Iván Colecchio 
  
Alejandro Boschan 
  
Alejandro D Otero 
  
Benoît Noetinger 
email: benoit.noetinger@ifpen.fr
  
On the multiscale characterization of effective hydraulic conductivity in random heterogeneous media: a historical survey and some new perspectives

Keywords: heterogeneous aquifers, stochastic approach, volume averaging, up-scaling

In large scale heterogeneous aquifer simulations, determining the appropriate coarsening scale λ to define an effective hydraulic conductivity K ef f is a challenging task, that involves a trade-off between accuracy and cost. Efficiently adjusting the scale λ is then key, in particular for uncertainty quantification. In this paper, we obtain improved analytical results for the variance of K ef f , valid at any scale, in the context of energy dissipation formulation. Using this formulation, we then derive an efficient K ef f numerical estimator, and compare it with those of the potential-flow average and permeameter formulations in 2D, for lognormal and binary media, over a wide range of λ and of heterogeneity. We analyze the probability density function (pdf), mean, and variance, of these estimators, comparing them with the analytical results. In the lognormal case, the pdf's are rather similar for the three estimators, and remain lognormal at all scales. In the binary case, slow convergence to an asymptotic regime is observed close to the percolation threshold.

Introduction

Describing effective properties of heterogeneous media has important applications in many fields of engineering and science. For example, the electrical or thermal effective conductivity of mixtures, or elastic properties of composites materials have been studied since many years ago [START_REF] Maxwell | A treatise on electricity and magnetism[END_REF][START_REF] Bruggeman | Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. i. dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen[END_REF][START_REF] Landau | Electrodynamics of continuous media[END_REF][START_REF] Auriault | Effective macroscopic description for heat conduction in periodic composites[END_REF][START_REF] Willot | Elastic behavior of composites containing boolean random sets of inhomogeneities[END_REF][START_REF] Zhou | Perturbation-based stochastic multi-scale computational homogenization method for the determination of the effective properties of composite materials with random properties[END_REF]. In particular, determining an effective hydraulic conductivity is of major interest in a variety of disciplines related to subsurface flow, such as groundwater flow characterization [START_REF] Renard | Calculating equivalent permeability: a review[END_REF][START_REF] Matheron | Eléments pour une théorie des milieux poreux[END_REF][START_REF] Dagan | Flow and transport in porous formations[END_REF][START_REF] Dagan | Upscaling of flow in heterogeneous porous formations: Critical examination and issues of principle[END_REF], Carbon Capture Utilisation and Storage (CCUS) development [START_REF] Akber Hassan | Upscaling and its application in numerical simulation of long-term CO2 storage[END_REF]Jiang, 2012, Celia et al., 2015), and oil and gas reservoir engineering [START_REF] King | The use of renormalization for calculating effective permeability[END_REF][START_REF] Durlofsky | Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media[END_REF], 1992[START_REF] Preux | About the use of quality indicators to reduce information loss when performing upscaling[END_REF][START_REF] Malinouskaya | Impact of geomechanical effects during sagd process in a meander belt[END_REF]. The scarcity of field data [START_REF] Matheron | Eléments pour une théorie des milieux poreux[END_REF][START_REF] Dagan | Flow and transport in porous formations[END_REF][START_REF] Hristopulos | Random Fields for Spatial Data Modeling A Primer for Scientists and Engineers[END_REF] makes it necessary to perform some sort of interpolation, with frequent use of a stochastic approach [START_REF] Gelhar | Stochastic subsurface hydrology[END_REF][START_REF] Linde | Geological realism in hydrogeological and geophysical inverse modeling: a review[END_REF][START_REF] Godoy | Stochastic analysis of three-dimensional hydraulic conductivity upscaling in a heterogeneous tropical soil[END_REF] that treats the point conductivity values as a random process, eventually accompanied by field data conditioning. While the use of this approach permits a good management of uncertainty, it turns too costly to solve the flow at the fine scale provided by laboratory (microtomography, synchrotron), or geological sources [START_REF] Dagan | Upscaling of flow in heterogeneous porous formations: Critical examination and issues of principle[END_REF], specially for large domains.

In addition, one may want to incorporate data obtained at different support scales before interpolation. To alleviate this issues, upscaling procedures allow us to perform a mapping from a fine scale onto a coarse scale, in which the solution of the flow is less costly. Fig. 1 shows the lengthscales and geometrical features of the upscaling process. The fine scale conductivity k(r) (r is the position vector) is defined over the regional domain ω ⊂ R D , (dimension D=1, 2 or 3) at a support scale ∆. The coarsening scale λ determines a domain ϑ, over which the effective hydraulic conductivity K ef f is defined. One the one hand, for practical and conceptual purposes, we can establish an upper bound L for λ, determined by the largest subdomain Ω over which it is still possible to solve the flow, eventually imposing boundary conditions at ∂Ω if natural flow conditions are unknown. For example, L could be a characteristic aquifer scale. On the other hand, a lower bound for λ is given by the support scale ∆. The effective conductivity of a block or subdomain ϑ, defined by the coarsening scale λ, i.e. K ef f (λ), depends on the values of k(r) within ϑ, but also on the conditions at the boundary ∂ϑ, which may be imposed or known. Moreover, K ef f (λ) is a tensor in principle, however, for isotropic media, and certain flow conditions [START_REF] Sánchez-Vila | A synthesis of approaches to upscaling of hydraulic conductivities[END_REF][START_REF] Vereecken | Upscaling hydraulic properties and soil water flow processes in heterogeneous soils a review[END_REF], the use of a scalar K ef f is appropriate. Finding a suitable coarsening scale λ requires dealing with a trade-off between accuracy and cost: as λ increases, the cost to solve the flow decreases, but some details of the heterogeneity (and of the flow) get lost, and the values of K ef f become less representative of the fine description. The choice of a scale λ that retains the most salient flow features, while keeping the cost of the flow solution low, makes upscaling a challenging task.

In the following section, we revisit briefly some upscaling results, with focus on the types of media studied in most works, including the present one, i.e., lognormal and binary media, to later discuss K ef f distributions, and some upscaling formulations.

Figure 1: Lengthscales and geometry of the upscaling procedure: The fine scale conductivity k(r) is defined over the regional domain under investigation ω, at a support scale ∆. The upscaling procedure maps k(r) onto K ef f (ϑ), while ϑ ⊂ Ω is defined by the coarsening scale λ, with ∆ < λ < L.

Previous results

Analytical methods like bounds-based approaches [START_REF] Hashin | A variational approach to the theory of the effective magnetic permeability of multiphase materials[END_REF][START_REF] Renard | Calculating equivalent permeability: a review[END_REF][START_REF] Loc | Etude de la composition des perméabilités par des méthodes variationnelles[END_REF][START_REF] Pozdniakov | A self-consistent approach for calculating the effective hydraulic conductivity of a binary, heterogeneous medium[END_REF] or power averaging [START_REF] Journel | Power averaging for block effective permeability[END_REF][START_REF] Desbarats | Geostatistical characterization of groundwater flow parameters in a simulated aquifer[END_REF][START_REF] Masihi | Estimation of the effective permeability of heterogeneous porous media by using percolation concepts[END_REF] provide a remarkable insight, although, as they estimate K ef f from the point values k(r) only, they disregard the influence of the flow behavior at ∂Ω.

Depending on the detailed context, homogenization techniques [START_REF] Auriault | Effective macroscopic description for heat conduction in periodic composites[END_REF][START_REF] Durlofsky | Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media[END_REF][START_REF] Jikov | Homogenization of differential operators and integral functionals[END_REF][START_REF] Armstrong | Quantitative stochastic homogenization and large-scale regularity[END_REF], volume averaging techniques [START_REF] Hassanizadeh | General conservation equations for multiphase systems: 1. averaging procedure[END_REF][START_REF] Quintard | Transport in chemically and mechanically heterogeneous porous media III. large-scale mechanical equilibrium and the regional form of darcy's law[END_REF][START_REF] Durlofsky | Coarse scale models of two phase flow in heterogeneous reservoirs: volume averaged equations and their relationship to existing upscaling techniques[END_REF][START_REF] Whitaker | The method of volume averaging[END_REF][START_REF] Gray | Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 1. motivation and overview[END_REF][START_REF] Leung | Scale-up of mass transfer and recovery performance in heterogeneous reservoirs[END_REF][START_REF] Wood | Volume averaging: Local and non local closures using a Green's function approach[END_REF][START_REF] Davit | Technical notes on volume averaging in porous media I: How to choose a spatial averaging operator for periodic and quasiperiodic structures[END_REF][START_REF] Aguilar-Madera | Solute transport in heterogeneous reservoirs: Upscaling from the darcy to the reservoir scale[END_REF] or stochastic perturbation theory [START_REF] Landau | Electrodynamics of continuous media[END_REF][START_REF] Matheron | Eléments pour une théorie des milieux poreux[END_REF][START_REF] Dagan | Flow and transport in porous formations[END_REF][START_REF] King | The use of renormalization for calculating effective permeability[END_REF][START_REF] Rubin | A stochastic approach to the problem of upscaling of conductivity in disordered media: Theory and unconditional numerical simulations[END_REF], Indelman and Dagan, 1993a[START_REF] Noetinger | The effective permeability of a heterogeneous porous medium[END_REF][START_REF] Indelman | A higher-order approximation to effective conductivity in media of anisotropic random structure[END_REF][START_REF] Ababou | Solution of stochastic groundwater flow by infinite series, and convergence of the one-dimensional expansion[END_REF][START_REF] Abramovich | Effective permittivity of log-normal isotropic random media[END_REF][START_REF] Noetinger | Use of the Fourier-Laplace transform and of diagrammatical methods to interpret pumping tests in heterogeneous reservoirs[END_REF][START_REF] Noetinger | Computing the effective permeability of log-normal permeability fields using renormalization methods[END_REF][START_REF] Liao | Analytical solution for upscaling hydraulic conductivity in anisotropic heterogeneous formations[END_REF] were developed over many decades. All these methods provide a rigorous analytical framework supporting the existence and uniqueness of K ef f , for a wide variety of media types.

