statistical designs the response of the surrogate mode! is assimilated to a realization of a random process.

Among geometrical designs the most adopted ones are: (i) full factorial design (FFD) [START_REF] Box | Statistics for experimenters: Design, innovation, and discovery[END_REF][START_REF] Forrester | Engineering design via surrogate modelling: A practical guide[END_REF], and (ii) latin hypercube design (LHD) [START_REF] Mckay | A comparison of three methods for 1063 selecting values of input variables in the analysis of outpUt from a computer 1064 code[END_REF]. In both cases the design space is uniformly divided into regular cells with same dimensionality: in FFD the centre and the extreme points of each cell are selected, while in lllD we keep only a proper subset of the centres of the cells such that there is no couple of points sharing the same coordinate. It is worth to notice, in fact, that the FFD guarantees the design space is sampled in a uniform way; on the contrary, lllD does not guarantee the design space is sampled uniformly (see Fig. 2 (
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In most of the cases, however, the previous approach results into a highly dense surrogate mode!, i.e., with a large number of non-zero coefficients, so that the resulting surrogate mode! could be difficult to analyze and to optimize. ln the surrogate-based superstructure approach, the curse of dimensionality is particularly critical, since the surrogate models are used as blocks in a more complex optimization framework .

Hence, in surrogate building process dimensionality reduction is therefore a key step to induce sparsity, i.e. ta reduce the total number of non-zero coefficients: classical approaches include PCA [START_REF] Cunningham | Dimension reduction[END_REF][START_REF] Fodor | A survey of dimension reduction techniques[END_REF], random projections (RP) [START_REF] Krahmer | A unified frarnework for linear dimensionality reduction 1045 in Il[END_REF], and subset selection (SS) [START_REF] Miller | Subset selection in regression Chapman & Hall/CRC[END_REF]. Sparsity in the surrogate mode! can be induced also by We initially set X equal to the set of all sampled points. As we said before, we use ail the sampling points in one shot to build the surrogate model. Moreover, we observe that the objective function is always evaluated over the same set of initial points for which we know also the real outputs.

Equality inter-made/ constraints

Let c e JR K and d e JR M be L given vectors of opportune dimensions. We consider additional equality constraints linking the responses of several surrogate models, as follows: To be more precise, we model only K -L outputs and we de-rive the others from the equality constraints. We note that possible intra-model constraints, such as, e.g., non-negativity constraints, should be enforced for ail the outputs in order to guarantee possible infeasible solutions are not generated. To the best of our knowledge, the previous technique for equality inter-model constraints is nove] and can be applied to ail the chemical balance constraints regarding, for instance, mass or energy balance.

L �xi'= L df L {Jjfi( x) Vx

S. Two-phase PCA

In order to reduce the number of basis functions in the previous procedure we propose an integration between the two-phase approach with PCA regression technique. In PCA regression approach a PCA step is performed before the regression procedure. We implement a PCA step over the basis functions, by decomposing in principal components the (Pearson) correlation matrix Ce JRIBJx J BI of the basis functions evaluated over the initial input data. Then we consider only the eigenvectors corresponding to the first largest eigenvalues: hence, we derive new basis functions by projecting the original functions onto the subspace generated by the eigenvectors corresponding to the selected eigenvalues.

We note that performing the PCA over the correlation matrix can be seen as a standardization of the data in order to have the same variation data scale, since in order to define the (Pearson) correlation coefficients we subtract the means and we divide per the standard deviations. The (Pearson) correlation coefficients are defined as 528 by decomposing the original problem into M simpler independent 529 subproblems with the same structure. We note a parallel imple-530 mentation setting can be exploited in this context (in order to 531 fairly compare the different approaches we consider only pure se-532 quential implementations).

(. . _ Lne[NI (/Ji (X n ) -fïi )([j, (X n ) --h) V(it, h) e B x B, (3) 

533

In particular, in presence of equality inter-model constraints, 534 we can avoid to salve the SS-type problem for the L outputs ob-535 tained as functions of the other K -L outputs through the equality 536 constraints. Then, we sum up the values of the binary variables 537 introducing to switch on/off the basis functions over the outputs 538 and the values obtained per input are multiplied with the original 539 functions in order to weight them. The functions selected for mul-540 tiple outputs in the SS step will have a larger weight and will have, 541 hence, a larger probability to be selected in the PCA step. We ob-542 serve that the selected basis functions are employed to model only 543 K -L outputs, while L outputs are still obtained from the equality 544 inter-mode! constraints.

