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In this paper, we first briefly survey the main surrogate mode! building approaches discussed in the lit­

erature considering also design of experiments strategies and dimensionality reduction procedures: we 

mainly focus on sub-set approaches and sampling strategies for constrained regression problems. We 

delineate a systematic methodology for surrogate modelling in presence of mode! constraints, such as 

non-negativity of the mode! responses. The main contribution of this paper is twofold: from one side 

we extend the principal component analysis framework to the case of constrained regression problem, 

from the other we propose a nove! methodology which integrates the subset selection and the previous 

principal component regression procedure. Finally, we apply the two nove! algorithms to two fundamen­

tal chemical processes in petroleum refinery, namely catalytic reforming and light naphtha isomerization. 

The numerical results show the comparisons between the two algorithms in terms of computational and 

accuracy trade-offs. 

1. Introduction

2 The aim of chemical process synthesis engineering consists in 

3 modeling, designing and optimizing complex chemical processes. 
4 The possible high computational cost of the process estimation and 
5 optimization can be circumvented by means of surrogate models 

6 (or meta-models) that represent a systematic approximation of the 
1 mathematical relationships between the degrees of freedom (in-

8 put data) and the variables of interest (output data). A systematic 
9 methodology to identify dependent and independent variables of 

10 a given chemical process unit is given by Henao and Maravelias 
11 (2010, 2011 ). lnstead of obtaining the output data via experimen-
12 ta! measurements, numerical simulators are often available, but in 
13 several cases obtaining output values from a given input configu-

14 ration is rather time consuming. 
15 Surrogate models can be useful either if the first-principle 
16 mode! is tao complex or time consuming to optimize or if the first-

17 principle mode! does not exist at ail. In the first case it is possible 

18 to collect initial simulated data by choosing a sampling strategy 
19 and sampling more points later; in the latter case instead the data 
20 are obtained by physical experiments. Moreover, in bath cases the 
21 data could be affected by noise or characterized by incomplete in-
22 formation. 
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The objective of the present paper consists in defining a 23 

methodology to derive a surrogate mode! starting from noiseless 24 

simulated data in presence of mode! constraints: in our case, in 25 

fact, a numerical simulator is available for the chemical processes 26 

we consider, and data can be obtained easily and rather quickly 27 

from the simulations. 28 

From one side, the surrogate mode! should be sufficiently corn- 29 

plex to catch the relationships of the given process, hence it should 30 

be characterized by high accuracy, from the other one, instead, it 31 

should be sufficiently simple to speed up the computational times, 32 

so that its complexity is low. High accuracy and low complexity 33 

are obviously conflicting targets and determine a trade-off between 34 

the quality of the approximation and the quantity of computational 35 

effort. Generally, in fact, surrogate models are preferred to other 36 

approaches, such as rigorous models or simplified physical approx- 37 

imation models, when the computational time is expected to be a 38 

crucial aspect Psaltis et al. (2016): rigorous or physical approxima- 39 

tian models could be rather time consuming since they have been 40 

usually obtained by discretizing complex dynamic equations, such 41 

as systems of partial differential equations. 42 

In our study we introduce a nove! methodology to find suffi- 43 

ciently accurate surrogate models and to simultaneously perform 44 

dimensionality reduction with regards to the number of mode! pa- 45 

rameters. Hence, procedures for reducing the total number of ex- 46 

periments are out of scope of the present paper. 47 

Many different approaches have been discussed in the litera- 48 

ture in order to build an effective surrogate mode! from a set of 49 
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input and output couples of experimental or simulated data (see only one single mode! and each non-negativity constraint for a 
for instance the suiveys Queipo et al., 2005; Forrester and Keane, mode! is independent from the others. If the outputs represent 
2009; Vu et al., 2017; Bhosekar and Ierapetritau, 2018; McBride compounds fractions, we should impose an equality inter-mode! 
and Sundmacher, 2019), but al! the methodologies usually struc- constraints, enforcing the sum of the fractions is equal to 1 : in this 
ture the surrogate modeling inta roughly four main steps: (i) de- latter case the inter-mode! constraints depend contemporaneously 
sign of experiments (DOE), (ii) numerical simulations or experi- from a set of models responses (for instance, in the previous ex-
mental measurements, (iii) surrogate model selection and identi- ample, the sum of the responses of ail models should be 1, so that 
fication, and (iv) model testing. At step (i) the design space is con- al! the models responses appear in the corresponding inter-mode! 
veniently sampled in order ta define a set of input data configura- constraint). 
tians. At step (ii) several experiments are performed or a simulatar The presence of output constraints in derivative-free context 
is used to obtain the output data corresponding to the input con- has been investigated in recent papers. For instance, Conn and 
figurations. Therefore, at step (iii) a spedfic surrogate mode! is se- Le Digabel (2013) illustrate a hybrid methodology which corn-
lected and trained with respect ta the so-called training set, which bines quadratic models as surrogate models and mesh-adaptive 
is composed of input and output data couples, i.e., the parameters direct search for constrained black-box problems, i.e., optimiza-
of the surrogate mode! are estimated. Finally, at step (iv) the per- tion problems in which the analytic expression of bath the ob-
formances of the mode! are analyzed with respect ta the so-called jective and the constraints is not available or it is tao corn-
test set If the performances of the surrogate mode! in terms of plex ta evaluate. Boukoulava et al. (2017) and Boukoulava and 
complexity and accuracy are not satisfactory, then the procedure Floudas (2017) introduce a data-driven methodology that corn-
restarts from step (i). bines surrogate modeling approach and deterministic global op-

In our applications, we adopt a one-shot approach, i.e., we con- timization algorithm, by extending the parallel AlgoRithms for 
sider al! the sampling points at once, so that our approach is corn- Global Optimization of coNstrAined grey-box complITational prob-
posed of three main steps: (i) we sample the design space in order lems (p-ARGONAlIT) algorithm (Beykal et al., 2018b). Moreover, 
to obtain a training set of input{output values which opportunely p-ARGONAlIT has been extended ta multi-objective optimization
cover the entire design space, (ii) we build the surrogate mode] by problems in Beykal et al. (2018a). For a review in constrained
using ail the sampling data, and (iii) we test the performance of derivative-free optimization we refer the interested reader to the
our mode! on the test set survey (Boukoulava et al., 2016).

Moreover, surrogate models are also used in a posterior opti- Therefore, the contribution of this paper is threefold: (i) we 
mization step ta retrieve the optimal operating conditions for the briefly summarize the main (recent) approaches to surrogate mod-
chemical process for instance in a superstructure framework (we eling together with sampling strategies and dimensionality redue-
refer the interested reader to the survey Mencarelli et al., 2019a). tion techniques focusing on constrained regression problems, (ii) 
In this approach a superstructure is defined by the set of ail the we extend a well-known dimensionality reduction technique such 
possible alternative structures of a given chemical process: in sur- as principal component analysis (PCA) to the case of regression 
rogate driven superstructure approach the mode! units (reactars, problem with constraints for the response, and finally (iii) we pro-
distillation columns, or even entire sub-processes) are replaced by pose a nove! methodology by combining the previous version of 
their surrogate models (Henao and Maravelias, 2010; 2011) and the PCA with subset selection (SS) in order to further reduce the di-
superstructure is described by a general disjunctive problem (GDP) mensionality of the surrogate mode!, i.e., the number of parame-
or a mixed integer (non)Iinear problem (MI(N)LP), which is then ters of the mode!. In fact, since the modelling step is usually fol-
solved to determine the optimal alternative structure. lowed by an optimization phase where the first-principle models 

As aforementioned, we assume in our applications that a pro- are substituted by the surrogate mode! and the resulting optimiza-
cess simulatar is available, but tao time consuming ta be used di- tion problem is solved, considering a mode! with a low number of 
rectly (Mencarelli et al., 2019b ). Moreover, we would like to de- parameters is crucial to salve the final optimization problem in a 
velop an appropriate surrogate mode! in order ta exploit its an- reasonable amount of time. Obviously, the dimensionality redue-
alytic expression and derivatives during the posterior optimiza- tion procedure should maintain an acceptable quality of the surro-
tian phase, instead of directly applying a derivative-free approach. gate mode! in terms of accuracy in data representation. 
We have already shown that mesh-adaptive algorithms, such as The rest of the paper is organized as follows. In Section 2 we 
NOMAD Audet et al. and Le Digabel (2011 ), or EGO-based meth- briefly overview the sampling methods proposed in the litera-
ods Oones et al., 1998) perform quite poorly in our applications ture. Section 3 is devoted ta discuss the surrogate building pro-
(Mencarelli et al., 2019b). cedures. In Sections 4.1 and 4.2 we deal with two kinds of possi-

