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Abstract

In large scale heterogeneous aquifer simulations, determining the appropriate
coarsening scale λ to define an effective hydraulic conductivity Keff is a chal-
lenging task, that involves a trade-off between accuracy and cost. Efficiently
adjusting the scale λ is then key, in particular for uncertainty quantification.
In this paper, we obtain improved analytical results for the variance of Keff ,
valid at any scale, in the context of energy dissipation formulation. Using this
formulation, we then derive an efficient Keff numerical estimator, and compare
it with those of the potential-flow average and permeameter formulations in 2D,
for lognormal and binary media, over a wide range of λ and of heterogeneity.
We analyze the probability density function (pdf), mean, and variance, of these
estimators, comparing them with the analytical results. In the lognormal case,
the pdf’s are rather similar for the three estimators, and remain lognormal at all
scales. In the binary case, slow convergence to an asymptotic regime is observed
close to the percolation threshold.

Keywords: heterogeneous aquifers; stochastic approach; volume averaging;
up-scaling

1. Introduction

Describing effective properties of heterogeneous media has important appli-
cations in many fields of engineering and science. For example, the electrical or
thermal effective conductivity of mixtures, or elastic properties of composites
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materials have been studied since many years ago (Maxwell, 1873, Bruggeman,5

1935, Landau and Lifshitz, 1960, Auriault, 1983, Willot and Jeulin, 2009, Zhou
et al., 2016). In particular, determining an effective hydraulic conductivity is
of major interest in a variety of disciplines related to subsurface flow, such as
groundwater flow characterization (Renard and De Marsily, 1997, Matheron,
1967, Dagan, 1989, Dagan et al., 2013), Carbon Capture Utilisation and Stor-10

age (CCUS) development (Akber Hassan and Jiang, 2012, Celia et al., 2015),
and oil and gas reservoir engineering (King, 1989, Durlofsky, 1991, 1992, Preux,
2016, Malinouskaya et al., 2018). The scarcity of field data (Matheron, 1967,
Dagan, 1989, Hristopulos, 2020) makes it necessary to perform some sort of
interpolation, with frequent use of a stochastic approach (Gelhar, 1993, Linde15

et al., 2015, Godoy et al., 2018) that treats the point conductivity values as a
random process, eventually accompanied by field data conditioning. While the
use of this approach permits a good management of uncertainty, it turns too
costly to solve the flow at the fine scale provided by laboratory (microtomogra-
phy, synchrotron), or geological sources (Dagan et al., 2013), specially for large20

domains.
In addition, one may want to incorporate data obtained at different support

scales before interpolation. To alleviate this issues, upscaling procedures allow
us to perform a mapping from a fine scale onto a coarse scale, in which the
solution of the flow is less costly.25

Fig. 1 shows the lengthscales and geometrical features of the upscaling pro-
cess. The fine scale conductivity k(r) (r is the position vector) is defined over
the regional domain ω ⊂ RD, (dimension D=1, 2 or 3) at a support scale ∆.
The coarsening scale λ determines a domain ϑ, over which the effective hydraulic
conductivity Keff is defined. One the one hand, for practical and conceptual30

purposes, we can establish an upper bound L for λ, determined by the largest
subdomain Ω over which it is still possible to solve the flow, eventually impos-
ing boundary conditions at ∂Ω if natural flow conditions are unknown. For
example, L could be a characteristic aquifer scale. On the other hand, a lower
bound for λ is given by the support scale ∆. The effective conductivity of a35

block or subdomain ϑ, defined by the coarsening scale λ, i.e. Keff(λ), depends
on the values of k(r) within ϑ, but also on the conditions at the boundary ∂ϑ,
which may be imposed or known. Moreover, Keff(λ) is a tensor in principle,
however, for isotropic media, and certain flow conditions (Sánchez-Vila et al.,
1995, Vereecken et al., 2007), the use of a scalar Keff is appropriate. Finding40

a suitable coarsening scale λ requires dealing with a trade-off between accuracy
and cost: as λ increases, the cost to solve the flow decreases, but some details
of the heterogeneity (and of the flow) get lost, and the values of Keff become
less representative of the fine description. The choice of a scale λ that retains
the most salient flow features, while keeping the cost of the flow solution low,45