545

This approach combines the efficacy of the SS strategy to find 546 representative basis functions and the computational speed of the 547 PCA regressioIL The numerical results show, in fact, that a lower 548 number of principal components should be considered to obtain 549 (in average) the same accuracy of the surrogate models in case 550 a preliminary SS step is performed. Moreover, we note that in 551 the case of pure SS approach a MI(N)LP should be solved at 552 each iteration, white in the two-phase PCA only a (N)LP should 553 be addressed: the (non)linearity of the problem depends on the 554 (non)linearity of the objective function g(/3). Furthermore, per-555 forming a separate SS step per output allows to better capture the 556 complexity of each surrogate mode! by dealing with different num-557 ber T'" of basis function per the m-th output (m E [Ml). In our computational setting we divided the input variables into two classes, namely process variables P i Cie UD, which represent the contrai variables in the posterior optimization phase, and com position variables ci (i e [Il), which coincide with the mass or molar composition of the compounds. We chose polynomial models be cause we are looking for simple surrogate models, since we would optimize them in a posterior phase in order to retrieve the best operational conditions for the analyzed process. We consider two types of surrogate models: (i) polynomial quadratic models and (ii) polynomial cubic models. In particular, in case (i) we consider models with the composition and the process variables occurring linearly and with bilinear interactions, i.e., bilinear mixed products, between process variables and composition variables: such models can be expressed in the form /Jo + L /Juci + L L fJi.iiYP i + L /J3,iq
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(4) on the contrary in case (ii) we have models where the composition variables appear linearly and the process variables appear quadrat ically, i.e., such that can they be expressed in the form

ÎE[fl ÎE[I] jE[/1 ÎE[I]

+ L L L /34,tJ'rc,PyPr•

(5)
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The number n p of parameters in case (i) is given by n p = 1 + III + I II l/1; in case (ii) we have instead n p =1 + Ill + 111 l/l + III l/12. We set a time limit of 100 CPU seconds for the first phase and 15 CPU seconds for the second phase. Preliminary computational experiments have shown that either the second phase finds a feasible solution relatively quickly or no solution is found within a larger CPU time, declaring hence the problem as infeasible. Moreover, in order to speed up the algorithm for the MILP solved in the SS step we stop at the feasible solution found at the root node in the Branch-and-Bound tree (we have observed that the feasible solution found at the root node is not so far from the optimum solution: however, a relatively large amount of time is needed to certify its optimality).

After preliminary computational tests with polynomial func tions by considering the full cubic model with ail the interactions, we decided to restrict ourselves to models resulting from the mul tiplication of the compositions variables appearing linearly and the process variables up to the quadratic terms, i.e. surrogate models (5) (considering other terms do not add much in terms of model accuracy for the case studies). We choose function (LAD) as objective function for the regression step (first phase). Each MILP is solved by means of IBM

For the second phase, we loeep the first feasible solution found by BARON and we add it to the restricted master problem. We set e 1 := 0.2. Generally, the choice of the numerical value for e 1 depends on the order of magnitude of the involved functions: in this case for the second phase we are considering as acceptable points the ones for which the corresponding response is greater than -0.2, which represents a reasonable value in our case stud- where molf.!i and mass� are the number of moles of the l-th element in the m-th output compounds and the molar mass of the m-th output compounds, respectively.

ies. The computation of the eigenvalues and of the eigenvectors of the correlation data matrix is performed by means of the algebraie tools available in GAMS based on the LAPACK DSYEV routine Anderson et al. (1999).

Case study 1: Catalytic reforming

In this section we present a real-world application in petroleum refinery industry, namely the catalytic reforming process. Catalytic reforming (CR) is a chemical refinery process transforming raw naphtha into high octane gasoline called reformate containing aromatic hydrocarbons and iso-alcanes (Turaga and

Note that satisfying the balance constraints on the number of 6n moles implies all the mass fractions sum up to 1 and also the mass balance holds. Hence, these constraints have not been enforced in the first phase problem.

We have generated the plan of experiments by means of the software package Design Expert 10 Design Expert In particular, we adopt the D-optimal design for the training set and the I-optimal design for the test set for mode! (5). We chose statistical designs since for this kind of DOE Design Expert lets us to consider other additional constraints (such as that the sum of ail the mass fractions for a given observation is equal to 1) when the plan of experiments is developed: D-optimal and I-optimal design are referred to the constraint case for the cubic mode! (5). In particular, we define a training set with 226 samples and a test set with 200 samples.