Severa! recent papers deal with superstructure optimization by ble additional constraints for the surrogate mode!, namely inter-
considering artificial neural networks (ANNs) as surrogate models mode! constraints and intra-model equality constraints, respec-
(see, e.g., Altissirni et al., 1998; Nascimiento et al., 2000; Fahmi and tively. Then, we propose a two-phase PCA method (Section 5) and 
Cremaschi, 2012): in particular, Fahmi and Cremaschi (2012) pro- hybrid algorithm obtained by combining the two-phase PCA with 
posed a superstructure optimization methodology, by combining SS (Section 6). The proposed methodologies are then applied to 
GDP and ANN, in which each proœss unit is replaced by an ANN two relevant chemical processes in petroleum refinery framework, 
which is trained by simulated data and embedded in a GDP for- namely catalytic reforming in Section 7.1 and light naphtha iso-
mulation. merization in Section 7.2, respectively, which this report exten-

Generally, several outputs are considered at the same time so sively discusses the numerical results of the computational exper-
that we aim to build a surrogate mode! for each output. How- iments. Finally, conclusions and future work perspectives follow in 
ever, possible constraints should be enforced: these constraints Section 8. 
can regard a single surrogate model independently from the other In the rest of the paper we adopt the following notation. Given 
(in this case we have intra-model constraints) or contemporane- a positive integer scalar NE N, we indicate [N] := {1, ... , N}. More-
ously a set of models (in this latter case we have inter-mode! over, given a set of N vectars an E Rm (n E [NI), agi represents the 
constraints). Typical examples of intra-model constraints consist in m-th entry of the n-th vectar in the set In particular, we define a
non-negativity of the mode! responses (if the output represents set of N data Xn E JRK (n E [NI) per the k-th input (k e [K]) and a set
physical measurements, or molar or mass fractions of several corn- Zn E JRM (n E [NI) of N data per the m-th output (me [Ml).
pounds): in this case the non-negativity constraint is referred to 
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181 2. Sampllng step

182 In this section, we review the main techniques adopted for the 
183 sampling step. In particular, we report the papers which deal with 
184 sampling strategies for constrained problems: in our applications, 
185 in fact, the design space is described by a set (linear) constraints 
186 (see Section 4). 
187 Two main sampling approaches have been exploited in the lit-
188 erature: (i) geometrical designs, and (ii) statistical designs. To the 
189 best of our knowledge, this distinction is introduced for the first 
190 time in Vu et al. (2017). In geometrical designs the DOE is defined 
191 by taking into account the geometrical shape of the design space; 
192 while in statistical designs the response of the surrogate mode! is 
193 assimilated to a realization of a random process. 
194 Among geometrical designs the most adopted ones are: (i) full 
195 factorial design (FFD) (Box et al., 2005; Forrester et al., 2008), and 
196 (ii) latin hypercube design (LHD) (McKay et al., 1979). In both cases
197 the design space is uniformly divided into regular cells with same 
198 dimensionality: in FFD the centre and the extreme points of each 
199 cell are selected, while in lllD we keep only a proper subset of 
200 the centres of the cells such that there is no couple of points shar-
201 ing the same coordinate. It is worth to notice, in fact, that the FFD 
202 guarantees the design space is sampled in a uniform way; on the 
203 contrary, lllD does not guarantee the design space is sampled uni-
204 formly (see Fig. 2 in Viana (2016)). In order to avoid such a situa-
205 tion, several methods have been proposed in literature by choosing 
206 LHD according to space-filling criteria Uohnson et al., 1990; Pron-
201 zato, 2017), obtaining the so-called minimax LHD (van Dam, 2008), 
208 which minimize the covering radius, and maximin LHD (Morris 
209 and Mitchell, 1995; van Dam et al., 2007; Joseph and Hung, 2008; 
210 Husslage et al., 2011 ), which maximize the minimal pairwise dis-
211 tance between sampled points. Petelet et al. Petelet et al. (2010) in-
212 troduce a sampling approach to deal with constrained LHD, i.e., 
213 LHD with inequality constraints, based on permutation technique 
214 applied to (unconstrained) LHD. 
215 Among statistical designs the most common ones are (i) D-
216 optimal, which aim to find the design which maximizes the 
211 determinant of the correlation matrix of the data, and (ii) I-
218 optimal, whose designs minimize the average prediction variance 
219 (Goos et al., 2016) (for an insight about statistical designs see, e.g., 
220 Cornell (2002) and Smith (2005)). Il-optimal and !-optimal designs 
221 have been extended to the case of linear constrained regression, in 
222 which (linear) additional constraints are presented, by Coetzer and 
223 Haines (2017). 
224 Recently, an adaptive method for the sampling phase is intro-
225 duced in Garud et al. (2017b ): the idea consists in initially sam-
226 pling the whole region according to a given sampling strategy de-
221 scribed above and then iteratively placing the new sampling points 
228 in order to sample the original function as far as possible from the 
229 already placed points and in the region where the quality of the 
230 approximation is poor. Mixed adaptive sampling strategy for surro-
231 gate models represented by ANNs has been proposed by Eason and 
232 Cremaschi (2014). Straus and Skogestad (2019) have proposed an-
233 other sampling algorithm relying on a termination criterion based 
234 on partial least squares regression (PLSR). 
235 Sampling techniques and size choices are compared in 
236 Davis et al. (2018) with respect to different surrogate mode! build-
237 ing approaches. For an exhaustive discussion about the different 
238 strategies for sampling phase we refer the interested reader to sur-
239 vey (Garud et al., 2017a). 

240 3. Surrogate model building 

241 In this section, we survey the main techniques employed to 
242 develop surrogate models from input and output data. In statis-
243 tical regression approaches, we consider a set B of basis func-

tians Jj(x) : RK � lR (j E B) over the input variables, whose (lin- 244 
ear) combinations give the responses of the surrogate mode!. The 245 
basis functions could be polynomials, transcendental and trigono- 246 

metric functions, or even radial basis functions (RBFs i 247 
RBFs arise from the seminal paper by Broomhead and 248 

Lowe (1988) and have been originally use to smoothly interpo- 249 

late multivariable functions by Hardy (1971 ): they are universal 250

approximators for functions over a finite number of real variables 251

(Park and Sandberg, 1993). For a complete insight into RBF topics 252 
see the excellent survey by Buhmann (2000). 253

Other approaches include, for instance, Kriging methodol- 254

ogy and support vector regression (SVR). Kriging dates back to 255

the papers (Krige, 1952; Matheron, 1963) and have been ap- 256
plied to the design and analysis of computational experiments 257

by Sacks et al. (1989). For a detailed analysis of the Krig- 258

ing technique we refer the interested reader to the survey by 259 
Kleijnen (2009). caballero and Grassmann (2008) propose a Krig- 260 

ing approach for the flowsheet optimization problem. Recently, 261 

Bouble! et al. (2016) and Gaspar et al. (2017) have proposed two 262 
hybrid approaches by combining Kriging techniques with PLSR 263

and with trust region method, respectively. On the contrary, SVR 264 

has been introduced by Vapnik (1995) (see also Vapnik et al., 265

1997) which extends the support vector machine technique ta ap- 266

proximate nonlinear functions (for an introduction to SVR see the 2ô7

tutorial (Smola and Scholkopf, 2004)). Papers (Li et al., 2009; Ivan- 268

ciuc, 2007) present several chemical applications for SVR. 269

Moreover, several papers are then devoted to compare the 210

different approaches (see, e.g., aarke et al., 2004; Amouzgar 211 
and Strômberg, 2017; Jin et al., 2001; Bhosekar and Ierapetritou, 2n 
2018 and references therein): however, there is no definitive un- 213 

derstanding about the dominance relationships of one type of sur- 274 

rogate model with respect to the others in terms of accuracy in 275 

data representation. Müller and Shoemaker (2015) systematically 276 

address the influence of the surrogate mode! choice and the sam- 2n 
pling method selection on the accuracy of the resulting mode!. 278