makes upscaling a challenging task.
In the following section, we revisit briefly some upscaling results, with fo-

cus on the types of media studied in most works, including the present one,
i.e., lognormal and binary media, to later discuss Keff distributions, and some
upscaling formulations.50
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Figure 1: Lengthscales and geometry of the upscaling procedure: The fine scale conductivity
k(r) is defined over the regional domain under investigation ω, at a support scale ∆. The
upscaling procedure maps k(r) onto Keff (ϑ), while ϑ ⊂ Ω is defined by the coarsening scale
λ, with ∆ < λ < L.

1.1. Previous results

Analytical methods like bounds-based approaches (Hashin and Shtrikman,
1962, Renard and De Marsily, 1997, Le Loc’H, 1987, Pozdniakov and Tsang,
2004) or power averaging (Journel et al., 1986, Desbarats and Srivastava, 1991,
Masihi et al., 2016) provide a remarkable insight, although, as they estimate55

Keff from the point values k(r) only, they disregard the influence of the flow
behavior at ∂Ω.

Depending on the detailed context, homogenization techniques (Auriault,
1983, Durlofsky, 1991, Jikov et al., 2012, Armstrong et al., 2019), volume av-
eraging techniques (Hassanizadeh and Gray, 1979, Quintard and Whitaker,60

1998, Durlofsky, 1998, Whitaker, 2013, Gray and Miller, 2005, Leung and Srini-
vasan, 2012, Wood and Valdés-Parada, 2013, Davit and Quintard, 2017, Aguilar-
Madera et al., 2019) or stochastic perturbation theory (Landau and Lifshitz,
1960, Matheron, 1967, Dagan, 1989, King, 1989, Rubin and Gómez-Hernández,
1990, Indelman and Dagan, 1993a,b, Noetinger, 1994, Indelman and Abramovich,65

1994, Ababou, 1994, Abramovich and Indelman, 1995, Noetinger and Gautier,
1998, Noetinger, 2000, Liao et al., 2019) were developed over many decades. All
these methods provide a rigorous analytical framework supporting the existence
and uniqueness of Keff , for a wide variety of media types.

Analytical efforts took place mainly using perturbation theory (Gelhar, 1993,
Dagan, 1989). The so called Landau-Lifschitz-Matheron (LLM) (Landau and
Lifshitz, 1960, Matheron, 1967) formula reads:

Keff ≃ ⟨k(1−
2
D )⟩

1

(1− 2
D
) , (1)

In the case of a lognormal distribution of fine scale conductivity, this formula
can be written under the equivalent form (King, 1989, Noetinger, 1994):

⟨Keff ⟩ = exp ⟨log(k)⟩e(
1
2−

1
D )Clogk(r=0)

=Kge
( 1

2−
1
D )Clogk(r=0).
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The notation ⟨⋯⟩ indicates ensemble arithmetic averaging over all the possible70

realizations of the fine scale structure. Kg denotes the geometric mean of the
fine grid conductivity, and Clogk(r = 0) the variance of its logarithm. In this
work, wherever the expressions log(k) or log(Keff) are shown, it is implied that
the argument of the logarithm is divided by 1 m/day, to make it dimensionless.

In most cases, an ergodicity assumption allows to replace the ensemble av-
erage by a spatial average (Ababou, 1996, Sanchez-Vila et al., 2006), such that
for finite block of size L, one estimates Keff as:

Keffblock
≃ (

1

V
∫
block

k(r)(1−
2
D )dDr)

1

(1− 2
D
)

(2)

This formula, with dimension D = 1,2,3 whose evaluation is straightforward,75

is exact in 1D for any type of media, yielding the harmonic average. In 2D, it
corresponds to the geometric average that was found to be exact in 2D for
lognormal media by Matheron (1967), who derived it using an elegant duality
argument specific to 2 dimensions. In 3D, the formula is exact up to second
order (Dagan, 1993) with respect to log-conductivity variance (using a series80

expansion ofKeff up to 4th order in powers of the log conductivity fluctuations).
But in 3D, the proposed formula was shown to be inexact at third order by
several authors (Indelman and Abramovich, 1994, De Wit, 1995, Stepanyants
and Teodorovich, 2003).