The software tool used to numerically simulate the catalytic reforming prooess is OSCAR 1. 1, a numerical software developed at IFP Energies nouvelles.

We build individual surrogate models for each output component: as stated in the previous sections, we mode! only m -2 outputs sinoe we have 2 equations for the molar balance of carbon and hydrogen, and we obtain the remaining 2 outputs from the equality inter-mode! constraints.

In order to evaluate the performance of a surrogate mode!, in addition to average coefficient of determination (R 2 ) over the outputs, we consider a weighted R 2 (wR 2 ) which consists in the average of the R 2 for the single models weighted with the average output mass fraction computed over the observations. In Table 4 we report the values of R 2 and wR 2 per number of principal components for the two-phase PCA approach and for the hybrid approach (SS+PCA).

The maximum number of principal components coincides with the number of considered basis functions: in the surrogate model for the catalytic reforming we are considering only the composition variables appearing linearly and the interaction between the process variable and the compositions variables up to the quadratic term, i.e., mode! (5) (see Section 7). Before dimensionality reduction the cubic mode! (5) has 40 parameters.

For the hybrid algorithm the maximum number of the principal components is given by the number of basis functions found in the SS step. It is worth observing that in the SS step the number of basis functions is already reduced from 40 to 39. The gain is relatively small: in this case we are not using the full cubic models with ail the parameters, but we select a priori a subset of terms for 4 shows the hybrid approach achieves the same perfor-728 mances as the two-phase PCA approach with a smaller number of 729 principal components, both for the training and the test set More-730 over, we note the values of wR 2 is always larger than the ones of 731 R 2 , because the surrogate model in presence of equality constraints 732 tends to better estimate the components characterized by a higher 733 percentage concentration.

734

From Table 5, which reports the computational times for the 735 two proposed algorithms and the percentage increase .6. between 736 the computational time of SS+PCA and the computational time of 737 PCA. It is clear that the SS step has an important impact on the 738 CPU times: except for the cases of 31 principal components, in 739 which the CPU time of the hybrid method is smaller than the one 740 of the two-phase PCA, in ail the other cases the CPU time of the 741 hybrid method is the largest one. The average increase of the CPU 742 time is 6.27% with a maximum of 15.73% for the case of 30 prin-743 cipal components. Higher the increase in the relative performance 744 of the surrogate model, higher the increase of the CPU time. There-745 A key driver of the performance of the surrogate models is clearly the number of principal components and hence of basis 6).

Please

775

Pig. 7a and b report the comparison between the two-phase 776 PCA and the hybrid approach for 35 principal components, show-777 ing the second method is slightly better than the first one in terms 778 of distance between simulated and predicted outputs. , , 1 The same numerical trends observed for the CR process are valid also for the IS. Tables 8 and9 show the R 2 , wR 2 and the computational time (in seconds) for the two-phase PCA and the hybrid algorithm, respectively (the average referred to the principal components with positive value of R 2 indices). We note the twophase PCA method is able to reduce the number of basis functions by maintaining however a comparable mode! accuracy. The hybrid method achieves the same grade of mode! accuracy with Jess basis functions: in particular, already with 49 basis function the hybrid algorithm is rather capable to capture the informations of the (simulated) data, while in order to achieve the same model quality the two-phase PCA method approach needs 90 basis functions.

For the computational time related to the surrogate model generation, the lower number of basis functions implies the compu- The methods are evaluated and compared with respect ta two 880 case studies in petroleum refinery process, namely catalytic re-881 forming and isomerization. For bath case studies we have shown 882 that the two-phase PCA method is able to reduce the number of 883 basis functions required to obtain a satisfactary mode! accuracy, 884 and the hybrid algorithm (the two-phase PCA preceded by a SS 885 step) achieves a satisfactory mode! quality with a lower number of 886 basis functions than the simple two-phase PCA methodology. The 887 reduction in the number of basis function is significant in the iso-888 merization case study, where the hybrid approach is able to obtain 889 a satisfactary mode! accuracy with half the number of basis func-890 tions of the two-phase PCA.