In our study we restrict ourselves to polynomial surrogate mod- 279
els since we have already shown in Mencarelli et al. (2019b) that 280

quadratic polynomial models perform sufficiently well with respect 281

to the application we consider in the present paper; however the 282

approaches we will describe can be extended to other types of ba- 283

sis functions. 284

Let A s;; JRl81 be the set of a priori constraints on the regression 285 

coefficients fJ E JRl81, such as, e.g., non-negativity constraints. In re- 286

gression we aim to minimize an objective function g(/J) : Rl81 � 281 

lR representing the distance between the simulated observations 288 
or measurements (output data) and the mode! responses. If the 289 

coefficients appear linearly (resp. nonlinearly) in the correspond- 290
ing model, then we define the problem as linear regression (LR) 291

(resp. nonlinear regression (NLR)). In our applications, we consider 292 
LR in whichJtx; /J) := Ei/Jfi(x), where fi (x): JRK � lR may be gen- 293 
eral functions of x. 294 

Typical objective functions for regression problems are the sum 295

of the absolute distances: 296 

g(/3) := L Zn - L/Jifj(Xn) • 
nelNI jeB 

(LAD) 

which gives rise to the so-called least absolute deviation (LAD) cri- 2!r7 
terion; or the sum of the squares of the residuals: 298

g(/3) := L (Zn -LfJ1f1(Xn))2,
nelNI jeB 

(ORL) 

which defines the so-called ordinary least square regression (OLR) 299 

problem. For a detailed discussion about advantages and disadvan- 300 

tages of the two previous choices for the objective function, see 301
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302 Chapter 1 in Huber ( 1981). Regression problems with (LAD) as ob-
303 jective function can be equivalently reformulated as constrained 
304 linear problems (LPs): it is sufficient to replace the absolute values 
305 with new variables tn (ne IN]) and consider the following inequal-
306 ities for ail ne [N]: 

tn � "f:,fJ1f1 (Xn)-Zn. (1) 
jEB 

307 In most of the cases, however, the previous approach results 
308 into a highly dense surrogate mode!, i.e., with a large number of 
309 non-zero coefficients, so that the resulting surrogate mode! could 
310 be difficult to analyze and to optimize. ln the surrogate-based su-
311 perstructure approach, the curse of dimensionality is particularly 
312 critical, since the surrogate models are used as blocks in a more 
313 complex optimization framework . 
314 Hence, in surrogate building process dimensionality reduction 
315 is therefore a key step to induce sparsity, i.e. ta reduce the to-
316 tal number of non-zero coefficients: classical approaches include 
317 PCA (Cunningham, 2007; Fodor, 2002), random projections (RP)
318 (Krahmer and Ward, 2016), and subset selection (SS) (Miller, 2002). 
319 Sparsity in the surrogate mode! can be induced also by adding a 
320 regularization parameter to the objective function such as in LASSO 
321 approach (Hastie et al., 2015): in this paper we consider only SS 
322 approaches since, in this latter case, we have a direct contrai on 
323 the number of non-zero coefficients in the surrogate models. More 
324 recently, Straus and Skogestad introduce two nove! dimensionality 
325 reduction methods based on PLSR (Straus and Skogestad, 2017a; 
326 2017b) and self-optimizing contrai (Straus and Skogestad, 2018), 
327 respectively. 
328 Dimensionality reduction with application to water-flooding 
329 production optimization has been recently addressed by
330 Sorek et al. (2017} by intraducing the functional contrai method 
331 (FCM) and the interpolation contrai method (ICM} relying on 
332 polynomial approximation and piecewise polynomial interpolation 
333 contrais, respectively (see also Beykal et al., 2018b). 
334 In particular, in SS regression only a given subset of dimension 
335 T � IBI of basis functions is considered. Hence the following prob-
336 lem is defined: 

min g({J) yeJlllBI ,/Je.A 

s.t. LYJ=Î
jeB 

fiYi �/Ji� fJ Yi VjeB 

YJE{0,1} Vj eB. (SS) 

337 In (SS) IBI binary variables YJ are introduced to switch on/off
338 the corresponding regression parameters 13

1 (j e B). Depending on 
339 the linearity (resp. nonlinearity) of the objective function, SS is a 
340 MILP (resp. MINLP). Coefficients f3 and fi can be estimated in the 
341 preprocessing phase using any feasible value for f3 computed, e.g., 
342 by means of the (N)LR approach. ln practical implementation we 
343 followed the procedure which is suggested in Cozad et al. (2014), 
344 i.e., we sum up the absolute values of f3 found for unconstrained 
345 regression and we set the obtained numerical value as the upper 
346 bound p: then for the lower bound we simply set f3 == -P.
347 There exists several heuristic procedures ta argue an opportune 
348 numerical value for T: the most adopted ones consist in forward-
349 and backward-stepwise regressions. Forward-stepwise regression 
350 incrementally builds surrogate models by increasing T starting 
351 form B = 0 until a given information criterion, which includes the 
352 complexity and the accuracy of the mode!, is worsen. A possible 

information criterion is the correct Akaike criterion (AICc): 

AICc(T, fJ): = Nlog (� L (Zn - "f:,fJj/j(Xn))2)
ne[N] jeB 

2T 
2T(T + 1) 

+ + N-T-1'

353 

(AICc) 

which is constituted by a weighted sum of the accuracy of the 354 
model, represented by the squares of the mode! residuals given 355 
by the distance between the output data and the surrogate mode] 356
responses, and the relative complexity of the model, which takes 357
into account the number of basis functions and the total num- 358 
ber of observations. The flowchart of the SS algorithm is shown 359 
in Fig. 1, where (/J*, y*) is the optimal solution for problem (SS). 360 
For other information criteria we refer the interested rea.der to 361 
the paper (Wilson and Sa.hinidis, 2017). The backward-stepwise re- 362 
gression approach, on the contrary, initially considers a.li the basis 363 
functions and progressively removes the less significant ones. 364 

A comparison between different SS regression strategies is per- 365 
formed in Kim and Boukoulava (2019). Cozad et al. (2014) intro- 366 
duce a procedure, the automated leaming of algebraic models for 367 
optimization (AIAMO), to salve (SS) with a forward-stepwise phi- 368 
losophy. A comprehensive description of AIAMO with applications 369 
to chemical problems is given by Wilson and Sahinidis (2017). 370
Other software packages for surrogate building process are de- 371

scribed in Bhosekar and Ierapetritou (2018). 372 

4. Additional constraints 373 

In practical applications several additional constraints on the 374 
responses of the surrogate models might be present We divide 375
them into two classes: (i) intra-model and (ii) inter-mode! con- 376
straints. lntra-model constraints regard the response of a single 377
surrogate model, while inter-mode! constraints concem the re- 378 
sponses of a subset of the models. The presence of inter-mode] 379 
constraints forces the procedure to address the corresponding sub- 380 
set of surrogate models at the same time. 381 

4.1. lntra-model constraints 382 

We consider a set of M outputs so that we have one problem 383 
of (SS) -type per output ln the notation the variables and the pa- 384 
rameters of each output mode! are identified by the superscript 385
me[M]. 386

We consider non-negativity constraints and we treat them by 387
means of the approach introduced by Cozad et al. (2015). They pro- 388
pose a two-phase procedure: in the first step they build the surro- 389
gate mode! with respect ta a given finite set of observations, while 390
in the second one the points corresponding to the maximum vi- 391

olation with respect to the constraints for the resulting surrogate 392
configuration are found and added to the set of the first step. The 393
algorithm stops when no violated point is found. 394 

In particular, in the first phase we salve a master problem with 395 

positivity constraints restricted ta a (finite) subset X of the closed 396 
set v c JRK describing the design space. Since in our case studies 397 
variables x represent mass fractions (see Section 7), we consider 398 

design spaces such that V == {x e JRK : x e I�, xi A Lke(KI xk = 1 }. 399 
The restricted master problem is: 400 

min 
ymeal"i ,/J'"e.A 

s.t "f:,Yj=Tm 

jeB"' 

-m f}_myj :5 fJj :5 fJ yjVj E Bm 

Yj e {0, l}Vj e Bm 
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Initialization: T := 1. 

Solve (SS), and set 
'Yold := /3*, Ôold := 

y*, and T := T + 1. 

Solve (SS), and set 
'Ynew := f3* and Ônew := y*· 

AICc(T - 1, 'Yold) > 
AICc(T, 'Ynew)? 

Set T := T + 1, 'Yolà := 
'Ynew and Ôold := Ônew • 

Fig. L Flowchart of the SS algorlthm 

Solve (P i,PCA)·

Solve (P 2,PCA)·

Is (P 2,PCA) feasible?

no 

Return P. 