Analytical efforts took place mainly using perturbation theory [START_REF] Gelhar | Stochastic subsurface hydrology[END_REF][START_REF] Dagan | Flow and transport in porous formations[END_REF]. The so called Landau-Lifschitz-Matheron (LLM) [START_REF] Landau | Electrodynamics of continuous media[END_REF]Lifshitz, 1960, Matheron, 1967) formula reads:

K ef f ≃ ⟨k (1-2 D ) ⟩ 1 (1-2 D ) , (1) 
In the case of a lognormal distribution of fine scale conductivity, this formula can be written under the equivalent form [START_REF] King | The use of renormalization for calculating effective permeability[END_REF][START_REF] Noetinger | The effective permeability of a heterogeneous porous medium[END_REF]:

⟨K ef f ⟩ = exp ⟨log(k)⟩e ( 1 2 -1 D )C log k (r=0) = K g e ( 1 2 -1 D )C log k (r=0) .
The notation ⟨⋯⟩ indicates ensemble arithmetic averaging over all the possible realizations of the fine scale structure. K g denotes the geometric mean of the fine grid conductivity, and C log k (r = 0) the variance of its logarithm. In this work, wherever the expressions log(k) or log(K ef f ) are shown, it is implied that the argument of the logarithm is divided by 1 m/day, to make it dimensionless.

In most cases, an ergodicity assumption allows to replace the ensemble average by a spatial average [START_REF] Ababou | Random porous media flow on large 3-D grids: numerics, performance, and application to homogenization[END_REF][START_REF] Sanchez-Vila | Representative hydraulic conductivities in saturated groundwater flow[END_REF], such that for finite block of size L, one estimates K ef f as:

K ef f block ≃ 1 V block k(r) (1-2 D ) d D r 1 (1-2 D ) (2) 
This formula, with dimension D = 1, 2, 3 whose evaluation is straightforward, is exact in 1D for any type of media, yielding the harmonic average. In 2D, it corresponds to the geometric average that was found to be exact in 2D for lognormal media by [START_REF] Matheron | Eléments pour une théorie des milieux poreux[END_REF], who derived it using an elegant duality argument specific to 2 dimensions. In 3D, the formula is exact up to second order [START_REF] Dagan | Higher-order correction of effective permeability of heterogeneous isotropic formations of lognormal conductivity distribution[END_REF] with respect to log-conductivity variance (using a series expansion of K ef f up to 4th order in powers of the log conductivity fluctuations). But in 3D, the proposed formula was shown to be inexact at third order by several authors [START_REF] Indelman | A higher-order approximation to effective conductivity in media of anisotropic random structure[END_REF][START_REF] De Wit | Correlation structure dependence of the effective permeability of heterogeneous porous media[END_REF][START_REF] Stepanyants | Effective hydraulic conductivity of a randomly heterogeneous porous medium[END_REF]. Moreover, higher order results were shown to be structure dependent: this prevents the existence of a local evaluation expression like Eq. (1) in 3D. However, numerical tests carried out show that LLM formula is quite robust in 3D even for large log-conductivity variances [START_REF] Dagan | Flow and transport in porous formations[END_REF][START_REF] Romeu | Calculation of internodal transmissivities in finite difference models of flow in heterogeneous porous media[END_REF][START_REF] Renard | Calculating equivalent permeability: a review[END_REF]. Some generalization of such approaches for anisotropic cases were revisited recently by [START_REF] Liao | Analytical solution for upscaling hydraulic conductivity in anisotropic heterogeneous formations[END_REF].

From a more geological point of view, a frequent organization of the subsurface heterogeneous formations in a number of hydrofacies, that correspond to different types of rock, or sediments, having a well defined hydraulic property, such as porosity or permeability, may be observed in natural systems (Journel et al., 1986, Beucher and[START_REF] Beucher | Truncated gaussian and derived methods[END_REF]. Each facies possesses its own characteristic features. That promoted the study of the effective conductivity of composite media. Binary or bimodal media are the simplest cases, while still retaining the complexity of percolative systems. These types of media have been extensively studied using self-consistent effective medium approaches in the electrodynamical or elasticity contexts [START_REF] Maxwell | A treatise on electricity and magnetism[END_REF][START_REF] Bruggeman | Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. i. dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen[END_REF][START_REF] Landau | Electrodynamics of continuous media[END_REF][START_REF] Auriault | Effective macroscopic description for heat conduction in periodic composites[END_REF][START_REF] Pozdniakov | A self-consistent approach for calculating the effective hydraulic conductivity of a binary, heterogeneous medium[END_REF].

Analytical results, based on a mixing of characteristic conductivity values and bounds (Hashin andShtrikman, 1962, 1963), exist for this type of media [START_REF] Bernabé | Permeability and storativity of binary mixtures of high-and low-permeability materials[END_REF]; in them, connectivity is implicitly taken into account.

Other authors [START_REF] Pozdniakov | A self-consistent approach for calculating the effective hydraulic conductivity of a binary, heterogeneous medium[END_REF][START_REF] Knudby | On the relationship between indicators of geostatistical, flow and transport connectivity[END_REF][START_REF] Guin | Studying the effect of correlation and finitedomain size on spatial continuity of permeable sediments[END_REF][START_REF] Bernabé | Pore space connectivity and the transport properties of rocks[END_REF] studied numerically the influence of the contrast between the high and low conductivity components k + and k -. The abrupt change in K ef f that takes place close to the percolation tran-sition, when the k + component becomes connected, poses difficulties during the upscaling procedure [START_REF] Boschan | Scale dependence of effective hydraulic conductivity distributions in 3D heterogeneous media: a numerical study[END_REF].

Indeed, percolation theory scaling [START_REF] Berkowitz | Percolation theory and its application to groundwater hydrology[END_REF][START_REF] Stauffer | Introduction to percolation theory: revised second edition[END_REF][START_REF] Hunt | Percolation theory for flow in porous media[END_REF][START_REF] Hunt | Transport and reaction in porous media: Percolation scaling, critical-path analysis, and effective-medium approximation[END_REF] has been used to assess K ef f in this type of media, but some restrictions exist:

This scaling is only valid for media in which the proportion of high conductivity medium is close to the percolation transition, Percolation transition is smeared-out by finite size effects and finite conductivity contrast values.

K ef f probability distributions

Due to the fact that subsurface uncertainty is frequently dealt with by using a stochastic approach, it is appropriate to treat K ef f as a random variable characterized by a probability distribution more than by a deterministic value.

Although the literature mainly focuses on the firsts moments of the probability density function (pdf), such as the mean and variance [START_REF] Rubin | A stochastic approach to the problem of upscaling of conductivity in disordered media: Theory and unconditional numerical simulations[END_REF][START_REF] Sánchez-Vila | A synthesis of approaches to upscaling of hydraulic conductivities[END_REF][START_REF] Sanchez-Vila | Representative hydraulic conductivities in saturated groundwater flow[END_REF], the shape of the pdf provides unique insight on the underlying flow situation. For example, in media samples near percolation, a bimodal pdf may yield a mean K ef f value that truly has a negligible occurrence probability: this situation may easily arise when dealing with fractured media or, in general, with media possessing a high degree of heterogeneity. The pdf of K ef f depends on the coarsening scale λ, and will be noted P (K ef f , λ).

For clarity, P (K ef f , λ) undergoes a transition from P (k(r), ∆) to P (K ef f , L) as λ goes from ∆ to L. For λ = ∆, the distribution of k(r) is recovered, while for λ ≃ L, P (K ef f , λ) will tend toward a delta-like distribution sharply peaked around a stable K ef f value (see Fig. 2 ). If it is possible to define a characteristic lengthscale (for example an integral scale I) for the media under consideration, a crossover is expected when λ approaches it. More conceptually, a representative elementary volume (REV) may be determined by inspecting significant changes of the shape of P (K ef f , λ). The fact that the statistical sampling becomes poorer as λ increases, can be compensated, in the framework of the stochastic theory, and assuming ergodicity, by an increase in the number of ensemble realizations.

The behavior of P (K ef f , λ) was addressed in several studies [START_REF] King | The use of renormalization for calculating effective permeability[END_REF][START_REF] Sanchez-Vila | Representative hydraulic conductivities in saturated groundwater flow[END_REF][START_REF] Wen | Upscaling hydraulic conductivities in heterogeneous media: An overview[END_REF][START_REF] Wu | Statistical behaviors for renormalization of correlated permeability field[END_REF]. In [START_REF] Boschan | Scale dependence of effective hydraulic conductivity distributions in 3D heterogeneous media: a numerical study[END_REF], the convergence of P (K ef f , λ) was studied in 3D for lognormal and binary media. In the lognormal case, P (K ef f , λ) kept its lognormal nature as λ increased. If this result hold in 2D (this will be analyzed in the present work), it might stem from the work of [START_REF] Matheron | Eléments pour une théorie des milieux poreux[END_REF]. In the binary case, it was shown that the convergence to a stable K ef f is slower when the k + component is close to the percolation transition [START_REF] Stauffer | Introduction to percolation theory: revised second edition[END_REF]. Finally, under the ergodic hypothesis, several studies assessed the use of filtering techniques to derive P (K ef f , λ) at all scales. (King, 1989, Noetinger and [START_REF] Noetinger | Use of the Fourier-Laplace transform and of diagrammatical methods to interpret pumping tests in heterogeneous reservoirs[END_REF][START_REF] Noetinger | Computing the effective permeability of log-normal permeability fields using renormalization methods[END_REF][START_REF] Noetinger | Multiscale description and upscaling of fluid flow in subsurface reservoirs[END_REF][START_REF] Attinger | Generalized coarse graining procedures for flow in porous media[END_REF][START_REF] Eberhard | Coarse graining for upscaling of flow in heterogeneous porous media[END_REF].