891

ln future work we would like to extend our methodology to 892 consider also PLSR approaches. Moreover, our approaches can be 893 easily extended to consider other functions than polynomials as 894 basis functions: hence, analyzing the performances of these sur-895 rogate models in the context of PCA and SS+PCA could be another 896 interesting future research axis. In our study, we have considered 897 al! the sampling points at once: consequently incrementally adding 898 the sampling points could be an interesting strategy in order to ob-899 tain an accurate surrogate mode! with a lower number of sampling points. We have considered only noiseless data, we would like to test the two-phase procedure for noisy data relative to physical experiments in a further study.

Then, we are also interested in embedding the surrogate mode!ing approach into an optimization framework, where the surrogate mode! replaces the physical mode! ta retrieve the optimal configuration and operating conditions of a given chemical process. The surrogate mode! is sufficiently accurate for this, and as its form is simple, it is fast ta compute, and it allows the use of powerfui global optimizers, that can fully exploit its analytic expression. Moreover, we are confi dent that the two-phase dimension reduetion approaches described in the paper could be applied ta other chemical processes. If needed, other basis functions than polynomial terms could be used as basis functions.
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  input and output couples of experimental or simulated data (see only one single mode! and each non-negativity constraint for a for instance the suiveys Queipo et al., 2005; Forrester and Keane, mode! is independent from the others. If the outputs represent 2009; Vu et al., 2017; Bhosekar and Ierapetritau, 2018; McBride

  , or EGO-based meth-briefly overview the sampling methods proposed in the literaods Oones et al., 1998) perform quite poorly in our applications ture. Section 3 is devoted ta discuss the surrogate building prosurrogate model independently from the other In the rest of the paper we adopt the following notation. Given (in this case we have intra-model constraints) or contemporane-a positive integer scalar NE N, we indicate [N] := {1, ... , N}. Moreously a set of models (in this latter case we have inter-mode! over, given a set of N vectars an E R m (n E [NI), agi represents the constraints). Typical examples of intra-model constraints consist in m-th entry of the n-th vectar in the set In particular, we define a non-negativity of the mode! responses (if the output represents set of N data Xn E JR K (n E [NI) per the k-th input (k e [K]) and a set physical measurements, or molar or mass fractions of several corn-Zn E JR M (n E [NI) of N data per the m-th output (me [Ml). pounds): in this case the non-negativity constraint is referred to Please cite this article as: L Mencarelli, A. Pagot and P. Duchêne, Surrogate-based rnodeling techniques with application to catalytic reforming and isomerization prooesses, Computers and Chemical Engineering. https:{/doi.org/10.1016{j.compchemeng.2020.106772

  in Viana (2016)). In order to avoid such a situation, several methods have been proposed in literature by choosing LHD according to space-filling criteria Uohnson et al., 1990; Pronzato, 2017), obtaining the so-called minimax LHD (van Dam, 2008), which minimize the covering radius, and maximin LHD (Morris and Mitchell, 1995; van Dam et al., 2007; Joseph and Hung, 2008; Husslage et al., 2011 ), which maximize the minimal pairwise distance between sampled points. Petelet et al. Petelet et al. (2010) introduce a sampling approach to deal with constrained LHD, i.e., LHD with inequality constraints, based on permutation technique applied to (unconstrained) LHD. Among statistical designs the most common ones are (i) Doptimal, which aim to find the design which maximizes the determinant of the correlation matrix of the data, and (ii) Ioptimal, whose designs minimize the average prediction variance (Goos et al., 2016) (for an insight about statistical designs see, e.g., Cornell (2002) and Smith (2005)). Il-optimal and !-optimal designs have been extended to the case of linear constrained regression, in which (linear) additional constraints are presented, by Coetzer and Haines (2017). Recently, an adaptive method for the sampling phase is introduced in Garud et al. (2017b ): the idea consists in initially sampling the whole region according to a given sampling strategy described above and then iteratively placing the new sampling points in order to sample the original function as far as possible from the already placed points and in the region where the quality of the approximation is poor. Mixed adaptive sampling strategy for surrogate models represented by ANNs has been proposed by Eason and Cremaschi (2014). Straus and Skogestad (2019) have proposed another sampling algorithm relying on a termination criterion based on partial least squares regression (PLSR). Sampling techniques and size choices are compared in Davis et al. (2018) with respect to different surrogate mode! building approaches. For an exhaustive discussion about the different strategies for sampling phase we refer the interested reader to survey (Garud et al., 2017a).