Set X:= X U {x*}. 

Fig. 2. Flowchart of the two-phase algorithm for intra-model constraints 

L fJj [j(x) � OV,c e x. (Pf) 
jElJI" 

In the second phase, given is a feasible solution {f'l, pm) of the 
problem (Pf'), a non-negative scalar e

1 e R+, representing the fea­
sibility tolerance, and we salve the following optimization problem 
identifying the maximum violation: 

min L Pjfj (X) 
KE'D 

jElJffl 

s.t L Pj !J(x) � -Ef (P2)
jElJffl 

A positive small value for e1 enforces strictly positivity for the
violation (Cozad et al., 2015), or, in other words, we consider as 

feasible points the ones for which the corresponding violation is 407 
strictly less than ep 408 

The optimal solution X* of problem (P2) is then added to the 409
set X and the first phase is performed again. As suggested in 410 
Cozad et al. (2015 ), in order to speed up the algorithm, instead 411 
of the optimal solution x•, every set of (isolated) feasible solutions 412 
found for problem (P2) by a state-of-the-art optimization solver, 413 
such as BARON (Tawannalani and Sahinidis, 2005 ), can be added 414 
ta x. The procedure altemates the two phases until the problem 415 
(P2 ) becomes infeasible. We note the previous procedure converges 416 
since at each iteration the amount of the violation of the cur- 417 
rent solution decreases because an increasing number of feasible 418 
points is taken into account in the first phase. Problems (Pf) can 419 
be solved separately for each output 420 
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421 We initially set X equal to the set of all sampled points. As we 
422 said before, we use ail the sampling points in one shot to build the 
423 surrogate model. Moreover, we observe that the objective function 
424 is always evaluated over the same set of initial points for which 
425 we know also the real outputs. 

426 4.2. Equality inter-made/ constraints

427 Let c e JRK and d e JRM be L given vectors of opportune dimen-
428 sions. We consider additional equality constraints linking the re-
429 sponses of several surrogate models, as follows: 

L �xi'= L df L {Jjfi(x) Vx e 'D" Vl e [L]. (2) 
ke(K] me[M] jel'P" 

430 In particular the previous relationship must hold for Xn (ne (N]). 
431 The resulting problem is semi-infinite since it bas an infinite num-
432 ber of constraints: we have one constraint for each design configu-
433 ration x e V. ln our computational experiments we practically con-
434 sider problems with hundreds of constraints (see Section 7). In or-
435 der to salve the resulting semi-infinite problem, in this case, we 
436 should consider ait the M surrogate models at once by choosing 
437 the objective function I:me [Mlwmg(/Jm), which is the weighted sum
438 of the objective functions of the models. In the implementation, 
439 we simply set wm := 1 for all me (M]; however, the choice of the 
440 mode! weights wm constitutes a degree of freedom which can be
441 further explored. In our approach we use the constraints (2) to ex-
442 press L variables as functions of the other ones for all the observa-
443 tions. In this way the equality constraint is automatically satisfied
444 by definition. 
445 To be more precise, we model only K - L outputs and we de--
446 rive the others from the equality constraints. We note that possible
447 intra-model constraints, such as, e.g., non-negativity constraints,
448 should be enforced for ail the outputs in order to guarantee pos-
449 sible infeasible solutions are not generated. To the best of our
450 knowledge, the previous technique for equality inter-model con-
451 straints is nove] and can be applied to ail the chemical balance
452 constraints regarding, for instance, mass or energy balance. 

453 S. Two-phase PCA

454 In order to reduce the number of basis functions in the previous 
455 procedure we propose an integration between the two-phase ap-
456 proach with PCA regression technique. In PCA regression approach 
457 a PCA step is performed before the regression procedure. We im-
458 plement a PCA step over the basis functions, by decomposing in 
459 principal components the (Pearson) correlation matrix Ce JRIBJxJBI 
460 of the basis functions evaluated over the initial input data. Then 
461 we consider only the eigenvectors corresponding to the first largest 
462 eigenvalues: hence, we derive new basis functions by projecting 
463 the original functions onto the subspace generated by the eigen-
464 vectors corresponding to the selected eigenvalues. 
465 We note that performing the PCA over the correlation matrix 
466 can be seen as a standardization of the data in order to have the 
467 same variation data scale, since in order to define the (Pearson) 
468 correlation coefficients we subtract the means and we divide per 
469 the standard deviations. The (Pearson) correlation coefficients are 
470 defined as 

(. . _ Lne[NI (/Ji (Xn) -fïi )([j, (Xn) - -h) 

Ji,Jl -
JLne[NJ (!Ji (Xn)- fïi}2JLne[NI (/1, (Xn)- -h}2

' 

V(it, h) e B x B, (3) 
471 where fit = (Lne[NI fh (Xn))/N and !Ji = (Lne[N] /Ji (xn))/N. 
472 In the two-phase approach we solve the first phase consider-
473 ing the new basis functions (reducing the dimensionality of the
474 corresponding surrogate building problem) obtained by projecting 

the original basis function onto the space defined by the princi- 475
pal components of the correlation matrix. In the second phase we 476 
consider the original design space: the value of the function in the 477 
new point is then obtained by projecting the result of the second 478 
phase onto the new space. 479

The correlation matrix is decomposed as C = AI:AT, where A 480
is the matrix whose columns are the orthonormal eigenvectors of 481
the correlation data matrix and I: is the diagonal matrix whose 482 
diagonal entries are the eigenvalues of matrix C sorted in non- 483
increasing order. Let A 1, be the matrix whose columns are the first 484 
IB'I eigenvectors of the correlation data matrix and F(x) be the ma- 485
trix whose rows are the basis function Jj(x) (je B), we define the 486

new projected matrix of the basis functions as F'(x) := AJ,F(x). 487
The rows of the matrix f'(x) give the new projected basis func- 488
tions t;, (x) (j' e B'). The problems solved in the first phase read 489
as follows: 490 

min 
{J'"E./< 

s.t L /Jy /1, (x) � 0
feB' 

VxeX, 

where for instance we set g({3m) := LnE[NJ lzn - Lj'EB' {3J'J1,(xn)I. 491

The set A of a priori constraints over the surrogate parameters is 492
replaced by its projected version A'. Problem (P1,PCA) is a (N)LP and 493
depends on the number of principal components selected in the 494 
PCA step. We note that each principal component corresponds to a 495 
basis function. Therefore, in the two-phase PCA approach the selec- 496 
tion of the basis functions is driven by the value of the eigenvalues 497 
of the correlation data matrix of the basis functions calculated over 498 
the input data. 499 

Moreover, we observe that the PCA step is independent from 500 
the output data and can be performed in a preprocessing phase if 501
different outputs should be considered at the same time. This is 502
the case for example when different process alternative contigu- 503
rations should be evaluated: for instance, if a given chemical pro- 504
cess can be realized with a different number of reactors (for a case 505
study see Section 7.1 ), different surrogate models can be calculated 506
for each possible number of reactors starting from the same in- 507
put data opportunely generated according to a DOE strategy (see 508
��002� � 

The problem addressed in the second phase is instead 510 

s.t E �r; 1;,cx> � -s,.

J'eB' 
ln the objective function and in the inter-mode! constraints we 511

project the original basis function onto the new space defined by 512
the selected eigenvectors. The typology of the two problems and 513 
the stopping criterion follow the same philosophy as the two- 514 
phase approach sketched in the Section 4.1. The flowchart of the 515
two-phase PCA algorithm is given in Fig. 2. 516 

6. Hybrld approadt 517

ln this section we describe a hybrid approach obtained by corn- 518 
bining SS philosophy and PCA regression. In particular, in the hy- 519
brid algorithm a SS step is performed once at the beginning to de- 520
termine a lower number of representative basis functions and then 521
the two-phase PCA procedure described in the previous section is 522
applied to further reduce the dimensionality of the problem. The 523
complete flowchart of the hybrid algorithm is given in Fig. 3. 524 

To be more precise, we first implement the SS algorithm tak- 525
ing into account only the intra-model constraints: in this way we 526
can solve a SS-type problem separately for each modelled output 527
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no 

Initialization: set m := 1.

Set T"' 1 

Solve (SS), and set 'Y::la := fJ*m,
ô:JÎ

d 
:= y•m and T"' := Tm + 1. 

Solve (SS), and set 'Y�w 
:= 

13•m and�
.., 

:= y•m_ 

yes 

Set 1v= ·= 'Y."" 8= I • 
old> 

o:;:d, and m := m + 1. 

m > M? 