Upscaling formulations and numerical implementations

The fact that analytical results are limited to some academic cases, and strictly valid only up to second order in 3D, imposes the use of numerical techniques to obtain K ef f as well as its distribution by means of Monte Carlo simulations. Several numerical techniques were developed using different approaches and provide accurate solutions [START_REF] Desbarats | Geostatistical characterization of groundwater flow parameters in a simulated aquifer[END_REF][START_REF] Durlofsky | Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media[END_REF][START_REF] Desbarats | Spatial averaging of hydraulic conductivity in threedimensional heterogeneous porous media[END_REF][START_REF] Quintard | Transport in chemically and mechanically heterogeneous porous media III. large-scale mechanical equilibrium and the regional form of darcy's law[END_REF][START_REF] Wang | Finite analytic numerical method for three-dimensional fluid flow in heterogeneous porous media[END_REF][START_REF] Zheng | Calculating the internodal transmissibilities using finite analytic method and its application for multi-phase flow in heterogeneous porous media[END_REF][START_REF] Wang | Finite analytic method for 2d steady fluid flows in heterogeneous porous media with unstructured grids[END_REF]. The numerical implementations calculate a value K ef f in ϑ from the fine conductivity field k(r), and from the boundary conditions at ∂ϑ, in what constitutes a numerical solution of the closure problem posed by the associated Laplace equation. Moreover, some of them use border regions, including information of the outer neighbourhood of ∂ϑ [START_REF] Wen | Use of border regions for improved permeability upscaling[END_REF]. Two aspects of the solution of the closure problem by numerical simulations stand out:

1. The task of finding the optimal scale λ in each flow scenario makes upscaling a multiscale problem par excellence. 2. The choice of the formulation, in particular that of the boundary conditions, strongly affects accuracy and numerical efficiency. For example, imposing boundary conditions at ∂ϑ decouples the flow in ϑ from its outer region, in a rather invasive procedure, in view of item 1). In that sense, solving the flow in Ω once, and then employing this solution to estimate P (K ef f , λ), i.e., seems less invasive and more efficient, but requires the ability to solve larger systems of equations.

From the existing upscaling formulations, the most widely used is the permeameter (Darcian) one, which, as a particularity, isolates the flow in ϑ, suffering from the drawback explained above. This formulation, and its implementation, will be formally introduced in Section 2.2. Another frequent formulation, [START_REF] Rubin | A stochastic approach to the problem of upscaling of conductivity in disordered media: Theory and unconditional numerical simulations[END_REF]) and [START_REF] Sánchez-Vila | A synthesis of approaches to upscaling of hydraulic conductivities[END_REF], uses the solution of potential and the associated flow in Ω, evaluating their averages over ∂ϑ to obtain K ef f . In order to obtain a scalar K ef f , some assumption is required.

Finally, Indelman and Dagan (1993a,b), [START_REF] Bøe | Analysis of an upscaling method based on conservation of dissipation[END_REF] proposed that K ef f could be defined by assuming that the dissipated energy is conserved during the upscaling procedure. This might be the strongest conceptual definition ever formulated, however, its implementation to obtain K ef f is mathematically difficult.

Aiming to reduce the computational cost, a number of approaches that combine different formulations were proposed [START_REF] Chen | A coupled localglobal upscaling approach for simulating flow in highly heterogeneous formations[END_REF][START_REF] Bauer | Computation of the equivalent macroscopic permeability tensor of discrete networks with heterogeneous segment length[END_REF][START_REF] Wu | Statistical behaviors for renormalization of correlated permeability field[END_REF][START_REF] Karimi-Fard | A general gridding, discretization, and coarsening methodology for modeling flow in porous formations with discrete geological features[END_REF], with the support of ergodicity considerations [START_REF] Ababou | Numerical simulation of three-dimensional saturated flow in randomly heterogeneous porous media[END_REF][START_REF] Ababou | Solution of stochastic groundwater flow by infinite series, and convergence of the one-dimensional expansion[END_REF][START_REF] Ababou | Random porous media flow on large 3-D grids: numerics, performance, and application to homogenization[END_REF][START_REF] Desbarats | Geostatistical characterization of groundwater flow parameters in a simulated aquifer[END_REF].

Objectives

In this paper, we intend to explore analytically and numerically the multiscale nature of the upscaling procedure in the context of the different formulations in 2D. On the one hand, after reviewing the existing body of literature, we update the formulae introduced in previous studies to characterize the mean and variance of K ef f , valid at the scale Ω at which the boundary conditions are imposed. We derive, in the context of the energy dissipation formulation, a new expression for the variance, this time, valid at any subscale ϑ ⊂ Ω, up to second order in perturbation theory. On the other hand, using that formulation, we define and implement a new numerical estimator of K ef f based on a scalar energy dissipation average. This estimator can be obtained at any subscale λ with nearly negligible additional CPU time once the potential in Ω is solved. Aiming to provide a comprehensive view, the pdf, the mean and the variance of this estimator are compared with those of the potential-flow average estimator, and of the permeameter Darcian one, over a wide range of coarsening scales. This study is performed over lognormal media samples with a wide range of fine grid variances, and over binary media samples spanning the percolation transition.

The paper is organized as follows: we start by presenting the overall geometry and notation, considering a steady-state Darcian flow in an heterogeneous porous medium, and perform some algebraic manipulation to express K ef f in terms of the viscous dissipation. We introduce then (Section 3.1) a useful variational derivation, that allows us to define K ef f in terms of a minimization of that dissipation. By using functional expansion techniques already developed in a previous study [START_REF] Noetinger | An explicit formula for computing the sensitivity of the effective conductivity of heterogeneous composite materials to local inclusion transport properties and geometry[END_REF], we provide expressions for the variance of K ef f in Ω up to second order in the perturbation expansion (valid for small variances), later improving it, for higher variances, by using a mean-field approximation. After some more manipulation, we get in position to show how these results are valid at any subscale (i.e., the coarsening scale λ), even if the variational formulation cannot be applied at any scale smaller than Ω (the scale in which the boundary conditions are imposed). The result depends also on the covariance of k(r), and on λ, while it is possible to apply again the mean-field technique, now at this scale, to improve it. Section 6 introduces the numerical methodology with the implementation of the three formulations, while Section 7, presents firstly a numerical validation, and then, the results regarding the multiscale dependence of K ef f under the different formulations.

Geometry, driving equations and notations

Geometry and local equations

We focus our attention on a block Ω to be up scaled in D dimensions, a square in 2D or a cube in 3D. The edges of that domain are of size L in the D directions, as sketched in Fig. 1. The potential is driven by the following Laplace equation, to be solved in the domain Ω:

∇ ⋅ (k(r)∇p(r)) = 0, (3) 
The local potential is denoted by p(r). This equation is a combination of mass or charge conservation with a phenomenological equation relating the local flux to the local potential gradient, such as Joule, Darcy or Fourier's law that may arise after a proper averaging of the sub-scale transport processes [START_REF] Hassanizadeh | General conservation equations for multiphase systems: 1. averaging procedure[END_REF]. In order to get a well defined problem, Dirichlet or Dirichlet-Neumann conditions must be specified at the frontier ∂Ω of the domain. These conditions will be discussed in the next section. The local conductivity, denoted by k(r) is assumed to be scalar and to depend on position r. The conductivity field can be discontinuous with respect to r.

Classical Darcian definition of the effective conductivity

Here, we defer the discussion of the up scaling problem to references in Matheron (1967), [START_REF] Durlofsky | Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media[END_REF], [START_REF] Neuman | Prediction of steady state flow in nonuniform geologic media by conditional moments: Exact nonlocal formalism, effective conductivities, and weak approximation[END_REF], [START_REF] Renard | Calculating equivalent permeability: a review[END_REF], [START_REF] Quintard | Transport in chemically and mechanically heterogeneous porous media III. large-scale mechanical equilibrium and the regional form of darcy's law[END_REF], [START_REF] Willot | Elastic behavior of composites containing boolean random sets of inhomogeneities[END_REF], [START_REF] Jikov | Homogenization of differential operators and integral functionals[END_REF]. The effective conductivity can be defined using the solution of the Laplace Eq. (3), to be solved with Dirichlet boundary conditions at the inlet/outlet, denoted by P in and P out . Neumann no-flux boundaries are imposed on the faces of the domain parallel to the average imposed flow, which will be the x direction in the rest of the paper. This definition of K ef f is the so-called permeameter definition that will be sometimes denoted by K perm . This corresponds physically to the basic conductivity measurement that could be performed at the laboratory, both in the Darcy or electrical context. Other boundary conditions, such as periodic [START_REF] Auriault | Effective macroscopic description for heat conduction in periodic composites[END_REF][START_REF] Durlofsky | Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media[END_REF][START_REF] Quintard | Transport in chemically and mechanically heterogeneous porous media III. large-scale mechanical equilibrium and the regional form of darcy's law[END_REF][START_REF] Noetinger | An explicit formula for computing the sensitivity of the effective conductivity of heterogeneous composite materials to local inclusion transport properties and geometry[END_REF]) can be chosen, but that does not change drastically the analysis, so permeameter conditions will be kept throughout the paper.

By identification with the homogeneous case, effective hydraulic conductivity is given by:

K ef f = Q L D-2 (P in -P out ) . (4) 
Here, Q denotes the total fluid flux flowing in any section of the domain perpendicular to the mean flow x direction:

Q = Inlet f ace d D-1 r k(r)∇p(r) ⋅ n. (5) 
Here, p(r) is the unique solution of the boundary value Laplace Eq. ( 3) with the permeameter forcing boundary conditions.