  so-called ordinary least square regression (OLR) 299 problem. For a detailed discussion about advantages and disadvan-300 tages of the two previous choices for the objective function, see 301 Please cite this article as: L Mencarelli, A. Pagot and P. Duchêne, Surrogate-based modeling techniques with application to catalytic reforming and isomerization prooesses, Computers and Chemical Engineering. https:f/doi.org/10.1016/j.compchemeng.2020.106772 Chapter 1 in Huber (1981). Regression problems with (LAD) as objective function can be equivalently reformulated as constrained linear problems (LPs): it is sufficient to replace the absolute values with new variables t n (ne IN]) and consider the following inequalities for ail ne [

  adding a regularization parameter to the objective function such as in LASSO approach (Hastie et al., 2015): in this paper we consider only SS approaches since, in this latter case, we have a direct contrai on the number of non-zero coefficients in the surrogate models. More recently, Straus and Skogestad introduce two nove! dimensionality reduction methods based on PLSR (Straus and Skogestad, 2017a; 2017b) and self-optimizing contrai (Straus and Skogestad, 2018), respectively. Dimensionality reduction with application to water-flooding production optimization has been recently addressed by Sorek et al. (2017} by intraducing the functional contrai method (FCM) and the interpolation contrai method (ICM} relying on polynomial approximation and piecewise polynomial interpolation contrais, respectively (see also Beykal et al., 2018b). In particular, in SS regression only a given subset of dimension T � IBI of basis functions is considered. Hence the following prob-f3 and fi can be estimated in the preprocessing phase using any feasible value for f3 computed, e.g., by means of the (N)LR approach. ln practical implementation we followed the procedure which is suggested in Cozad et al. (2014), i.e., we sum up the absolute values of f3 found for unconstrained regression and we set the obtained numerical value as the upper bound p: then for the lower bound we simply set f3 == -P. There exists several heuristic procedures ta argue an opportune numerical value for T: the most adopted ones consist in forwardand backward-stepwise regressions. Forward-stepwise regression incrementally builds surrogate models by increasing T starting form B = 0 until a given information criterion, which includes the complexity and the accuracy of the mode!, is worsen. A possible information criterion is the correct Akaike criterion (AICc): AICc(T, fJ): = N l og ( � L (Zn -"f:,fJj/j(Xn)) 2 ) by a weighted sum of the accuracy of the 354 model, represented by the squares of the mode! residuals given 355 by the distance between the output data and the surrogate mode] 356 responses, and the relative complexity of the model, which takes 357 into account the number of basis functions and the total num-358 ber of observations. The flowchart of the SS algorithm is shown 359 in Fig. 1, where (/J*, y*) is the optimal solution for problem (SS). 360 For other information criteria we refer the interested rea.der to 361 the paper (Wilson and Sa.hinidis, 2017). The backward-stepwise re-362 gression approach, on the contrary, initially considers a.li the basis 363 functions and progressively removes the less significant ones. 364 A comparison between different SS regression strategies is per-365 formed in Kim and Boukoulava (2019). Cozad et al. (2014) intro-366 duce a procedure, the automated leaming of algebraic models for 367 optimization (AIAMO), to salve (SS) with a forward-stepwise phi-368 losophy. A comprehensive description of AIAMO with applications 369 to chemical problems is given by Wilson and Sahinidis (2017). 370 Other software packages for surrogate building process are de-371 scribed in Bhosekar and Ierapetritou (2018several additional constraints on the 374 responses of the surrogate models might be present We divide 375 them into two classes: (i) intra-model and (ii) inter-mode! con-376 straints. lntra-model constraints regard the response of a single 377 surrogate model, while inter-mode! constraints concem the re-378 sponses of a subset of the models. The presence of inter-mode] 379 constraints forces the procedure to address the corresponding sub-380 set of surrogate models at the same time.