Set T"' := Tm 
+ 1, '"'1::la := 

'Y�w , and ô:JÎd := O�w · 

SS Algorithm 
1 

1 

1 

yes _______________________________________ ,'

Set !J(x) := /;(x)'Em Sr 
for all j E B. 

Ini.tializatian: choose X. 

Solve (P i,PCA)-

Solve (P :i,PCA)-

1s (P :i,PCA) fea.sible? 

Return S.

Set X .- X U {:z:*}. 

Two-phase PCA 

fig. 3. Flowchilrt of the hybrid SS + two-philse PCA algorittun 
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528 by decomposing the original problem into M simpler independent 
529 subproblems with the same structure. We note a parallel imple-
530 mentation setting can be exploited in this context (in order to 
531 fairly compare the different approaches we consider only pure se-
532 quential implementations). 
533 In particular, in presence of equality inter-model constraints, 
534 we can avoid to salve the SS-type problem for the L outputs ob-
535 tained as functions of the other K - L outputs through the equality 
536 constraints. Then, we sum up the values of the binary variables 
537 introducing to switch on/off the basis functions over the outputs 
538 and the values obtained per input are multiplied with the original 
539 functions in order to weight them. The functions selected for mul-
540 tiple outputs in the SS step will have a larger weight and will have, 
541 hence, a larger probability to be selected in the PCA step. We ob-
542 serve that the selected basis functions are employed to model only 
543 K - L outputs, while L outputs are still obtained from the equality 
544 inter-mode! constraints. 
545 This approach combines the efficacy of the SS strategy to find 
546 representative basis functions and the computational speed of the 
547 PCA regressioIL The numerical results show, in fact, that a lower 
548 number of principal components should be considered to obtain 
549 (in average) the same accuracy of the surrogate models in case 
550 a preliminary SS step is performed. Moreover, we note that in 
551 the case of pure SS approach a MI(N)LP should be solved at 
552 each iteration, white in the two-phase PCA only a (N)LP should 
553 be addressed: the (non)linearity of the problem depends on the 
554 (non)linearity of the objective function g(/3). Furthermore, per-
555 forming a separate SS step per output allows to better capture the 
556 complexity of each surrogate mode! by dealing with different num-
557 ber T'" of basis function per the m-th output (m E [Ml). 

558 7. Computational experlments 

559 
560 

561 

562 

563 

564 

565 

566 

567 

568 

569 
570 
571 

572 

573 
574 

575 

576 

577 

578 
579 

580 
581 

582 

In our computational setting we divided the input variables into 
two classes, namely process variables Pi Cie UD, which represent 
the contrai variables in the posterior optimization phase, and com­
position variables ci (i e [Il), which coincide with the mass or molar 
composition of the compounds. We chose polynomial models be­
cause we are looking for simple surrogate models, since we would 
optimize them in a posterior phase in order to retrieve the best 
operational conditions for the analyzed process. We consider two 
types of surrogate models: (i) polynomial quadratic models and 
(ii) polynomial cubic models. In particular, in case (i) we consider
models with the composition and the process variables occurring
linearly and with bilinear interactions, i.e., bilinear mixed products,
between process variables and composition variables: such models
can be expressed in the form

/Jo + L /Juci + L L fJi.iiYPi + L /J3,iq 
IE[fl IE[f] JEU] IE[f] 

(4) 

on the contrary in case (ii) we have models where the composition 
variables appear linearly and the process variables appear quadrat­
ically, i.e., such that can they be expressed in the form 

ÎE[fl ÎE[I] jE[/1 ÎE[I] 

+ L L L /34,tJ'rc,PyPr· (5) 
ÎE(flj' EU] f' EU]

The number np 
of parameters in case (i) is given by np = 1 + 

III + III l/1; in case (ii) we have instead np = 1 + Ill + 111 l/l + III l/12.
After preliminary computational tests with polynomial func­

tions by considering the full cubic model with ail the interactions, 
we decided to restrict ourselves to models resulting from the mul­
tiplication of the compositions variables appearing linearly and the 
process variables up to the quadratic terms, i.e. surrogate models 

(5) (considering other terms do not add much in terms of model 583 

accuracy for the case studies). 584 
We choose function (LAD) as objective function for the re- 585

gression step (first phase). Each MILP is solved by means 586

of IBM !LOG CPLEX 12. 8 IBM ILOG CPI.EX with option 587
numericalemphasis and scaind activated and parallelization 588

setting enable (up to 2 threads). The MINLPs are solved through 589

BARON 18. 5. 8 Tawarmalani and Sahinidis (2005). Ail the codes 590

are implemented in GAMS 25 . 1 . 2 McCarl et al. {2017) on a Dell 591
machine with Intel(R) Xeon(R) CPU E5-1620 v3 at 3.50 GHz with 4 592

GB RAM. 593

We set a time limit of 100 CPU seconds for the first phase and 594 
15 CPU seconds for the second phase. Preliminary computational 595 

experiments have shown that either the second phase finds a fea- 596
sible solution relatively quickly or no solution is found within a 597 

larger CPU time, declaring hence the problem as infeasible. More- 598

over, in order to speed up the algorithm for the MILP solved in 599 
the SS step we stop at the feasible solution found at the root node 600 

in the Branch-and-Bound tree (we have observed that the feasible 601

solution found at the root node is not so far from the optimum 602

solution: however, a relatively large amount of time is needed to 603
certify its optimality). 604

For the second phase, we lœep the first feasible solution found 605

by BARON and we add it to the restricted master problem. We 606

set e 1 := 0.2. Generally, the choice of the numerical value for e 1 607

depends on the order of magnitude of the involved functions: in 608

this case for the second phase we are considering as acceptable 609

points the ones for which the corresponding response is greater 610

than -0.2, which represents a reasonable value in our case stud- 611

ies. The computation of the eigenvalues and of the eigenvectors 612

of the correlation data matrix is performed by means of the alge- 613

braie tools available in GAMS based on the LAPACK DSYEV rou- 614
tine Anderson et al. (1999). 615

7.1. Case study 1: Catalytic reforming 616 

In this section we present a real-world application in petroleum 617 

refinery industry, namely the catalytic reforming process. Cat- 618

alytic reforming (CR) is a chemical refinery process transform- 619

ing raw naphtha into high octane gasoline called reformate con- 620
taining aromatic hydrocarbons and iso-alcanes (Turaga and Ra- 621

manathan, 2003; Gjervan et al., 2004; Lapinski et al., 2014) 622

(for an historical perspective on the studies about CR, see also 623
Rahimpour et al. (2013)). 624

The catalytic reforming process was originally introduced in 625

the 1940s by the Charles Stark Dreape laureate Vladimir Haensel1 , 626
who proposed the so-called Platforming process, adopting a cata- 627 

lyst containing platinum. The CR unit is the most important pro- 628
cess in refinery industry to produce lead-free automobile fuel and 629 

hydrogen. CR unit is composed of a sequence of reactors (usually 630

from 3 to 5) characterized by operating conditions (temperature, 631

pressure, molar hydrogen-to-hydrocarbon ratio, and feed composi- 632

tion) and equipped with catalyst (typically with platinum). 633 

The main chemical reactions in CR are, in fact, dehydrogenation 634 

and hydroisomerization of naphtenes transforming them into aro- 635

maties, isomerization and dehydrocyclization of alcanes convert- 636

ing them into aromatics and iso-alcanes, hydrocraking of alcanes 637 

into smaller components, hydrogenolysis, and coke formation. Coke 638

formation is a relatively slow process and it represents a damag- 639
ing reaction since coke reduces the performances of the catalyst. 640

Typical operating conditions are high temperature ( 450-500°C1 641

1 see patents Alumina-platinum-halogen catalyst and preparation thereof. 1949,
August 16. U.S. Patent No. 2,479,109 and Proœss of reforming a gasoline with an 
alumina-platinum-halogen catalyst. 1949, August 16. U.S. Patent No. 2,479,110. 
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'lllble 1 
Acronyms. 