Moreover, higher order results were shown to be structure dependent: this85

prevents the existence of a local evaluation expression like Eq. (1) in 3D. How-
ever, numerical tests carried out show that LLM formula is quite robust in 3D
even for large log-conductivity variances (Dagan, 1989, Romeu and Noetinger,
1995, Renard and De Marsily, 1997). Some generalization of such approaches
for anisotropic cases were revisited recently by Liao et al. (2019).90

From a more geological point of view, a frequent organization of the subsur-
face heterogeneous formations in a number of hydrofacies, that correspond to
different types of rock, or sediments, having a well defined hydraulic property,
such as porosity or permeability, may be observed in natural systems (Journel
et al., 1986, Beucher and Renard, 2016). Each facies possesses its own char-95

acteristic features. That promoted the study of the effective conductivity of
composite media. Binary or bimodal media are the simplest cases, while still
retaining the complexity of percolative systems. These types of media have
been extensively studied using self-consistent effective medium approaches in
the electrodynamical or elasticity contexts (Maxwell, 1873, Bruggeman, 1935,100

Landau and Lifshitz, 1960, Auriault, 1983, Pozdniakov and Tsang, 2004).
Analytical results, based on a mixing of characteristic conductivity values

and bounds (Hashin and Shtrikman, 1962, 1963), exist for this type of media
(Bernabé et al., 2004); in them, connectivity is implicitly taken into account.

Other authors (Pozdniakov and Tsang, 2004, Knudby and Carrera, 2005,105

Guin and Ritzi Jr., 2008, Bernabé et al., 2016) studied numerically the influ-
ence of the contrast between the high and low conductivity components k+ and
k−. The abrupt change in Keff that takes place close to the percolation tran-
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sition, when the k+ component becomes connected, poses difficulties during the
upscaling procedure (Boschan and Noetinger, 2012).110

Indeed, percolation theory scaling (Berkowitz and Balberg, 1993, Stauffer
and Aharony, 2014, Hunt et al., 2014, Hunt and Sahimi, 2017) has been used
to assess Keff in this type of media, but some restrictions exist:

� This scaling is only valid for media in which the proportion of high con-
ductivity medium is close to the percolation transition,115

� Percolation transition is smeared-out by finite size effects and finite con-
ductivity contrast values.

1.2. Keff probability distributions

Due to the fact that subsurface uncertainty is frequently dealt with by using
a stochastic approach, it is appropriate to treat Keff as a random variable120

characterized by a probability distribution more than by a deterministic value.
Although the literature mainly focuses on the firsts moments of the proba-

bility density function (pdf), such as the mean and variance (Rubin and Gómez-
Hernández, 1990, Sánchez-Vila et al., 1995, Sanchez-Vila et al., 2006), the shape
of the pdf provides unique insight on the underlying flow situation. For example,125

in media samples near percolation, a bimodal pdf may yield a mean Keff value
that truly has a negligible occurrence probability: this situation may easily arise
when dealing with fractured media or, in general, with media possessing a high
degree of heterogeneity. The pdf of Keff depends on the coarsening scale λ,
and will be noted P (Keff , λ).130

For clarity, P (Keff , λ) undergoes a transition from P (k(r),∆) to P (Keff , L)
as λ goes from ∆ to L. For λ = ∆, the distribution of k(r) is recovered, while
for λ ≃ L, P (Keff , λ) will tend toward a delta-like distribution sharply peaked
around a stable Keff value (see Fig. 2 ). If it is possible to define a characteristic
lengthscale (for example an integral scale I) for the media under consideration, a135

crossover is expected when λ approaches it. More conceptually, a representative
elementary volume (REV) may be determined by inspecting significant changes
of the shape of P (Keff , λ). The fact that the statistical sampling becomes
poorer as λ increases, can be compensated, in the framework of the stochas-
tic theory, and assuming ergodicity, by an increase in the number of ensemble140

realizations.
The behavior of P (Keff , λ) was addressed in several studies (King, 1989,