Effective conductivity and viscous dissipation

For our purpose, it is useful to introduce an equivalent algebraic expression of K ef f that was introduced in the porous media context by [START_REF] Jacquard | Permeability distribution from field pressure data[END_REF], [START_REF] Matheron | Eléments pour une théorie des milieux poreux[END_REF], and revisited later by [START_REF] Wen | Upscaling hydraulic conductivities in heterogeneous media: An overview[END_REF], [START_REF] Sánchez-Vila | A synthesis of approaches to upscaling of hydraulic conductivities[END_REF]:

Q (P in -P out ) = ∂Ω d D-1 r p(r)k(r)∇p(r) ⋅ n = Ω d D r k(r) ∇p(r) ⋅ ∇p(r). (6) 
In order to begin with, the first equality of Eq. ( 6) is obtained by expressing Q in terms of integrals over the inlet and outlet faces of the domain as in Eq. ( 5). In the outlet, according to the convention defining positive flow opposite to the face inward normal, the expression have the opposite sign. Then, both face pressures are moved under the integral signs obtaining similar expressions. Regarding the Neumann boundary conditions on lateral faces, imposing no pressure gradient, both integrals can be combined in only one over the whole domain boundary ∂Ω. Using the divergence theorem combined with Laplace Eq. ( 3) yields the second equality. This equation has a simple physical interpretation: The RHS corresponds to the total viscous dissipated power, that must coincide with the power spent by external forcing sources set-up to create the flow. So, the effective conductivity may be expressed as,

K ef f = 1 (P in -P out ) 2 L D-2 Ω d D r k(r) (∇p(r)) 2 = 1 ∇p 2 Ω,x L D Ω d D r k(r) (∇p(r)) 2 , (7) 
where ∇p Ω,x = -(P in -P out ) L is the volume averaged gradient in the x direction (which is the mean flow direction). The average potential gradient ∇p Ω over the block volume Ω = L D is given by:

∇p Ω = 1 Ω Ω d D r ∇p(r) = 1 Ω ∂Ω d (D-1) r p(r) n. (8) 
In the case of a square or cubic Ω, the retained boundary conditions for potential p give the proposed equality in the x direction. Eq. ( 7) relates the effective conductivity of the whole block K ef f to the overall viscous dissipation and the mean forcing potential gradient norm in the imposed flow direction. It will be the starting point to define a dissipation-based effective conductivity estimator in Section 5.1.

3.1.

A variational characterization of K ef f .
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We are now in position to propose an alternative formulation that proves to be useful for estimating the sensitivity of large scale parameters to variations of local conductivity. This variational characterization of K ef f may be formulated as follows:

K ef f (P in -P out ) 2 L D-2 = Q (P in -P out ) K ef f ∇p 2 Ω,x L D = M in p(r) Θ {p(r)} = Ω d D r k(r) (∇p(r)) 2 . (9)
Here, the potential fields p(r) among which the minimization is to be performed fulfill the boundary conditions at ∂Ω. The justification of Eq. ( 9) is classical: one has to express the extremal conditions:

∀r, δ {Θ {p(r)}} δp(r) = ∇ ⋅ (k(r) ∇p(r)) = 0. The operator δ {Θ {p(r)}} δp(r) is a functional derivative of the functional Θ {p(r)}
with respect to p(r). A basic presentation of functional differentiation is given in Appendix A.

Using thus the particular quadratic form of Θ {p(r)}, these extremal conditions give rise to Laplace Eq. ( 3) that governs the potential. The final result 280 may be derived using the same methods than Eq. (6).

Functional expansion techniques for the effective conductivity

Functional techniques combined with the variational formulation are useful to derive directly second order perturbation expansion of the effective conductivity and of its associated variance. The starting point is to evaluate the sensitivity of effective conductivity with respect to local perturbations of the local conductivity, as it was derived in [START_REF] Noetinger | An explicit formula for computing the sensitivity of the effective conductivity of heterogeneous composite materials to local inclusion transport properties and geometry[END_REF] and Appendix A. The starting point is to decompose the local hydraulic conductivity as:

k(r) = ⟨k⟩ + δk(r).
The brackets ⟨. . . ⟩ correspond to ensemble averaging over the conductivity realizations, to be not confused with volume averaging denoted by ⋯. So ⟨δk(r)⟩ = 0. One can use the formal equivalent of Taylor series formula, up to second order, also valid for functionals:

K ef f = ⟨k⟩ + Ω d D r δK ef f δk(r) δk(r)+ + 1 2 Ω d D r Ω d D r ′ δ 2 K ef f δk(r) δk(r ′ ) δk(r) δk(r ′ ) + ... (10) 
The reader must note that in these equations, the functional derivative must be evaluated while the nominal value of the conductivity map is a uniform value k(r) = ⟨k⟩ (in usual function Taylor's expansions, this corresponds to the point at which the derivative is evaluated). Averaging Eq. ( 10) yields a secondorder expansion that coincides with LLM conjecture up to this limited order. A concise derivation using functional derivatives is given in Appendix B.

4. Estimation of the variance of the effective conductivity at second order.

In this section, we present expressions of the variance of the effective conductivity that are obtained in the context of second order perturbation theory. The derivations are given in Appendix C. Finally, closed expressions are given for the cases when those expressions are particularized for Gaussian covariance functions.

For the variance of the effective conductivity given by

C K ef f (L) = ⟨K 2 ef f ⟩ -⟨K ef f ⟩ 2 = ⟨(K ef f -⟨K ef f ⟩) 2 ⟩
the following expression can be obtained, Eq. (C.4):

C K ef f (L) = 1 Ω 2 Ω d D r d D r ′ C k (r -r ′ ). (11) 
A mean-field approximation allows to replace each occurrence of K ef f and k by the corresponding logarithm, Eq. (C.7), providing the following expression that can be expected to have a more extended domain of validity for practical applications:

C log K ef f (L) = 1 Ω 2 Ω d D rd D r ′ C log k (r -r ′ ). ( 12 
)
The resulting formula is similar to Eq. ( 11), replacing the covariance function by the log conductivity covariance function. For the special case of lognormal media, this is a quite natural transformation. The same can be done with the simplified formula (C.5).

In the case of the Gaussian covariance with

C k (r) = C k (r = 0) e -r 2 2I 2
c where I c is the correlation length, explicit analytical expressions can be derived for

C K ef f (L) from Eq. (11) (see Appendix C.2 Eq. (C.8)) C K ef f (L) = C k (r = 0) I c L 2D √ 2π L I c erf √ 2 L I c + 2e -L 2 2I 2 c -2 D . ( 13 
)
Likewise, using the simplified Eq. (C.5), one gets after integration (Eq. (C.9)):

C K ef f (L) ≃ C k (r = 0) √ 2π I c L erf 2 √ 2 L I c D . ( 14 
)
The same calculations can be carried out for C log K ef f (L) applying the logarithmic transformation and give analogous results using C log k (r = 0) and the same spatial dependence.

A posteriori multiscale estimators of K ef f distributions

In this section, two estimators providing intermediate scale effective conductivity distributions are presented. Both are computed using low-cost post processing of one up scaling closure problem at the largest available scale. These distributions will be compared to reference distributions determined by computing numerically permeameter effective conductivity of every coarse block at any scale. The resulting pdf's will be compared, as well as the associated log conductivity mean and variance. For completeness, the latter will be compared with preceding analytical results.

Dissipation estimator

Definition of the estimator

We consider now that the up-scaling Laplace problem was solved on a single conductivity realization on the entire block Ω. The subscale effective conductivity K diss (ϑ) on any given cubic (or square) sub-block of size λ included in the overall domain Ω can thus be defined as the relation between the dissipation and the average potential gradient at the block level by:

K diss (ϑ) = ∫ ϑ d D r k (∇p) 2 λ D ∇p 2 ϑ . (15) 
It can be observed, using Eq. ( 7), that if

ϑ = Ω, K diss (ϑ) = K ef f × ∇px 2 ∇p 2 ≤ K ef f .
In the case of statistically isotropic k(r), if Ω is sufficiently large, the average potential gradient ∇p y perpendicular to the mean flow vanishes, so the effective conductivity determined by dissipation is equal to the usual definition:

K diss (ϑ → Ω) ≃ K ef f .
Considering the opposite limit, ϑ → 0, it can be shown, using a Taylor expansion of the potential gradient under the integral sign, that K diss (ϑ) = k(r) if and only if ∇p 2 ≃ (∇p) 2 ≠ 0. This last condition corresponds to stagnation (no-flow) points. This condition is not surprising, as it can correspond to both infinite conductivity regions or to screened regions of vanishing hydraulic conductivity. In both cases, effective conductivity is not defined. Assuming that the set of these points is of vanishing measure, in most cases the original detailed conductivity map must be recovered. This criterion was already introduced and discussed by [START_REF] Sánchez-Vila | A synthesis of approaches to upscaling of hydraulic conductivities[END_REF] and [START_REF] Bauer | Computation of the equivalent macroscopic permeability tensor of discrete networks with heterogeneous segment length[END_REF]. The proposed indicator fulfills two intuitive conditions for both extreme ϑ sizes. In Appendix D it is shown that the average of the dissipation estimator is in agreement with that derived for K ef f for volumes ϑ tending to Ω, and the structure of the finite size corrections is given too. In next Section 5.1.2, it is shown up to second order that the variance of K diss (ϑ) coincides with expression (11) by replacing Ω by ϑ as integration domain. This implies that the evaluation of the variance C log K diss (λ) is obtained by replacing L by the length of the considered subscale block, λ, in Eq. 12.

The block equivalent conductivity K diss (ϑ) is given by Eq. ( 15), and its variance may be evaluated following the same steps that in Appendix C. It is defined by

⟨K diss (ϑ) 2 ⟩ -⟨K diss (ϑ)⟩ 2 = ⟨(K diss (ϑ) -⟨K diss (ϑ)⟩) 2
⟩. So, one gets finally:

⟨K diss (ϑ) 2 ⟩ -⟨K diss (ϑ)⟩ 2 = Ω d D r d D r ′ δK diss (ϑ) δk(r) δK diss (ϑ) δk(r ′ ) ⟨δk(r)δk(r ′ )⟩ + ...
Note that at present stage, the integration volume remains the whole volume Ω, it is not restricted to ϑ because K ef f (ϑ) depends on the entire conductivity map that is defined on the support Ω in which the Laplace equation is solved at the beginning. We have to evaluate the functional derivative δK diss (ϑ) δk(r) . The evaluation cannot be simplified because the variational principle that characterizes K ef f as defined in Ω is not relevant at any smaller scale. The derivative is given by:

δK diss (ϑ) δk(r) = (∇p 0 (r)) 2 λ D ∇p 0 2 1 ϑ (r) + 2 λ D ∇p 0 2 2 1 λ D ∇p 0 2 ϑ d D r ′ k ∇p 0 (r ′ ) ⋅ δ∇p(r ′ ) δk(r) - - 1 λ D ϑ d D r ′ k ∇p 0 (r ′ ) 2 ϑ d D r ′′ ∇p 0 (r ′′ ) ⋅ δ∇p(r ′′ ) δk(r) .
In that equation, the first term involving the indicator function of ϑ denoted by 1 ϑ (r) is the remaining of the result that would be provided using the variational approach, as shown in Appendix C, equation C.1. The first integral arises from the derivative of ∇p 2 under the integral sign, the second corresponds to the functional derivative of 1 ∇p 2 . Both terms are equal to 0 if ϑ = Ω. At lowest order, the spatial dependence of the conductivity k must be discarded. It appears that the second line involving twice integration vanishes because ∇p 0 (r ′ ) = e x is constant up to this order, so both terms cancel each other. So we obtain the same result that would be provided by the variational approach if it was applicable for block dissipation:

δK diss (ϑ) δk(r) = (∇p 0 )(r) 2 λ D ∇p 2 1 ϑ (r).
Gathering all the preceding results, we obtain the following formula for the variance of the dissipation estimator at scale ϑ:

⟨(K diss (ϑ) 2 -⟨K diss (ϑ)⟩ 2 ⟩ = 1 ϑ 2 ϑ d D rd D r ′ C k (r -r ′ ). (16) 
Up to second order, this formula is analogous to the variance in Eq. (C.3) of the full up scaled hydraulic conductivity K ef f . The corresponding formulation using logarithms is similar at this order. This result allows to extend the validity of Eqs. ( 11) and ( 12) to subscale blocks ϑ.