Acronyms (alphabetical order) 
correct Akailœ information criterion AIC, 

A!AMO 
ANN 
ARGONAUT
AlOUT 

Automated leamlng of algebralc models for optlmlzatlon 
Artificial neural network 
Algorithms for global optimization of constrained grey-bwt computational problems
Advanced tools for optimization and uncertainty treatment 

'lllble 2 

CR 
DOE

FCM
FFD 
GDP
!CM 
iP 
IS 
!AD
LHD 

LP 
LR 
MIIP 
MINLP 
NLR 
nP 
OLR 
PCA 

PLSR
RBF 
RON 
RP 
SIP 
SS 
SVR 
WHSV 

catalytic reforming 
Design of experiments 
Functional contrai method
Fully factorial design 
General disjunctive problem 
Interpolation contrai method
iso-alcanes 
Isomerization 
Least absolute deviation
Latin hypercube design 
Linear problem 
Linear regression 
Mixed integer linear problem 
Mixed integer nonlinear problem
Nonlinear regression 
n-alcanes 
Ordinary least square regression
Principal component analysis 
Partial least square regression 
Radial basis function 
Research octane number 
Random projections 
Semi-infinite problem 
Subset selection 
Support vector regression 
Weight hourly space veiocity

Input compounds of the catalytic reforming process. 

Input compounds 

heptane 
isoheptane 
naphthenes with 7 atoms of carbons
toluene 
octane 
isoctane 
naphthenes with 8 atoms of carbons 
ethyl-benzene + xylenes 

medium level of pressure (3-35 atm) and molar hydrogen-to­
hydrocarbon (H2'HC) ratio between 3 and 8 Ancheyta-Juârez and 
Villafuerte-Macias (2001 ). 

In particular, for illustration we consider the C7-C8 eut The in­
puts of the model are the research octane number (RON) and the 
mass percentage of the hydrocarbon compounds occurring in the 
CR process (see Tables 2-3). The pressure and the temperature of 
the chemical reactions are treated as constants. Hence, we have 
one process variable (RON) and eight composition variables (mass 
percentages ). 

In this case, since the model outputs represent mass fractions, 
non-negativity and summing up to 1 constraint mush be enforced. 
Moreover, in CR we have one equality constraint (2) for each t­
th chemical element (te [LI) (hydrogen and carbon in hydrocarbon 
compounds) and n-th observation (ne IN]), expressing the equiva­
lence between the total number �ln

n 
of moles of the t-th element

in the process inflow and the total number �r:f of the moles of the 
t-th element in the process outflow in the 'n-th observation, i.e.,
ç1°n = çt"':f for all te [L] and ne [N]. The number of moles for the
t-i:h element is given by the weighted sum of the molar percent­
age of all the chemical compounds in the stream, whose weights 
are the number of moles of hydrogen and carbon occurring in the 

Table 3 
output compounds of the catalytic reforming process. 

Output compounds 

hydrogen 
met ha ne 
ethane 
propane 
butane 
pentane 
n-hexane 
simple branched alcanes with 6 atoms of carbons 
double branched alcanes with 6 atoms of carbons 
naphthenes with 6 atoms of carbons 
benzene 
n-heptane 
simple branched alcanes with 7 atoms of carbons 
double branched alcanes with 7 atoms of carbons 
naphthenes with 7 atoms of carbons 
toluene 
n-octane 
simple branched alcanes with 8 atoms of carbons
double branched alcanes with 8 atoms of carbons 
naphthenes with 8 atoms of carbons 
ethyl-benzene + xylenes 

corresponding compound, i.e., 

lfn 

în _ � mol,k � 
�l.n - � massln n•

kE[Kj k 
(6) 

where moltk and massr are the number of moles of the t-th ele­
ment in the k-th input compounds and the molar mass of the k-th 
input compounds, respectively, and 

out_ � mol� 
.t.!1 �l.n - � massout n '

mE[M] m 
(7) 
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nble4 

R2 and weighœd R2 (wR2) for PCA and ss+PCA per nwnber of principal components. 

PCA 

R2 wR2 

No. comp. Train Test Train 

30 0.85 0.78 0.94 
31 0.85 0.78 0.94 
32 0.88 0.87 0.96 
33 0.88 0.87 0.96 
34 0.88 0.87 0.96 
35 0.88 0.87 0.96 
36 0.89 0.88 0.96 
37 0.89 0.88 0.96 
38 0.89 0.89 0.96 
39 0.89 0.89 0.96 
40 0.90 0.91 0.97 
avg 0.88 0.86 0.96 

668 where molf.!i and mass� are the number of moles of the l-th 
669 element in the m-th output compounds and the molar mass of the 
670 m-th output compounds, respectively. 
671 Note that satisfying the balance constraints on the number of 
6n moles implies all the mass fractions sum up to 1 and also the mass 
673 balance holds. Hence, these constraints have not been enforced in 
674 the first phase problem. 
675 We have generated the plan of experiments by means of the 
676 software package Design Expert 10 Design Expert In partic-
677 ular, we adopt the D-optimal design for the training set and the 
678 I-optimal design for the test set for mode! (5). We chose statistical 
679 designs since for this kind of DOE Design Expert lets us to consider 
680 other additional constraints (such as that the sum of ail the mass 
681 fractions for a given observation is equal to 1) when the plan of 
682 experiments is developed: D-optimal and I-optimal design are re-
683 ferred to the constraint case for the cubic mode! (5). In particular, 
684 we define a training set with 226 samples and a test set with 200 
685 samples. 
686 The software tool used to numerically simulate the catalytic re-
687 forming proœss is OSCAR 1. 1, a numerical software developed at 
688 IFP Energies nouvelles. 
689 We build individual surrogate models for each output compo-
690 nent: as stated in the previous sections, we mode! only m - 2 out-
691 puts sinœ we have 2 equations for the molar balance of carbon 
692 and hydrogen, and we obtain the remaining 2 outputs from the 
693 equality inter-mode! constraints. 
694 In order to evaluate the performance of a surrogate mode!, in 
695 addition to average coefficient of determination (R2 ) over the out-
696 puts, we consider a weighted R2 (wR2 ) which consists in the aver-
697 age of the R2 for the single models weighted with the average out-
698 put mass fraction computed over the observations. In Table 4 we 
699 report the values of R2 and wR2 per number of principal compo-
100 nents for the two-phase PCA approach and for the hybrid approach 
101 (SS+PCA). 
102 The maximum number of principal components coincides with 
703 the number of considered basis functions: in the surrogate model 
704 for the catalytic reforming we are considering only the composi-
705 tion variables appearing linearly and the interaction between the 
706 process variable and the compositions variables up to the quadratic 
707 term, i.e., mode! (5) (see Section 7). Before dimensionality reduc-
708 tion the cubic mode! (5) has 40 parameters. 
709 For the hybrid algorithm the maximum number of the princi-
710 pal components is given by the number of basis functions found 
111 in the SS step. It is worth observing that in the SS step the num-
112 ber of basis functions is already reduced from 40 to 39. The gain is 
113 relatively small: in this case we are not using the full cubic models 
714 with ail the parameters, but we select a priori a subset of terms for 

Test 

0.90 
0.90 
0.95 
0.95 
0.96 
0.95 
0.96 
0.96 
0.96 
0.96 
0.97 
0.95 

SS+PCA 

R2 wR2 

Train Test Train Test 

0.87 0.81 0.95 0.92 
0.88 0.87 0.96 0.95 
0.88 0.87 0.96 0.95 
0.88 0.87 0.96 0.95 
0.88 0.87 0.96 0.95 
0.89 0.87 0.96 0.96 
0.89 0.86 0.96 0.96 
0.88 0.88 0.96 0.96 
0.89 0.88 0.96 0.96 
0.90 0.89 0.97 0.95 

0.88 0.87 0.96 0.95 

T.tble 5 
CPU times (in seconds) for PCA and SS+PCA per 
number cf principal components. 

No. camp. PCA SS+PCA !!,. 