Sanchez-Vila et al., 2006, Wen and Gómez-Hernández, 1996, Wu et al., 2013).
In Boschan and Noetinger (2012), the convergence of P (Keff , λ) was studied in
3D for lognormal and binary media. In the lognormal case, P (Keff , λ) kept its145

lognormal nature as λ increased. If this result hold in 2D (this will be analyzed
in the present work), it might stem from the work of Matheron (1967). In the
binary case, it was shown that the convergence to a stable Keff is slower when
the k+ component is close to the percolation transition (Stauffer and Aharony,
2014). Finally, under the ergodic hypothesis, several studies assessed the use of150

filtering techniques to derive P (Keff , λ) at all scales. (King, 1989, Noetinger
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Figure 2: Probability density function P (Keff , λ) for increasing values of the coarsening
scale λ. Left: Fine scale distribution P (k(r),∆), where k(r) follows, as an example, a log-
normal distribution. Center: P (Keff , λ) becomes narrower as λ increases. Right: For λ ≃ L,
P (Keff , λ) approaches a delta-like function centered on a single Keff value. For dimensional
reasons, the Keff is normalized by a unit reference conductivity of 1 m/day.

and Gautier, 1998, Noetinger, 2000, Noetinger and Zargar, 2004, Attinger, 2003,
Eberhard et al., 2004).

1.3. Upscaling formulations and numerical implementations

The fact that analytical results are limited to some academic cases, and155

strictly valid only up to second order in 3D, imposes the use of numerical tech-
niques to obtain Keff as well as its distribution by means of Monte Carlo simu-
lations. Several numerical techniques were developed using different approaches
and provide accurate solutions (Desbarats and Srivastava, 1991, Durlofsky, 1991,
Desbarats, 1992, Quintard and Whitaker, 1998, Wang et al., 2014, Zheng et al.,160

2017, Wang et al., 2018). The numerical implementations calculate a value Keff

in ϑ from the fine conductivity field k(r), and from the boundary conditions at
∂ϑ, in what constitutes a numerical solution of the closure problem posed by
the associated Laplace equation. Moreover, some of them use border regions,
including information of the outer neighbourhood of ∂ϑ (Wen et al., 2003). Two165

aspects of the solution of the closure problem by numerical simulations stand
out:

1. The task of finding the optimal scale λ in each flow scenario makes up-
scaling a multiscale problem par excellence.

2. The choice of the formulation, in particular that of the boundary con-170

ditions, strongly affects accuracy and numerical efficiency. For example,
imposing boundary conditions at ∂ϑ decouples the flow in ϑ from its outer
region, in a rather invasive procedure, in view of item 1). In that sense,
solving the flow in Ω once, and then employing this solution to estimate
P (Keff , λ), i.e., seems less invasive and more efficient, but requires the175

ability to solve larger systems of equations.

From the existing upscaling formulations, the most widely used is the perme-
ameter (Darcian) one, which, as a particularity, isolates the flow in ϑ, suffering
from the drawback explained above. This formulation, and its implementation,
will be formally introduced in Section 2.2. Another frequent formulation, (Rubin180

and Gómez-Hernández, 1990) and (Sánchez-Vila et al., 1995), uses the solution
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of potential and the associated flow in Ω, evaluating their averages over ∂ϑ to
obtain Keff . In order to obtain a scalar Keff , some assumption is required.

Finally, Indelman and Dagan (1993a,b), Bøe (1994) proposed that Keff

could be defined by assuming that the dissipated energy is conserved during185

the upscaling procedure. This might be the strongest conceptual definition
ever formulated, however, its implementation to obtain Keff is mathematically
difficult.

Aiming to reduce the computational cost, a number of approaches that com-
bine different formulations were proposed (Chen et al., 2003, Bauer et al., 2008,190

Wu et al., 2013, Karimi-Fard and Durlofsky, 2016), with the support of ergod-
icity considerations (Ababou et al., 1989, Ababou, 1994, 1996, Desbarats and
Srivastava, 1991).