  Fig. L Flowchart of the SS algorlthm

  e 'D" Vl e [L].

  jel'P" In particular the previous relationship must hold for Xn (ne (N]). The resulting problem is semi-infinite since it bas an infinite number of constraints: we have one constraint for each design configuration x e V. ln our computational experiments we practically consider problems with hundreds of constraints (see Section 7). In order to salve the resulting semi-infinite problem, in this case, we should consider ait the M surrogate models at once by choosing the objective function I: m e [ M lw m g(/J m ), which is the weighted sum of the objective functions of the models. In the implementation, we simply set w m := 1 for all me (M]; however, the choice of the mode! weights w m constitutes a degree of freedom which can be further explored. In our approach we use the constraints (2) to express L variables as functions of the other ones for all the observations. In this way the equality constraint is automatically satisfied by definition.

  fig. 3. Flowchilrt of the hybrid SS + two-philse PCA algorittun

  Ramanathan, 2003; Gjervan et al., 2004; Lapinski et al., 2014) (for an historical perspective on the studies about CR, see also Rahimpour et al. (2013)). The catalytic reforming process was originally introduced in the 1940s by the Charles Stark Dreape laureate Vladimir Haensel 1 , who proposed the so-called Platforming process, adopting a catalyst containing platinum. The CR unit is the most important process in refinery industry to produce lead-free automobile fuel and hydrogen. CR unit is composed of a sequence of reactors (usually from 3 to 5) characterized by operating conditions (temperature, pressure, molar hydrogen-to-hydrocarbon ratio, and feed composition) and equipped with catalyst (typically with platinum). The main chemical reactions in CR are, in fact, dehydrogenation and hydroisomerization of naphtenes transforming them into aromaties, isomerization and dehydrocyclization of alcanes converting them into aromatics and iso-alcanes, hydrocraking of alcanes into smaller components, hydrogenolysis, and coke formation. Coke formation is a relatively slow process and it represents a damaging reaction since coke reduces the performances of the catalyst. Typical operating conditions are high temperature ( 450-500 °C1 pressure (3-35 atm) and molar hydrogen-to hydrocarbon (H2'HC) ratio between 3 and 8 Ancheyta-Juârez and Villafuerte-Macias (2001 ). In particular, for illustration we consider the C7-C8 eut The in puts of the model are the research octane number (RON) and the mass percentage of the hydrocarbon compounds occurring in the CR process (see Tables 2-3). The pressure and the temperature of the chemical reactions are treated as constants. Hence, we have one process variable (RON) and eight composition variables (mass percentages ). In this case, since the model outputs represent mass fractions, non-negativity and summing up to 1 constraint mush be enforced. Moreover, in CR we have one equality constraint (2) for each t th chemical element (te [LI) (hydrogen and carbon in hydrocarbon compounds) and n-th observation (ne IN]), expressing the equiva lence between the total number �ln n of moles of the t-th element in the process inflow and the total number �r:f of the moles of the t-th element in the process outflow in the ' n-th observation, i.e., ç1°n = çt"' :f for all te [L] and ne [N]. The number of moles for the t-i:h element is given by the weighted sum of the molar percent age of all the chemical compounds in the stream, whose weights are the number of moles of hydrogen and carbon occurring in the molt k and massr are the number of moles of the t-th ele ment in the k-th input compounds and the molar mass of the k-th input compounds, respectively, and out _ � m o l� .t.!1 �l . n -� massout n ' mE[M] m (7) Please cite this article as: L Mencarelli, A. Pagot and P. Duchêne, Surrogate-based modeling techniques with application to catalytic reforming and isomerization prooesses, Computers and Chemical Engineering. https:f/doi.org/10.1016/j.compchemeng.R2 (wR2) for PCA and ss+PCA per nwnber of principal components.

  the interactions between variables. Preliminary computational ex-115 periments with the full cubic mode! with ail the possible mixed 716 bilinear products have shown the SS step allows us to significantly 717 reduce the number of parameters in the surrogate models. The to-718 tal number of parameters for a polynomial mode! of degree d in 719 n variables is (nt): a full cubic mode! has 220 parameters. ln the 120 case of full cubic mode!, the SS step let us to decrease the num-121 ber of basis functions up to 18, obtaining a R 2 and a wR 2 indices 122 for the training set equal to 0.87 and 0.96, respectively and a R 2 723 and a wR 2 indices for the test set equal to 0.89 and 0.96, respec-724 tively. ln general, larger the number of basis functions the SS can 725 chose among, better the performances of the SS step in terms of 726 selection of the basis functions. n1 Table

Fig. 5 .