30 457.89 543.34 15.73% 
31 501.58 48036 -4.42% 
32 452.73 504.94 10.34% 
33 476.43 504.58 5.58% 
34 508.24 568.73 10.64% 
35 497.81 566.78 12.17% 
36 566.99 574.13 1.24% 
37 587.06 591.95 0.83% 
38 583.76 628.23 7.08% 
39 603.74 625.85 3.53% 
40 550.84 
avg 526.10 558.89 6.27% 

the interactions between variables. Preliminary computational ex- 115 

periments with the full cubic mode! with ail the possible mixed 716 
bilinear products have shown the SS step allows us to significantly 717 
reduce the number of parameters in the surrogate models. The to- 718 
tal number of parameters for a polynomial mode! of degree d in 719 

n variables is (nt): a full cubic mode! has 220 parameters. ln the 120 
case of full cubic mode!, the SS step let us to decrease the num- 121 
ber of basis functions up to 18, obtaining a R2 and a wR2 indices 122 

for the training set equal to 0.87 and 0.96, respectively and a R2 723 

and a wR2 indices for the test set equal to 0.89 and 0.96, respec- 724

tively. ln general, larger the number of basis functions the SS can 725 

chose among, better the performances of the SS step in terms of 726 

selection of the basis functions. n1 
Table 4 shows the hybrid approach achieves the same perfor- 728 

mances as the two-phase PCA approach with a smaller number of 729 
principal components, both for the training and the test set More- 730 

over, we note the values of wR2 is always larger than the ones of 731 
R2

, because the surrogate model in presence of equality constraints 732 

tends to better estimate the components characterized by a higher 733 
percentage concentration. 734 

From Table 5, which reports the computational times for the 735 
two proposed algorithms and the percentage increase .6. between 736 
the computational time of SS+PCA and the computational time of 737 

PCA. It is clear that the SS step has an important impact on the 738 
CPU times: except for the cases of 31 principal components, in 739 

which the CPU time of the hybrid method is smaller than the one 740 

of the two-phase PCA, in ail the other cases the CPU time of the 741 

hybrid method is the largest one. The average increase of the CPU 742 

time is 6.27% with a maximum of 15.73% for the case of 30 prin- 743 

cipal components. Higher the increase in the relative performance 744 
of the surrogate model, higher the increase of the CPU time. There- 745 

Please cite this article as: L Mencarelli, A. Pagot and P. Duchêne, Surrogate-based modeling techniques with application to catalytic 
reforming and isomerization proœsses, Computers and Chemical Engineering. https://doi.org/10.1016/j.compchemeng.2020.106772 



11 

4.5 

4 

3.5 

l! 

2,5 

2 

1,5 

1 

1 1.5 2 2.5 3 

aclual 

3.5 

(a) Training set 

4 4.5 

parity-
4.2 

QM )C 

� 0 

3.8 

3.6 

3.4 

1 3.2 

l! 
a. 3 

2.8 

2.6 

2.4 

2.2 

2 

2 2.2 2.4 2.6 2.8 3.2 3.4 3.6 3.8 4 4.2 

actual 

(b) Test set

parity­

QM )C 
� 0 

Fig. 4. H2, predirud YS. actual plots. The values given by quadratic mode! {4) in green (QM); and the values given by the cubic mode! (5) in blue (CM). 

4.5 

4 

3.5 

i 
l! 

2.5 

2 

1.5 

1 

l 1,5 2 2,5 3 3.5 4 

aclual 

(a) Training set

par1ty-
4.2 

UR )C 

CR 0 

3.8 

3.6 

3.4 

i 3.2 

l! 3 a. 

2.8 

2.6 

2.4 

2,2 

2 

4.5 2 2,2 2.4 2,6 2,8 3.2 3.4 3.6 3.8 4 4,2 

adual 

(b) Test set 

par1ty­
UR X 
CR O 

Fig. 5. H2, predirud YS. actual plots, cubic mode! {5). The values given by the unconstrained regression in green (UR); and the values given by constrained regression in 
blue [CR). 

746 fore, the results underline a trade-off between the relative reduc-
747 tion on the number of basis functions and the relative increase of 
748 computational effort 
749 Figs. 4a-7b show the scatter parity plots for the H2 for the 
750 training set (figures with caption (a)) and the test set (figures with 
751 caption (b )). ln the figures the x-axis reports the values of the sim-
752 ulated outputs, white the y-axis reports the values of the response 
753 of the surrogate models. In the limit case in which the response of 
754 the models coïncides with the simulated output, the corresponding 
755 point lies on the bisector of the first quadrant. Smaller the distance 
756 between the value and the bisector of the first quadrant, better the 
757 performance of the surrogate model. 
758 The quality of the surrogate models strong]y depends on the 
759 grade of the mixed products between the process and the com-
760 position variables as shown in Fig. 4a and b which compare the 
761 quadratic model, i.e., Eq. (4), and the cubic model, i.e., Eq. (51 and 
762 on the fact that we are obliged to consider constrained regres-
763 sion (see Fig. Sa and b which report the parity plots obtained by 
764 constrained regression over ait the basis functions and the uncon-
765 strained LAD for cubic mode! (5)). 
766 A key driver of the performance of the surrogate models is 
767 clearly the number of principal components and hence of basis 

'111ble 6 

Relative R2 and wR2 increases for the 30/35 and 35/40 prin­
cipal components. 

Index 30/35 35/40 

R2 train 3.41% 2.22% 
R2 test 10.34% 4.40% 
wR2 ttaln 2.08% 1.03% 
wR2 test 5.26% 2.06% 

functions considered in the estimation process: Fig. 6a and b show 768 

the predicted outputs for the two-phase PCA by varying the num- 769 

ber of principal components. From the parity plot, it is possible to 110 
observe that the relative increase of estimation quality between 30 771 

and 35 principal components is more accentuated than the one oh- m 
tained by passing from 35 to 40 principal components (the relative 773 

R2 and wR2 increases for the 30/35 principal components and for 774

the 35/40 principal components are reported in Table 6). 775 

Pig. 7a and b report the comparison between the two-phase 776 

PCA and the hybrid approach for 35 principal components, show- 777 

ing the second method is slightly better than the first one in terms 778 

of distance between simulated and predicted outputs. 779 

Please cite this article as: L Mencarelli, A. Pagot and P. Duchêne, Surrogate-based modeling techniques with application to catalytic 
reforming and isomerization proœsses, Computers and Chemical Engineering. https: //doi.org/10.1016/j.compchemeng.2020.106772 



12 

parity-
4.4 

parity-
PCA3D X 4.2 PCA3D X 

4.5 PCA35 0 PCA35 o 
PCA40 a 4 PCA40 a 

4 3.8 
3.ij 

3.5 

1 1 
3.4 

l! l! 
3.2 

c. c. 

2.5 
2.8 
2.6 
2.4 

1.5 
2.2 

1 2 
1 1.5 2 2.5 3.5 4 4.5 s 2 2.2 2.4 2.6 2.8 3.2 3.4 3.6 3.8 4 4.2 4.4 

ld:1111 ld:11111 

(a) Training set (b) Test set 

As. 6. H2, predicn:d vs. actual plots, cubic mcxlel (5). The values given by PCA with 30 principal components in green (PCA 30); the values given by PCA with 35 principal 
components in blue (PCA 35); and the values given by PCA with 40 principal components in orange (PCA 40). 

4.5 

4 

3.5 

2,5 

1.5 

1.5 2 2.5 3.5 4 4.5 5 
adllal 

(a) Training set 

parity-
4.2 

PCA X 

+PCA o 
3.8 

3.6 

3.4 

1 
l 

3.2 

2.8 

2.6 

2.4 

2,2 

2 
2 2.2 2.4 2.6 2.8 3.2 3.4 3.6 3.8 4 4.2 

adllal 

(b) Test set

fig. 7. H2 , predicted vs. actual plots, cubic mode! (5). The values given by the PCA with 35 principal components in green (PCA); and the values given by SS+PCA with 35 
principal components in blue (SS+PCA). 

780 Finally, Fig. Ba and b show the residual gap, calculated as 

Lje8"' fJj f1M - Zn 
V [N] (B) 

Lje8"' /Jj f,(x) 
n E ' 

781 sorted according to the RON input value (in the figures we report
782 only the values for H2 }. It is worth noting that the surrogate mod-
783 els reproduced sufficiently the behaviour of the simulated values
784 with regards to the process variable, which is indeed the control
785 variable in the operating phase of the considered proœss: the val-
786 ues of the residual gaps for H2 are in absolute value less than 0.25
787 for the training set and 0.15 for the test set
788 ln conclusion, in the CR case study the performances of the hy-
789 brid method are generally slightly better than the ones of the two-
790 phase PCA.