1.4. Objectives

In this paper, we intend to explore analytically and numerically the multi-195

scale nature of the upscaling procedure in the context of the different formula-
tions in 2D. On the one hand, after reviewing the existing body of literature,
we update the formulae introduced in previous studies to characterize the mean
and variance of Keff , valid at the scale Ω at which the boundary conditions are
imposed. We derive, in the context of the energy dissipation formulation, a new200

expression for the variance, this time, valid at any subscale ϑ ⊂ Ω, up to second
order in perturbation theory. On the other hand, using that formulation, we
define and implement a new numerical estimator of Keff based on a scalar en-
ergy dissipation average. This estimator can be obtained at any subscale λ with
nearly negligible additional CPU time once the potential in Ω is solved. Aiming205

to provide a comprehensive view, the pdf, the mean and the variance of this
estimator are compared with those of the potential-flow average estimator, and
of the permeameter Darcian one, over a wide range of coarsening scales. This
study is performed over lognormal media samples with a wide range of fine grid
variances, and over binary media samples spanning the percolation transition.210

The paper is organized as follows: we start by presenting the overall geom-
etry and notation, considering a steady-state Darcian flow in an heterogeneous
porous medium, and perform some algebraic manipulation to express Keff in
terms of the viscous dissipation. We introduce then (Section 3.1) a useful vari-
ational derivation, that allows us to define Keff in terms of a minimization of215

that dissipation. By using functional expansion techniques already developed
in a previous study (Noetinger, 2013), we provide expressions for the variance
of Keff in Ω up to second order in the perturbation expansion (valid for small
variances), later improving it, for higher variances, by using a mean-field ap-
proximation. After some more manipulation, we get in position to show how220

these results are valid at any subscale (i.e., the coarsening scale λ), even if
the variational formulation cannot be applied at any scale smaller than Ω (the
scale in which the boundary conditions are imposed). The result depends also
on the covariance of k(r), and on λ, while it is possible to apply again the
mean-field technique, now at this scale, to improve it. Section 6 introduces225

the numerical methodology with the implementation of the three formulations,
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while Section 7, presents firstly a numerical validation, and then, the results
regarding the multiscale dependence of Keff under the different formulations.

2. Geometry, driving equations and notations

2.1. Geometry and local equations230

We focus our attention on a block Ω to be up scaled in D dimensions, a
square in 2D or a cube in 3D. The edges of that domain are of size L in the
D directions, as sketched in Fig. 1. The potential is driven by the following
Laplace equation, to be solved in the domain Ω:

∇ ⋅ (k(r)∇p(r)) = 0, (3)

The local potential is denoted by p(r). This equation is a combination of mass
or charge conservation with a phenomenological equation relating the local flux
to the local potential gradient, such as Joule, Darcy or Fourier’s law that may
arise after a proper averaging of the sub-scale transport processes (Hassanizadeh
and Gray, 1979). In order to get a well defined problem, Dirichlet or Dirichlet-235

Neumann conditions must be specified at the frontier ∂Ω of the domain. These
conditions will be discussed in the next section. The local conductivity, denoted
by k(r) is assumed to be scalar and to depend on position r. The conductivity
field can be discontinuous with respect to r.

2.2. Classical Darcian definition of the effective conductivity240

Here, we defer the discussion of the up scaling problem to references in Math-
eron (1967), Durlofsky (1991), Neuman and Orr (1993), Renard and De Marsily
(1997), Quintard and Whitaker (1998), Willot and Jeulin (2009), Jikov et al.
(2012). The effective conductivity can be defined using the solution of the
Laplace Eq. (3), to be solved with Dirichlet boundary conditions at the in-245

let/outlet, denoted by Pin and Pout. Neumann no-flux boundaries are imposed
on the faces of the domain parallel to the average imposed flow, which will be the
x direction in the rest of the paper. This definition of Keff is the so-called per-
meameter definition that will be sometimes denoted by Kperm. This corresponds
physically to the basic conductivity measurement that could be performed at250

the laboratory, both in the Darcy or electrical context. Other boundary condi-
tions, such as periodic (Auriault, 1983, Durlofsky, 1991, Quintard and Whitaker,
1998, Noetinger, 2013) can be chosen, but that does not change drastically the
analysis, so permeameter conditions will be kept throughout the paper.