Block average conductivity estimator

Another K ef f estimator on subvolume ϑ can be introduced, defined as

K ave (ϑ) = Q x λ D-1 ∇P x .
This expression is based on Darcy equation where Q is the flow rate and ∇P the potential gradient, both volume-averaged over domain ϑ of size λ. This estimator was studied by [START_REF] Rubin | A stochastic approach to the problem of upscaling of conductivity in disordered media: Theory and unconditional numerical simulations[END_REF], [START_REF] Sánchez-Vila | A synthesis of approaches to upscaling of hydraulic conductivities[END_REF], [START_REF] Renard | Calculating equivalent permeability: a review[END_REF], [START_REF] Bauer | Computation of the equivalent macroscopic permeability tensor of discrete networks with heterogeneous segment length[END_REF]. In particular, using a second order expansion, Rubin and Gómez-Hernández (1990) computed the average and variance of log(K ave (ϑ)) as a function of ϑ and the input covariance function of the conductivity that correspond to the observed statistical parameters observed at scale L. They give the following expressions:

⟨log K ave (ϑ)⟩ = log K g + ( 1 2 - 1 D ) (1 -α) C log k (r = 0) ⟨(log K ave (ϑ) -⟨log K ave (ϑ)⟩) 2 ⟩ = α C log k (r = 0)
The normalized variance correction factor α given by

α = 1 ϑ 2 ϑ d D r d D r ′ C log k (r -r ′ ) C log k (r = 0) ,
depends only on the geometrical form of the covariance function and on the averaging volume ϑ size λ. It can be observed that it shares the same form than the scale-dependant variance (11) derived before. It can be noticed that using directly LLM formula for estimating K ef f for large size λ using these parameters, Eq. (1) under its second form is recovered as terms involving α terms cancel. This highlights some internal consistency of this estimator.

In practice, once the potential is solved, the evaluation of K diss (ϑ) and K ave (ϑ) is straightforward and of negligible extra computational cost. For a given size λ, one obtains a set of ( L λ ) D , D = 2, 3 values of K diss (ϑ) and K ave (ϑ)

that can be studied using statistical tools. This will be the main topic of next sections.

Numerical methodology

Generation of media samples

We first compare the formulations over random lognormal media samples with low and high variance, and then, over binary media samples that have a high contrast of characteristic conductivities. We employed a fast Fourier transform (FFT) moving average (FFT-MA) method [START_REF] Le Ravalec | The FFT moving average (FFT-MA) generator: An efficient numerical method for generating and conditioning gaussian simulations[END_REF] to generate these samples. Lognormal hydraulic conductivity fields with unitary geometric mean K g were generated. Gaussian covariance, with an integral scale I = 16∆ defined as the practical range of the covariance function (I = √ 3I c ), was used to spatially correlate the samples. Fig. 3 (left) shows, as an example, a realization of a lognormal medium obtained with this procedure. All media samples generated have 1024 × 1024 cells, with a linear size of 1024∆. In order to reduce the numerical truncation error when computing the potential field, a refining stage of degree 4 was performed [START_REF] Romeu | Calculation of internodal transmissivities in finite difference models of flow in heterogeneous porous media[END_REF]Noetinger, 1995, Liu andWang, 2013), resulting in a grid of 4096 × 4096 computational cells of linear size ∆ 4. Binary random media is generated as follows: We start by generating a lognormal one with an arbitrary geometric mean K g and variance σ 2 log k . Then, this lognormal distribution is binarized using a threshold value k t , assigning each cell a characteristic k + (high conductivity) or k -(low conductivity) value (with k + k -= 10 4 ). The value of k t controls the relative population p of high conductivity cells. Three values of p were studied, one at the 2D percolation threshold p c = 0.5, one smaller (p = 0.4) and one greater (p = 0.6) than p c . At p c , 50% of the realizations percolate. We used CONNECT3D software [START_REF] Pardo-Igúzquiza | CONNEC3D: a computer program for connectivity analysis of 3D random set models[END_REF] to explicitely verify the percolation condition.

The spatial correlation function of the resulting binary medium remains gaussian. In turn, the integral scale of the binary medium is determined by the integral scale of the original lognormal medium, but also by p. To be able to use the former as an input parameter, we've performed an iterative search for each of the values of p studied. Fig. 3 (right) shows, as an example, a realization of such a binary medium.

For each set of parameters, we generated 50 samples in order to obtain an acceptable statistical sampling at largest scale L.

Potential field calculation

For the K ave and K diss formulations, it is only required to solve the potential in Ω once, and then post-processing of the obtained field is performed to obtain K ef f at any scale λ. For the K perm formulation, the potential must be solved independently for all the sub-domains ϑ under study.

To obtain the potential field we used MODFLOW-20051 software [START_REF] Harbaugh | MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process[END_REF] with the corresponding boundary conditions. This solver uses the finite difference method with a classical 2D + 1 point stencil. Particularly, the Block-Centered Flow package (BCF6) was used, and the linear equation system was solved with the Preconditioned Conjugate-Gradient package (PCG). 400

Implementation of the permeameter scheme

We used classical permeameter boundary conditions in the computation of the potential fields. In MODFLOW, these boundary conditions are applied assigning constant potentials (Dirichlet type) to two opposite cell layers, each of them representing a domain face. A unitary potential difference (∆P ) between them is set. All other faces are constrained by no-flow boundary conditions (Neumann type) applied to ghost cell layers outside the domain. These boundary conditions are applied at ∂ϑ to compute K perm defined as

K perm = Q λ ∆P , (17) 
The integral of the flow, Q, is calculated at the inlet or the outlet face of the block ϑ with permeameter boundary conditions. For each medium, K perm was computed for the whole set of subscales λ = 2 n , with integer n between 1 and 10, resulting in ( L λ ) 2 = 2 2(10-n) values at each subscale. The same procedure 405 was followed for the other two estimators.

Implementation of the dissipation scheme

Based on the resulting potential field computed using MODFLOW with permeameter boundary conditions (Sections 6.2 and 6.3) on domain Ω, and the theoretical development presented in Section 5.1, the dissipation-based block estimator computation is as follows. As the finite difference scheme adopted in MODFLOW is cell centered, after solving the potential field in Ω, both the hydraulic conductivity k i,j and potential P i,j at each cell center are known. Notations are referred to cell (i, j) of ϑ, where (i -1, j), (i + 1, j), (i, j -1) and (i, j + 1) are the left, right, top and bottom neighbouring cells respectively. Using an electrical analogy, the local cell dissipation can be computed as

i,j = ϑi,j d 2 r k i,j (∇p) 2 = 2k i,j (P i+ 1 2 ,j -P i,j ) 2 + (P i-1 2 ,j -P i,j ) 2 + (P i,j+ 1 2 -P i,j ) 2 + (P i,j-1 2 -P i,j ) 2 (18) 
The factor 2k i,j corresponds to the conductivity of the half bond between the center and any face of ϑ i,j . The potential subscript with minus or plus halves refer to cell face potentials computed invoking the equality of flux at both sides of the face. For example the potential on the left face of cell (i, j) is given by:

P i-1 2 ,j = (k i,j P i,j + k i-1,j P i-1,j ) (k i,j + k i-1,j )
.

The other cell face potentials are defined analogously. Using equivalent equations to eliminate face potentials in Eq. ( 18), we get:

i,j = 1 2k i,j
T i+ 1 2 ,j (P i+1,j -P i,j )

2 + T i-1 2 ,j (P i-1,j -P i,j ) 2 + + T i,j+ 1 2 (P i,j+1 -P i,j ) 2 + T i,j-1 2 (P i,j-1 -P i,j ) 2 .
The coefficients T .,. are the usual intercell harmonic averages given by T i+ 1 2 ,j = 2ki+1,j ki,j ki+1,j +ki,j and T i,j+ 1 2 = 2ki,j+1 ki,j ki,j+1+ki,j . Ohm's law for dissipation can be recognized through the squares of the fluxes flowing through the faces. The cell face potentials are also used to compute the cell potential gradient as

∇P T i,j = P i+ 1 2 ,j -P i-1 2 ,j ∆ , P i,j+ 1 2 -P i,j-1 2 ∆ .
Thus, the averaged potential gradient of the block is

∇P = ∑ i,j ∇P i,j n i n j ,
with n i , n j the number of cells in each direction inside the block. In every case, the sum runs over all the fine grid-blocks included in ϑ. Finally, the block dissipation-based estimator of Eq. ( 15) for block ϑ is computed as

K diss (ϑ) = ∑ i,j i,j λ 2 ∇P 2 . (19) 
Fig. 4 presents the resulting dissipation maps for lognormal and binary me-410 dia samples. A strong localization (channeling) effect may be noticed close to percolation threshold for the binary case.

Implementation of the block average conductivity scheme

Based on the computation of the potential field in Ω, the second K ef f estimator can be defined in ϑ as:

K ave = Q x λ∇P x . ( 20 
)
This expression is based on a large-scale Darcy equation where Q is the flow rate and ∇P the potential gradient, both averaged over the domain ϑ of size λ.