 5 Fig. 4. H 2, predirud YS. actual plots. The values given by quadratic mode! {4) in green (QM); and the values given by the cubic mode! (5) in blue (CM).

  functions considered in the estimation process: Fig. 6a and b show 768 the predicted outputs for the two-phase PCA by varying the num-769 ber of principal components. From the parity plot, it is possible to 110 observe that the relative increase of estimation quality between 30 771 and 35 principal components is more accentuated than the one oh-m tained by passing from 35 to 40 principal components (the relative 773 R2 and wR 2 increases for the 30/35 principal components and for 774 the 35/40 principal components are reported in Table

779

  fig. 7. H 2 , predicted vs. actual plots, cubic mode! (5). The values given by the PCA with 35 principal components in green (PCA); and the values given by SS+PCA with 35 principal components in blue (SS+PCA).

Fig. 9a and

  Fig. 9a and b show the scatter parity plots for the 2iP 6 for 845 the training set (fi gures with caption (a)) and the test set (fig-846 ures with caption (b)). As for the CR process case study, the quai-847 ity of the surrogate models clearly depends on the grade of the 848 polynomial models (see Fig.9a and b) and on the presence of the 849 additional non-negativity and molar conservation constraints (see 850 Fig.10a and b). The previous plots refer to models (4) and (5) with 851 the a priori selection of the interactions (bilinear tenns) between 852 process and composition variables.

  Fig. 10. 2iP 6 , predicted vs. actual plots, cubic mode! (5). The values given by the unconstrained regression in green (UR); and the values given by constrained regression in blue (CR).

  fig. 11. 2iP & , predicted vs. actual plots, cubic model (5). The values given by PCA with 90 principal components in green (PCA 90); the values given by PCA with 95 principal components in blue (PCA 95); and the values given by PCA with 98 principal components in orange (PCA 98).

3. Surrogate model building In this section, we survey the main techniques employed to develop surrogate models from input and output data. In statis- tical regression approaches, we consider a set B of basis func- tians Jj(x) : R K � lR (j E B) over the input variables, whose (lin-244 ear) combinations give the responses of the surrogate mode!. The 245 basis functions could be polynomials, transcendental and trigono-246 metric functions, or even radial basis functions (RBFs i 247 RBFs arise from the seminal paper by Broomhead and 248 Lowe (1988) and have been originally use to smoothly interpo-249 late multivariable functions by Hardy (1971 ): they are universal 250 approximators for functions over a finite number of real variables 251 (Park and Sandberg, 1993). For a complete insight into RBF topics 252 see the excellent survey by Buhmann (2000). 253 Other approaches include, for instance, Kriging methodol-254 ogy and support vector regression (SVR). Kriging dates back to 255 the papers (Krige, 1952; Matheron, 1963) and have been ap-256 plied to the design and analysis of computational experiments 257 by Sacks et al. (1989). For a detailed analysis of the Krig-258 ing technique we refer the interested reader to the survey by 259 Kleijnen (2009). caballero and Grassmann (2008) propose a Krig-260 ing approach for the flowsheet optimization problem. Recently, 261 Bouble! et al. (2016) and Gaspar et al. (2017) have proposed two 262 hybrid approaches by combining Kriging techniques with PLSR 263 and with trust region method, respectively. On the contrary, SVR 264 has been introduced by Vapnik (1995) (see also Vapnik et al., 265 1997) which extends the support vector machine technique ta ap-266 proximate nonlinear functions (for an introduction to SVR see the 2ô7 tutorial (Smola and Scholkopf, 2004)). Papers (Li et al., 2009; Ivan-268 ciuc, 2007) present several chemical applications for SVR. 269 Moreover, several papers are then devoted to compare the 210 different approaches (see, e.g., aarke et al., 2004; Amouzgar 211 and Strômberg, 2017; Jin et al., 2001; Bhosekar and Ierapetritou, 2n 2018 and references therein) : however, there is no definitive un-213 derstanding about the dominance relationships of one type of sur-274 rogate model with respect to the others in terms of accuracy in 275 data representation. Müller and Shoemaker (2015) systematically 276 address the influence of the surrogate mode! choice and the sam-2n pling method selection on the accuracy of the resulting mode!. 278 In our study we restrict ourselves to polynomial surrogate mod-279 els since we have already shown in Mencarelli et al. (2019b) that 280 quadratic polynomial models perform sufficiently well with respect 281 to the application we consider in the present paper; however the 282 approaches we will describe can be extended to other types of ba-283 sis functions. 284 Let A s;; JRl 8 1 be the set of a priori constraints on the regression 285 coefficients fJ E JRl 8 1, such as, e.g., non-negativity constraints. In re-286 gression we aim to minimize an objective function g(/J) : Rl 8 1 � 281 lR representing the distance between the simulated observations 288 or measurements (output data) and the mode! responses. If the 289 coefficients appear linearly (resp. nonlinearly) in the correspond-290 ing model, then we defi ne the problem as linear regression (LR) 291 (resp. nonlinear regression (NLR)). In our applications, we consider 292 LR in whichJtx; /J) := E i /Jfi(x), where f i (x): JR K � lR may be gen-293 eral functions of x.