791 7.2. Case study 2: lsomerization

792 lsomerization (IS) is a chemical process which increases RON
793 index of light hydrocarbon (C5-C6) by transfomùng n-alcanes into
794 branched iso-alcanes with higher octane index (Valavarasu and
795 Sairam, 2013; Sullivan et al., 2014). IS has been introduced in 1930s
796 by Vladimir Ipatieff, who proposed a new chemical process to
797 transform butane into isobutane, and used during the World War

II to produce high octane aviation gasoline (for an historical anal- 798 
ysis of IS process, see Sullivan et al. (2014}}. Nowadays IS is fun- 799 
damental to produœ high octane fuel and reduce the level of ben- eoo 
zene, aromatics and olefins in gasoline. IS unit is usually composed 801 
of a single reactors operating at relatively low temperatures (110- 802 
150°C} Valavarasu and Sairam (2013). ln theory, in fact, hydrocar- B03 
bons with C6 content could be treated via the catalytic reforming, 804 
but the constraint over the benzene content in the gasoline makes 805 
the process infeasible. 806 

Low operating temperatures are necessary in order to minimize 807 
cracking of the hydrocarbons, and imply the chemical reactions are 808 
relatively slow: this effect is balanced, for instance, by means of 809 
highly active catalysts. 810

Table 7 reports the input and output compounds in the IS pro- 811 
cess. We consider the inverse of the weight hourly space veloc- 812 
ity (WHSV), temperature, pressure, and mass fractions of the in- en 
put compounds as input data and the mass fractions of the output 814 
compounds as output data. 815 

As in the previous case study, we have one balance constraints 816 
for each chemical element (carbon and hydrogen) which should 817 
be satisfied by ail the input configurations belonging to the de- e1e 
sign space. A latin hypercube design of experiments is gener- 819 
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lllble 7
Input and output compounds of 
the isomerization proœss. 

Input compounds 

nPs pentane 
iP5 isopentane 
nP5 hexane 
2iP5 2-methylpentane
3iP6 3-methylpentane
22iP6 2,2-dimethylhexane 
23iP6 2,3-dimethylhexane 
OUtput compounds 

nP4 butane 
iP 4 isobutane 
nPs pentane 
iP5 isopentane 
nP6 hexane 
2iP6 2-methylhexane 
3iP6 3-methylhexane 
22iPs 2,2-dimethylhexane 
23iP6 2,3-dimethylhexane 

820 ated by means of the software package Advanced tools for opti-
821 mization and uncertainty treabnent (ATOUT 1.1) developed and
822 maintained by IFP Energies nouvelles. In particular, we define a
823 training set with 200 samples and a test set with 5000 samples.
824 We use the simulation software developed at IFP Energies nou-
825 velles in order to simulate the industrial process performances. The
826 total number of basis functions in the model before dimensionality 
827 reduction is 98 for the cubic model (5). 
828 The same numerical trends observed for the CR process are 
829 valid also for the IS. Tables 8 and 9 show the R2

, wR2 and the 
830 computational time (in seconds) for the two-phase PCA and the 
831 hybrid algorithm, respectively (the average referred to the principal 
832 components with positive value of R2 indices). We note the two-
833 phase PCA method is able to reduce the number of basis functions 
834 by maintaining however a comparable mode! accuracy. The hybrid 
835 method achieves the same grade of mode! accuracy with Jess basis 
836 functions: in particular, already with 49 basis function the hybrid 
837 algorithm is rather capable to capture the informations of the (sim-
838 ulated) data, while in order to achieve the same model quality the 
839 two-phase PCA method approach needs 90 basis functions. 
840 For the computational time related to the surrogate model gen-
841 eration, the lower number of basis functions implies the compu-

T.lble B 
R2 , weighted R2 (wR2), and time (in seconds) for PCA per number 
of principal components. 

R2 wR2 

No. comp. Train Test Train Test Time 

50 < 0 < 0 < 0 < 0 599.80 
90 7236 72.31 98.43 98.65 800.49 
91 71.89 72.37 98.46 98.72 837.86 
92 71.97 72.38 98.50 98.72 964.91 
93 72.03 72.41 98.54 98.82 882.16 
94 72.05 72.50 98.54 98.78 884.78 
95 72.01 72.45 98.54 98.79 810.49 
96 72.02 72.51 98.55 98.84 853.40 
97 7234 72.79 98.72 98.91 933.40 
98 72.74 73.16 98.93 98.13 835.45 
avg 72.16 72.54 98.58 98.71 866.99 

'lllble 9
R2, weighted R2 (wR2), and time (in seconds) for SS+PCA per 
number of principal components. 

R2 wR2 

No. comp. lnin Test Train Test Time 

47 66.21 < 0 93.44 48.03 488.01 
48 65.80 < 0 93.46 50.15 487.16 
49 72.05 68.38 97.91 94.05 467.78 
50 72.37 73.24 98.40 99.42 283.67 
avg 72.21 70.81 98.16 96.74 375.73 

tational time for the hybrid method to reach a satisfactory grade 842 
of accuracy is approximately half of the time needed for the two- 843 
phase PCA time to achieve the same quality level. 844 

Fig. 9a and b show the scatter parity plots for the 2iP6 for 845 
the training set (figures with caption (a)) and the test set (fig- 846 
ures with caption (b)). As for the CR process case study, the quai- 847 
ity of the surrogate models clearly depends on the grade of the 848 
polynomial models (see Fig. 9a and b) and on the presence of the 849 
additional non-negativity and molar conservation constraints (see 850 
Fig. 10a and b). The previous plots refer to models (4) and (5) with 851 
the a priori selection of the interactions (bilinear tenns) between 852 
process and composition variables. 853 

Fig. lla and b report the parity plot for the two-phase PCA with 854 
90, 95, and 98 principal components, showing the light quality im- 855 
provement of the surrogate models by considering an increasing 856 
number of principal components. 857 
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858 Finally, Fig. 12a and b report the comparison between the two-
859 phase PCA and the hybrid approach, graphically showing that the 
860 latter algorithm is characterized by a model accuracy comparable 
861 to the one of the two-phase PCA method, by considering, however, 
862 a lower number of basis functions. 
863 In conclusion, the IS case study highlights the benefits of the 
864 hybrid approach, which is able to obtain the same model accuracy 
865 with about half the number of basis functions of the two-phase 
866 PCA approach. 

867 8. Condusions 

868 In this paper, we have designed a systematic methodology to 
869 define and compute surrogate models for a given black-box pro-
870 cess. In particular, we have discussed the DOE strategies and the 
871 main approaches for the identification of the surrogate model, fo-
872 cusing on the SS perspective. Moreover, we illustrate how ta deal 
873 with possible intra-model and equality inter-mode! constraints. We 
874 have introduced a new two-phase PCA procedure for constrained 
875 regression problems by combining the two-phase approach in 
876 Cozad et al. (2015) with a PCA regression strategy. Therefore, we 
877 have discussed a possible hybrid strategy ta combine the SS ap-
878 proach with the introduced two-phase PCA procedure. 
879 The methods are evaluated and compared with respect ta two 
880 case studies in petroleum refinery process, namely catalytic re-
881 forming and isomerization. For bath case studies we have shown 
882 that the two-phase PCA method is able to reduce the number of 
883 basis functions required to obtain a satisfactary mode! accuracy, 
884 and the hybrid algorithm (the two-phase PCA preceded by a SS 
885 step) achieves a satisfactory mode! quality with a lower number of 
886 basis functions than the simple two-phase PCA methodology. The 
887 reduction in the number of basis function is significant in the iso-
888 merization case study, where the hybrid approach is able to obtain 
889 a satisfactary mode! accuracy with half the number of basis func-
890 tions of the two-phase PCA. 
891 ln future work we would like to extend our methodology to 
892 consider also PLSR approaches. Moreover, our approaches can be 
893 easily extended to consider other functions than polynomials as 
894 basis functions: hence, analyzing the performances of these sur-
895 rogate models in the context of PCA and SS+PCA could be another 
896 interesting future research axis. In our study, we have considered 
897 al! the sampling points at once: consequently incrementally adding 
898 the sampling points could be an interesting strategy in order to ob-
899 tain an accurate surrogate mode! with a lower number of sampling 

points. We have considered only noiseless data, we would like to 900 
test the two-phase procedure for noisy data relative to physical ex- 901 
periments in a further study. 902 

Then, we are also interested in embedding the surrogate mode!- 903 
ing approach into an optimization framework, where the surrogate 904 
mode! replaces the physical mode! ta retrieve the optimal config- 905 
uration and operating conditions of a given chemical process. The 906 
surrogate mode! is sufficiently accurate for this, and as its form 907 

is simple, it is fast ta compute, and it allows the use of power- 908 
fui global optimizers, that can fully exploit its analytic expression. 909 
Moreover, we are confident that the two-phase dimension redue- 910 
tion approaches described in the paper could be applied ta other 911 
chemical processes. If needed, other basis functions than polyno- 912 
mial terms could be used as basis functions. 913 
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