With the proper boundary conditions it is possible to recover the full hydraulic conductivity tensor [START_REF] Bauer | Computation of the equivalent macroscopic permeability tensor of discrete networks with heterogeneous segment length[END_REF]. In this study, we only considered the direction of the imposed potential difference ∆P . 

Results

We begin this section by comparing, as a form of validation, the outcomes of the analytical developments of Section 4, for lognormal media, with the corresponding numerical results using the well-known K perm estimator. Then, for both type of media, we study the scale-dependence of the pdf of the three proposed estimators, to later focus on the first two gaussian moments i.e. mean and variance. For this latter case, a comparison with the mean-field analytical variance of K ef f , Eq. ( 13), is performed.

Comparison of the different analytical expressions for C K ef f (λ) with numerical results

Fig. 5 shows the variance of K ef f given by Eqs. ( 13) and ( 14), and their equivalent expressions within the mean-field approximation, compared with the K perm estimator, as a function of the coarsening scale λ, that varies between fine grid scale ∆ and L. A low (σ 2 log k = 0.1) and a high (σ 2 log k = 7) fine grid variance are used as extreme cases.

The analytical results are in good agreement with the numerical simulations for σ 2 log k = 0.1 when using the expressions based on the conductivity variance 13) and ( 14). (Right) σ 2 log K ef f compared against Eqs. ( 13) and ( 14)

using the mean-field approximation. ( ) Numerical; ( ) Analytical; ( ) Simplified analytical. Input variance: (○) σ 2 log k = 0.1, (Ö) σ 2 log k = 7.
σ 2 K ef f (Eqs. ( 13) and ( 14)). The difference increases for the case of σ 2 log k = 7, specially for scales equal or greater than the integral scale, defined as the practical range of the covariance function. The estimation of the variance of the logarithm, σ 2 log K ef f (Appendix C.1) provides a better agreement with the numerical results even for σ 2 log k = 7. In this case, the analytical equations correctly capture the tendency as the scale increases, with small discrepancy from the numerical results beyond the integral scale. In both cases, the simplified formulas (Eq. ( 14)) coincide to a large extent with the complete ones except at the scales close to the integral scale, where a small difference appears. In view of these observations, comparison against analytical results in the next sections will be only carried out with respect to Eq. ( 13) using the mean-field approximation.

Lognormal media

Probability density function of the different estimators

Pdf's of K diss , K ave and K perm are plotted in Fig. 6 (left) for σ 2 log k = 7. Although K diss and K ave present a sharper pdf, they are rather similar. The dependence of the pdf of K diss with the coarsening scale λ is shown in Fig. 6 (right). It can be observed that the pdf remain Gaussian at all scales. As a Gaussian pdf is fully described by its mean and variance, in the following subsection, we focus our attention on these two moments.. 7.2.2. Scale dependence of the mean and variance of K ef f Fig. 7 compares the values of the geometric mean of K ef f , indicated by ⟨⟨. . . ⟩⟩ (left), and the variance σ 2 log K ef f scaled by ( λ I ) 2 (see Appendix C) (right) for the three estimators. As λ tends to ∆, ⟨⟨K ef f ⟩⟩ approaches to the fine scale mean K g for both variances. For σ 2 log k = 0.1, the three formulations yield very similar results, while for σ 2 log k = 7 some discrepancies are observed. Moreover, for λ close to I, a depart from the theoretical value (of upto 12%) is observed for K diss . We recall that, as developed in Section 5.1.1, if ϑ = Ω, the potential gradients transverse to the mean flow vanish, due to the boundary conditions applied at that scale in all cases, but, if ϑ < Ω, these gradients may exist and be non negligible. Also, they are stronger as the heterogeneity increases, explaining the slump in K diss for λ close to I.

The variances of K ef f were evaluated analytically using the mean-field approximation of Eq. ( 13). In Fig. 7 (right), the variances of the three estimators show an excellent agreement with the analytical results for σ 2 log k = 0.1, while, for σ 2 log k = 7, a slight difference for λ > I is observed for the three estimators, probably due to discretization effects [START_REF] Romeu | Calculation of internodal transmissivities in finite difference models of flow in heterogeneous porous media[END_REF]. ) Analytical variance Eq. ( 13) using the mean-field approximation.

Binary media

Probability density functions of the K ef f estimators

In binary media, the lower limiting case is when the upscaling scale λ tends to the fine grid scale ∆, with only two possible conductivity values: k + with probability p, and k -with probability (1 -p). Consequently, the pdf of the effective conductivity tends to a two-peaked distribution with relative heights given by p and (1 -p), and its mean is similar to that of the original medium at the fine grid scale. On the other hand, the upper limit correspond to the upscaling scale reaching the domain scale L. In this case, the pdf of the effective conductivity looks more like a unimodal distribution with its mean approaching k + when p > p c , and k -when p < p c . At intermediate scales, a transition between both extreme behaviors occurs.

Pdf's of K diss , K ave and K perm are plotted in Fig. 8 in order to compare them with the expected behavior. Three situations, with p smaller, close to and greater than p c = 0.5 (for which percolation transition occurs), are shown in this figure.

In the left column of the figure, the three methods are compared for λ = 32∆. At this intermediate scale different behaviors are observed depending on the method. The pdf's of the three estimators considered here exhibit some differences: the K perm estimator presents more peaked distributions with two clearly separated modes while those of global methods, K diss and K ave , are relatively more homogeneous, with a continuous variation between the peaks. Also, the values of conductivity corresponding to the facies that does not percolate are only retained in the case of K perm , while K diss and K ave smooth them out. This is a direct effect of the permeameter boundary conditions that are imposed for each sub domain ϑ when computing K perm . This renders percolation in ϑ much more critical for K ef f . On the other hand, analyzing the behavior when small, middle and large scales are adopted for λ, the expected behavior is recovered. K diss converges to an unimodal distribution as λ increases, faster as and Noetinger, 2012). In addition, as p departs from p c , for a given λ, the distributions become narrower. This implies that the convergence to a representative mean is slower near percolation. ) p = 0.6. Upscaling method: (Ö) Kperm, (○) K diss , (◻) Kave.

of the pdf, compared with the lognormal case (cf. section 7.2.1). For example, one may note that, in panel C of Fig. 8, the mean would not be particularly representative. However, previous studies analyzed the mean and variance much more frequently than the complete pdf, so we consider interesting to present them for comparison. Fig. 9 shows the variation of geometric mean of K ef f (left), and of the variance σ 2 log K ef f (right), for the three estimators, as a function of λ for p = 0.4, p = 0.5 and p = 0.6. The values of ⟨⟨K ef f ⟩⟩ coincide as λ tends to the limiting ∆ or L, for all the values of p. The behavior at both limits of the range corresponds to which is expected for a representative effective conductivity. Furthermore, the behavior far from those extreme values is strongly dependent on the particular estimator. As observed in Fig. 8, the two peaks in the K perm histogram remained clearly identifiable at larger λ values, in opposition to what happened in the cases of K diss or K ave . The outcome is that if p is far from p c , K perm converges more slowly than K diss or K ave to the asymptotic value of λ = L. This is consistent with the faster homogenization shown by the global estimators in the pdf's of section 7.3.1. Comparing K diss and K ave , the former shows a slight bias to lower ⟨⟨K ef f ⟩⟩ values.

The variance σ 2 log K ef f computed using the three formulations also coincides as λ tends to ∆ or L. At intermediate scales, K perm always yields the highest σ 2 log K ef f , in agreement with the findings shown in section 7.3.1, where it was shown that the pdf remained bimodal for a greater λ than for the other two methods. Note that, in the non percolating case (p = 0.4), K diss produces lower variances than K ave , while the opposite happens for the percolating case (p = 0.6), and, at p c = 0.5, both estimators yield similar values of σ 2 log K ef f .

Summary, discussion and perspectives

After introducing an efficient K ef f estimator based on energy dissipation, we revisited numerically and analytically three of the most important upscaling formulations, analyzing the scale dependence of the resulting K ef f distributions.

For 2D lognormal media, K ef f distributions remain lognormal at intermediate coarsening scales for all the formulations, a result that could be theoretically related to the LLM formula [START_REF] Landau | Electrodynamics of continuous media[END_REF]Lifshitz, 1960, Matheron, 1967). The numerical results for ⟨⟨K ef f ⟩⟩ and σ 2 log K ef f are in agreement with the analytical ones. This is notable for intermediate coarsening scales, having in mind that these last results are not exact. In particular, the asymptotic behavior of σ 2 log K ef f for λ > I, varying as (1 λ) 2 , is reminiscent to a central limit theorem.

In the binary case, for p far from p c , the pdf of K ef f evolves from a bimodal to a unimodal distribution, with representative mean and variance. The mean and variance of the three estimators converge to the same asymptotic K ef f values for p = 0.4 or 0.6. It can be observed that the latter obeys the scaling law with 1 λ 2 in that case. Close to percolation threshold p c , the intermediatescale K ef f distributions do not exhibit convergence to an asymptotic stable distribution. The ⟨⟨K ef f ⟩⟩ remains close to the fine grid geometric mean K g . This may be explained by the fact that in 2D, at 0.5 = p c , the analytical result of [START_REF] Matheron | Eléments pour une théorie des milieux poreux[END_REF] can be applied, yielding the geometric average in that very specific case. Looking more carefully to Fig. 9, for p = p c , σ 2 log K ef f does not follow the scaling law in 1 λ 2 . This should be related to the absence of a representative elementary volume [START_REF] Berkowitz | Percolation theory and its application to groundwater hydrology[END_REF][START_REF] Hunt | Percolation theory for flow in porous media[END_REF][START_REF] Stauffer | Introduction to percolation theory: revised second edition[END_REF]. Quantification of such effects remains to be studied, and K ef f estimators that comply to finite size scaling arguments might improve the existing description.