  

Relative R 2 and wR 2 increases for the 30/35 and 35/40 prin cipal components.

  

	'111ble 6		
	Index	30/35	35/40
	R 2 train	3.41%	2.22%
	R 2 test	10.34%	4.40%
	wR 2 ttaln	2.08%	1.03%
	wR2 test	5.26%	2.06%

RON vs. residual gaps, cubic mode! (5). The residual gap given by the PCA with 35 principal components in violet (PCA); and the residual gap given by SS+PCA with 35 principal components in green (SS+PCA). lllble 7 Input and output compounds of the isomerization prooess.
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		RON				RON		
		(a) Training set				(b) Test set		
	As-S. H2, Input compounds						
	nPs	pentane						
	iP 5 nP 5	isopentane hexane						
	2iP 5	2-methylpentane						
	3iP 6 22iP 6	3-methylpentane 2,2-dimethylhexane						
	23iP 6	2,3-dimethylhexane						
	OUtput compounds						
	nP 4	butane						
	iP 4	isobutane						
	nPs	pentane						
	iP 5 nP 6	isopentane hexane						
	2iP6	2-methylhexane						
	3iP 6	3-methylhexane						
	22iPs	2,2-dimethylhexane						
	23iP 6	2,3						

PCA +

-dimethylhexane ated by means of the software package Advanced tools for opti- mization and uncertainty treabnent (ATOUT 1.1) developed and maintained by IFP Energies nouvelles. In particular, we define a training set with 200 samples and a test set with 5000 samples. We use the simulation software developed at IFP Energies nou- velles in order to simulate the industrial process performances. The total number of basis functions in the model before dimensionality reduction is 98 for the cubic model (5).

  

T.lble B R 2 , weighted R2 (wR 2 ), and time (in seconds) for PCA per number of principal components.

  

		R2		wR 2		
	No. comp. Train	Test	Train	Test	Time
	50	< 0	< 0	< 0	< 0	599.80
	90	7236 72.31	98.43 98.65	800.49
	91	71.89 72.37	98.46	98.72	837.86
	92	71.97 72.38	98.50	98.72 964.91
	93	72.03	72.41	98.54 98.82	882.16
	94	72.05	72.50	98.54 98.78	884.78
	95	72.01	72.45	98.54	98.79 810.49
	96	72.02	72.51	98.55 98.84	853.40
	97	7234	72.79	98.72	98.91	933.40
	98	72.74	73.16	98.93 98.13	835.45
	avg	72.16	72.54	98.58	98.71	866.99
	'lllble 9					

R 2 , weighted R 2 (wR2), and time (in seconds) for SS+PCA per number of principal components. R2 wR 2 No. comp. lnin Test Train Test Time 47 66.21 < 0 93.44 48.03 488.01 48 65.80 < 0 93.46 50.15 487.16 49 72.05 68.38 97.91 94.05 467.78

  

	50	72.37	73.24	98.40 99.42	283.67
	avg	72.21	70.81		

98.16 96.74 375.73 tational time for the hybrid method to reach a satisfactory grade 842 of accuracy is approximately half of the time needed for the two-843 phase PCA time to achieve the same quality level. 844

  

Ji,Jl -J Lne [N J (!Ji (Xn)-fïi} 2 J Lne[ N I (/1, (X n )--h} 2 '

see patents Alumina-platinum-halogen catalyst and preparation thereof. 1949, August 16. U.S. Patent No.

2,479,109 and Prooess of reforming a gasoline with an alumina-platinum-halogen catalyst. 1949, August 16. U.S. Patent No. 2,479,110. Please cite this article as: L Mencarelli, A. Pagot and P. Duchêne, Surrogate-based modeling techniques with application to catalytic reforming and isomerization prooesses, Compuoers and Chemical Engineering. https:/Jdoi.org/10.1016/j.compchemeng.2020.106772