The computation of K ef f through K ave and K diss is much more efficient than using K perm , because, in this case, the potential is solved once for Ω, and then by post-treating this solution, K ef f can be obtained at all scales if a multiscale description is required, while providing similar results. Using K perm involves solving the potential independently for each scale, due to the strong influence of the boundary conditions imposed at ∂ϑ. Now comparing K ave and K diss , we illustrate the degree of discrepancy between these two estimators as a function of the coarsening scale, showing in Fig. 10 the ratio between the geometric mean of K ave and that of K diss . It can be observed that the greater discrepancy occurs, both for lognormal and binary media, for λ ≈ I, where I is the practical range of the covariance function as measured in both types of media samples, giving a characteristic lengthscale for heterogeneity. Note that K diss (see section 5.1) is sensible to transverse potential gradients, while K ave isn't, because it assumes a colinearity between potential gradient and flow. These transverse potential gradients vanish at λ = ∆ and at λ = L, while they have a maximum in-between, at a critical lengthscale, despite that media samples are statistically isotropic. The degree of discrepancy is then probably driven by the scale dependence of these transverse potential gradients.

Except for the lognormal case of σ 2 log k = 0.1, K diss is smaller than K ave up to 12% in the lognormal case of σ 2 log k = 7, and up to 80% in the binary case. The bias of K diss towards lower values was also observed in the pdf's shown in the sections 7.2.1 and 7.3.1. The 3D generalization of this work is currently under development. In particular, the appearance of an attractive conductivity distribution for the different formulations, playing in 3D an analogous role to the lognormal distribution in 2D, is of central interest. Moreover, for binary media, it is highly interesting to assess the slower convergence to an homogeneous K ef f distribution close to the percolation transition in 3D media in the context of the different formulations. More realistic or complex distributions such as non Gaussian or power-law [START_REF] Panzeri | Theory and generation of conditional, scalable sub-gaussian random fields[END_REF][START_REF] Riva | Theoretical analysis of nongaussian heterogeneity effects on subsurface flow and transport[END_REF][START_REF] Guadagnini | Recent advances in scalable non-gaussian geostatistics: The generalized sub-gaussian model[END_REF] will be addressed in future work. A major practical issue regarding non-homogeneous materials is to find some self-contained estimation of the REV size allowing to determine, for a given case, if the REV size is reached. That will help to find the optimal meshing size, and to quantify uncertainty propagation.

Appendix A. Functional differentiation

Functional differentiation is a generalization of calculus to functionals, i.e., functions having a function as argument. Our presentation is intuitive. Let F ({k}) be a functional that depends on the whole set of values of k which is an arbitrary function of position r ∈ Ω. The notation {...} recalls that F is a functional. Examples of functional can be the value of field k at a given location r 0 : F 0 ({k}) = k(r 0 ), the weighted average

F <...> f ({k}) = 1 V ∫ V d D r f (r) k(r) in which f (r)
is a fixed function that does not depend on k. The functional derivative of a functional F ({k}) is defined by the following equation:

Lim →0 F ({k + δk}) -F ({k}) = V d D r δF δk(r) δk(r)
Here, δk is an arbitrary perturbation. The functional derivative has a supplementary spatial argument (that corresponds in the case of partial derivatives to the choice of the variable with respect to which the derivative is performed). In the examples of F 0 ({k}) and F <...> f ({k}), one has

δF 0 δk(r) = δ((r -r 0 ) δF <...> f δk(r) = f (r)
V It gives the sensibility of the variation of F with respect to a local variation of its argument k at position r. N-th order functional derivatives can be defined, as well as a Taylor formula, replacing summations by integrations. 

δp(r) = - V d D r ′ G k (r, r ′ ) ∇ ⋅ [δk(r ′ ) ∇p 0 (r ′ )] . (A.2)
Here, G k (r, r ′ ) is the Green's function of the Laplace operator that obeys the following equations, to be supplemented by consistent boundary conditions:

∇ ⋅ (k ∇G k (r, r ′ )) = δ(r -r ′ ) G k (r x = 0, 1, r ′ ) = 0, ∂ y G k (r y = 0, 1, r ′ ) = 0
So one gets finally after one integration by parts:

δp(r) δk(r ′ ) = ∇ r ′ G k (r, r ′ ) ⋅ ∇p 0 (r ′ ) (A.3)
This result may recovered directly, applying the operator δ⋅ δk(r ′ ) at both sides of Eq. (3), providing:

∇ ⋅ k ∇ δp(r) δk(r ′ ) = -∇ ⋅ [δ((r ′ -r) ∇p(r)],
which is equivalent to Eq. (A.3). Note that the base conductivity field k may also depend on position, or be equal to ⟨k⟩, the choice depends on the application at hand.

Appendix B. Second order estimation of the average effective conductivity 600

In order to illustrate the functional formalism, we carry out with this tool the classical second order expansion of the effective conductivity [START_REF] Dagan | Flow and transport in porous formations[END_REF]. The Taylor expansion Eq. ( 10), gives directly a second order series expansion that will provide the desired expansion after averaging:

⟨K ef f ⟩ = ⟨k⟩ + 1 2 Ω d D r d D r ′ δ 2 K ef f δk(r)δk(r ′ ) C k (r ′ -r). (B.1)
The main task is to evaluate explicitly the second order functional derivative that may be simplified in the following form, using Eq. (C.1) differentiated once more time:

δ 2 K ef f δk(r) δk(r ′ ) = 1 Ω 2∇p 0 (r).∇ δp(r) δk(r ′ )
In that equation, p 0 (r) is the non-perturbed potential. The derivative δp(r) δk(r ′ ) is given by Eq. (A.2). So, we get after substitution:

δp(r) δk(r ′ ) = 1 ⟨k⟩ ∇G(r, r ′ ) ⋅ ∇p 0 (r ′ ). (B.2)
In that expression, G(r, r ′ ) is the Green's function of Laplace operator ∇ 2 , this explains the factor 1 ⟨k⟩ . Note that due to the boundary conditions that break full translational invariance of the system, this Green's function does not depend only on the argument (r -r ′ ). Gathering these results in Eq. (B.1), and using the fact that ∇p 0 (r) = e x , one obtains:

⟨K ef f ⟩ = ⟨k⟩ - 1 ⟨k⟩ Ω Ω d D r d D r ′ ∇p 0 (r).∇ δp(r) δk(r ′ ) C k (r ′ -r) = ⟨k⟩ - 1 ⟨k⟩ Ω Ω d D r d D r ′ ∂ rx ∂ r ′ x G(r, r ′ )C k (r ′ -r) (B.3)
Assuming that Ω 1 D is large compared with the integral scale I, one can replace G(r, r ′ ) by the free space Green's function G(rr ′ ). This is equivalent to estimate the Green's function assuming that the boundary conditions are rejected at infinity. Using the correlation function isotropy, the integral can be simplified using a classical trace argument, yielding:

⟨K ef f ⟩ = ⟨k⟩ - 1 ⟨k⟩ 1 D C k (r = 0).
Up to the same order of approximation, this formula can be rewritten on a more usual form as:

⟨K ef f ⟩ = exp ⟨log(k)⟩e ( 1 2 -1 D )C log k (r=0) .
For log normal media, this formula is equivalent to the LLM conjecture, Eq. ( 1).

The second order expansion is thus recovered for large averaging volumes, with a quite concise calculation.

Appendix C. Second order estimation of the variance of the effective conductivity

The variance of the effective conductivity is given by

C K ef f (L) = ⟨K 2 ef f ⟩ -⟨K ef f ⟩ 2 = ⟨(K ef f -⟨K ef f ⟩) 2 ⟩.
Using the Taylor expansion Eq. ( 10), and keeping only second order terms, one gets dropping the averaging symbol ⟨⋯⟩ under the integral sign, a procedure that is straightforward within the stochastic context [START_REF] Dagan | Flow and transport in porous formations[END_REF][START_REF] Gelhar | Stochastic subsurface hydrology[END_REF], [START_REF] Hristopulos | Random Fields for Spatial Data Modeling A Primer for Scientists and Engineers[END_REF]. The procedure would be different using a volume averaging technique involving boundary of averaging-volume corrections, [START_REF] Hassanizadeh | General conservation equations for multiphase systems: 1. averaging procedure[END_REF], [START_REF] Whitaker | The method of volume averaging[END_REF]:

C K ef f (L) = Ω d D r d D r ′ ⟨ δK ef f δk(r) δK ef f δk(r ′ ) δk(r) δk(r ′ )⟩ + ...
The quantity δK ef f δk(r) can be written under a simple form:

δK ef f δk(r) ∇p 2 Ω,x Ω = ∇p(r) 2 . (C.1)
Derivation of Eq. (C.1) is straightforward using the variational characterization Eq. ( 9) that can be differentiated directly with respect to δk(r) ignoring the implicit dependence of ∇p(r) 2 with δk(r) that is known to vanish thanks to the variational characterization. This Eq. (C.1) relates the influence of a local hydraulic conductivity change on K ef f to the local potential gradient. This result was already derived using similar methods by [START_REF] Jacquard | Permeability distribution from field pressure data[END_REF] and generalized to obtain shape derivatives of effective conductivity with respect to geometrical shape of inclusions by [START_REF] Noetinger | An explicit formula for computing the sensitivity of the effective conductivity of heterogeneous composite materials to local inclusion transport properties and geometry[END_REF]. One can remark that in a location where ∇p(r) = 0, the local conductivity has no influence at all on the large scale conductivity: it is screened by other patterns that imply that there is no flow at this location. This is a rather intuitive result.

Thus using Eq. (C.1), we obtain:

C K ef f (L) = 1 Ω 2 Ω d D r d D r ′ ⟨ ∇p(r) 2 ∇p 2 Ω,x ∇p(r ′ ) 2 ∇p 2 Ω,x δk(r) δk(r ′ )⟩ + ... (C.2)
As we are seeking a second order expansion of the variance of effective conductivity, the local quantity ∇p(r) 

2 ∇p 2 Ω,x (resp. ∇p(r ′ ) 2 ∇p 2 Ω,x
) may be replaced by 1, getting:

C K ef f (L) = 1 Ω 2 Ω d D r d D r ′ ⟨δk(r) δk(r ′ )⟩. (C.3)
After averaging, introducing the pair correlation function C k (r-r ′ ) = ⟨δk(r) δk(r ′ )⟩ of the hydraulic conductivity fluctuations, we get a formula already obtained by [START_REF] Rubin | A stochastic approach to the problem of upscaling of conductivity in disordered media: Theory and unconditional numerical simulations[END_REF]Gómez-Hernández (1990), Sánchez-Vila et al. (1995), [START_REF] Wen | Upscaling hydraulic conductivities in heterogeneous media: An overview[END_REF]:

C K ef f (L) = 1 Ω 2 Ω d D r d D r ′ C k (r -r ′ ). (C.4)
Note that for small averaging volume size L compared to the integral scale I, this formula gives by direct inspection C K ef f (L) = C k (r = 0). On the other limit, assuming that the unit volume size is very large compared to the underlying integral scale, one gets the asymptotic behavior:

C K ef f (L) ≈ 1 Ω Ω d D r C k (r). (C.5)
For large L, one has the scaling :

L D I D C K ef f (L) ≈ Ω d D r C k (r) I D . (C.6)
The factor L D I D corresponds to the number of independent statistical units that belong to volume Ω. This scaling corresponds thus to a central limit theorem characterizing the emergence of a deterministic large scale effective conductivity. In other words, the system exhibits self averaging properties. Eqs. (C.4) and (C.5) are solved for the particular case of the Gaussian covariance in Appendix C.2.

Appendix C.1. Improved estimation of the variance, mean-field approximation The preceding development is limited to small variances. In order to find an improved approximation, one can use Eq. (C.2) written on an equivalent form: 

⟨K 2 ef f ⟩-⟨K ef f ⟩ 2 = 1 Ω 2 Ω d D r d D
⟨K 2 ef f ⟩ -⟨K ef f ⟩ 2 ⟨K ef f ⟩ 2 = 1 Ω 2 Ω d D r d D r ′ ⟨ δk(r) k(r) δk(r ′ ) k(r ′ ) ⟩ + ...
Up to this order of approximation, the result can be identified with the variance of log(K ef f ) and the equation can be rewritten as:

C log K ef f (L) = ⟨(log(K ef f )) 2 -⟨log(K ef f )⟩ 2 ⟩ = 1 Ω 2 Ω d D r d D r ′ ⟨δ log k(r) δ log k(r ′ )⟩ + ...
This equation, up to this order of approximation, is equivalent to Eq. (C.4), by replacing every occurrence of a conductivity by the corresponding logarithm, so:

C log K ef f (L) = 1 Ω 2 Ω d D rd D r ′ C log k (r -r ′
).

(C.7)

The resulting formula is similar to Eq. (C.4), replacing the covariance function by the log conductivity covariance function. For the special case of lognormal media, this is a quite natural transformation. The same can be done with the 630 simplified formula (C.5).

Appendix C.2. Gaussian covariance case

In the isotropic Gaussian case, the covariance function is given by

C k (r) = C k (r = 0) e -r 2 2I 2 c
The integral factorizes, and after changing variables x → x I c , we obtain:

C K ef f (L) = C k (r = 0) I c L 2D L 2Ic -L 2Ic L 2Ic -L 2Ic
dx dy e - Considering small up-scaling volume, L small compared with I c , we obtain C K ef f (L) = C k (r = 0) as it should. In the opposite case, considering large upscaling volumes L provides

C K ef f (L) ≃ C k (r = 0) √ 2π I c L D
This is a form of a central limit theorem for effective conductivity, quantifying the variance reduction leading to convergence of the effective conductivity for large averaging volume.
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Finally, using the simplified expression (C.5), one gets after integration:

C K ef f (L) ≃ C k (r = 0) √ 2π I c L erf 2 √ 2 L I c D (C.9)
It shares the same asymptotic behavior for extreme L than the exact (13). The same calculations can be carried out for C log K ef f (L) and give the same results using C log k (r = 0)) and the same spatial dependance.

. This formula must be expanded up to second order in a series expansion of δk.

Note that the technique that was presented in Appendix B cannot be followed directly because the variational formulation is efficient at the scale of the whole Ω only, not on every subvolume ϑ. In order to simplify notations, we introduce δp(r) as the first order variation due to a variation δk(r). The numerator can be expanded up to second order, discarding third order terms to yield: One has in the general case ∇p 0 = ∇p 0 = e x . It can be observed that in the case of small averaging volume ϑ, K diss (ϑ) = k(r) as it should: all the contributions cancel each other, because in that limit a volume average is equal to the local value: ∇δp = ∇δp. Further simplifications can be obtained using Green's formula on the term ⟨k⟩ ∫ ϑ d D r(∇δp) 2 combined with Eq. (A.1) that drives δp, yielding: 

K diss (ϑ) = k + 1 λ D ϑ d D r

Figure 2 :

 2 Figure2: Probability density function P (K ef f , λ) for increasing values of the coarsening scale λ. Left: Fine scale distribution P (k(r), ∆), where k(r) follows, as an example, a lognormal distribution. Center: P (K ef f , λ) becomes narrower as λ increases. Right: For λ ≃ L, P (K ef f , λ) approaches a delta-like function centered on a single K ef f value. For dimensional reasons, the K ef f is normalized by a unit reference conductivity of 1 m/day.

Figure 3 :

 3 Figure 3: Maps of log(k). (left) Lognormal medium obtained from FFTMA. Input data: σ 2 log k = 7, I = 16∆. (right) Binary medium. Input data: p = 0.5, k + Kg = 100, k -Kg = 0.01.

Figure 4 :

 4 Figure 4: Local dissipation ( ) maps: (left) lognormal medium with σ 2 log k = 7 and (right) binary medium with p = 0.5.

Table 1 :

 1 Simulation parameter names, definitions and values mean K g [m day] K g 1 Fine grid variance of log(K) C log k (r = 0)

Figure 5 :

 5 Figure 5: Analytical and numerical results for Gaussian covariance media. (Left) σ 2 K ef f

Figure 6 :

 6 Figure 6: Pdf's of log(K ef f ). Input data: σ 2 log k = 7, I=16∆. (Left) For the three estimators at λ = 32∆. (Right) Pdf of K diss for λ = 4, 8, 16, 32 and 64∆.

  Figure 7: K ef f as a function of λ, for the three estimators,for lognormal media: (left) geometric mean and (right) rescaled variance λ 2 I 2 C log K ef f . Input variance: ( ) σ 2 log k = 0.1, ( ) σ 2 log k = 7. Upscaling method: (Ö) Kperm, (○) K diss , (◻) Kave. The vertical line indicates the integral scale. () Analytical variance Eq. (13) using the mean-field approximation.

Figure 8 :

 8 Figure 8: Pdf's of the effective conductivity log(K ef f ) resulting from the three studied estimators. Input data: relative population p = 0.4, p = 0.5 and p = 0.6 (top to bottom). (Left) Results obtained with the three methods for λ = 32∆. (Right) K diss results for three block sizes λ = 4, 32, and 256 ∆.

7. 3 Figure 9 :

 39 Figure 9: Dependence of the three estimators of K ef f with the scale in binary media: (left) geometric mean and (right) rescaled variance λ 2 I 2 C log K ef f . Input data: ( ) p = 0.4, ( ) p = 0.5, () p = 0.6. Upscaling method: (Ö) Kperm, (○) K diss , (◻) Kave.

Figure 10 :

 10 Figure 10: Discrepancy between the geometric mean of K diss and that of Kave. (Left) Results for lognormal media, Section 7.2.2. (Right) Results for binary media, Section 7.3.2. ( ) Integral scale.
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  If f (x) is a standard differentiable real function, one has the chain derivative formula:If p(r) obeys a Laplace equation such as∇ ⋅ (k(r) ∇p(r)) = 0, Putting k(r) = k + δk(r), one obtains: ∇ ⋅ [(k + δk(r)) (∇p(r) + ∇δp(r))] = 0,Denoting by δp(r) the first order variation of potential p(r) with respect to k(r), one obtains that δp(r) obeys the following equation, valid at first order:∇ ⋅ (k ∇δp(r)) = -∇ ⋅ [δk(r) ∇p(r)] (A.1)As the unperturbed potential p(r) fulfills the boundary conditions at the domain boundary, δp(r) = 0 on Dirichlet boundaries, and same conditions for the normal flux at the Neumann boundaries. This equation has the formal solution:

  can replace k(r)∇p(r) 2 and k(r ′ )∇p(r ′ ) 2 by their common average value ⟨K ef f ⟩∇p 2 Ω,x . So one gets:

  ϑ d D r (⟨k⟩ + δk) (∇(p 0 + δp)) 2 ≃ ϑ d D r (⟨k⟩ + δk) (1 + 2∇p 0 ⋅ ∇δp)can be carried out for the denominator, recalling that ∇p 0 (r ′ ) = e x : (D.1) and the second order expansion of Eq. (D.2), many cancellations occur, yielding still at same order of approximation:K diss (ϑ) = k + 1 λ D 2 ϑ d D r δk ∇p 0 ⋅ ∇δp -∇p 0 ⋅ ∇δp + +⟨k⟩ ϑ d D r ((∇δp) 2 -∇δp 2 )

  d D-1 r δp ∇δp ⋅ n + 1 λ D ∂ϑ d D-1 r δk δp ∇p 0 ⋅ n. (D.3)We obtain after statistical averaging:⟨K diss (ϑ)⟩ = ⟨k⟩ -and combining this result with Eq. (D.2), one obtains:⟨K diss (ϑ)⟩ = ⟨k⟩ -1 ⟨k⟩l D ϑ d D r Ω d D r ′ ∂ rx ∂ r ′ x G(r, r ′ )C k (r ′ d D-1 r⟨δp ∇δp ⋅ n⟩ + 1 λ D ∂ϑ d D-1 r⟨δk δp⟩∇p 0 ⋅ n. (D.4)It can be checked by direct inspection that first line of this formula compares well with Eq. (B.3). The other contributions are finite size effects that cancel if ϑ = Ω. They explain the observed differences in the numerical tests. If ϑ tends to zero, ⟨K diss (ϑ)⟩ = ⟨k⟩.

https://water.usgs.gov/ogw/modflow/mf2005.html
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Appendix D. Second order evaluation of the average of block K diss

The block equivalent conductivity K diss (ϑ) is given by Eq. ( 15). Decomposing the conductivity as k(r) = ⟨k⟩ + δk(r), one can carry-out a second order expansion of K diss (ϑ):