By identification with the homogeneous case, effective hydraulic conductivity
is given by:

Keff =
Q

LD−2(Pin − Pout)
. (4)

Here, Q denotes the total fluid flux flowing in any section of the domain per-
pendicular to the mean flow x direction:

Q = ∫
Inlet face

dD−1rk(r)∇p(r) ⋅ n. (5)
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Here, p(r) is the unique solution of the boundary value Laplace Eq. (3) with255

the permeameter forcing boundary conditions.

3. Effective conductivity and viscous dissipation

For our purpose, it is useful to introduce an equivalent algebraic expression
of Keff that was introduced in the porous media context by Jacquard (1965),
Matheron (1967), and revisited later by Wen and Gómez-Hernández (1996),
Sánchez-Vila et al. (1995):

Q (Pin − Pout) = ∫
∂Ω
dD−1rp(r)k(r)∇p(r) ⋅ n

= ∫
Ω
dD rk(r)∇p(r) ⋅ ∇p(r). (6)

In order to begin with, the first equality of Eq. (6) is obtained by expressing Q in
terms of integrals over the inlet and outlet faces of the domain as in Eq. (5). In
the outlet, according to the convention defining positive flow opposite to the face260

inward normal, the expression have the opposite sign. Then, both face pressures
are moved under the integral signs obtaining similar expressions. Regarding the
Neumann boundary conditions on lateral faces, imposing no pressure gradient,
both integrals can be combined in only one over the whole domain boundary
∂Ω. Using the divergence theorem combined with Laplace Eq. (3) yields the265

second equality. This equation has a simple physical interpretation: The RHS
corresponds to the total viscous dissipated power, that must coincide with the
power spent by external forcing sources set-up to create the flow.

So, the effective conductivity may be expressed as,

Keff =
1

(Pin − Pout)2 LD−2 ∫Ω
dDrk(r) (∇p(r))2

=
1

∇p
2
Ω,x L

D
∫
Ω
dDrk(r) (∇p(r))2, (7)

where ∇pΩ,x = −(Pin−Pout)/L is the volume averaged gradient in the x direction

(which is the mean flow direction). The average potential gradient ∇pΩ over
the block volume ∣Ω∣ = LD is given by:

∇pΩ =
1

∣Ω∣
∫

Ω
dDr ∇p(r) =

1

∣Ω∣
∫
∂Ω
d(D−1)r p(r) n. (8)

In the case of a square or cubic Ω, the retained boundary conditions for potential
p give the proposed equality in the x direction. Eq. (7) relates the effective270

conductivity of the whole block Keff to the overall viscous dissipation and the
mean forcing potential gradient norm in the imposed flow direction. It will be
the starting point to define a dissipation-based effective conductivity estimator
in Section 5.1.
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3.1. A variational characterization of Keff .275

We are now in position to propose an alternative formulation that proves to
be useful for estimating the sensitivity of large scale parameters to variations of
local conductivity. This variational characterization of Keff may be formulated
as follows:

Keff (Pin − Pout)
2 LD−2

= Q (Pin − Pout)

Keff ∇p
2
Ω,x L

D
=Minp(r) {Θ {p(r)} = ∫

Ω
dDr k(r) (∇p(r))2

} . (9)

Here, the potential fields p(r) among which the minimization is to be per-
formed fulfill the boundary conditions at ∂Ω. The justification of Eq. (9) is
classical: one has to express the extremal conditions:

∀r,
δ {Θ {p(r)}}

δp(r)
= ∇ ⋅ (k(r) ∇p(r)) = 0.

The operator
δ {Θ {p(r)}}

δp(r)
is a functional derivative of the functional Θ {p(r)}

with respect to p(r). A basic presentation of functional differentiation is given
in Appendix A.

Using thus the particular quadratic form of Θ {p(r)}, these extremal condi-
tions give rise to Laplace Eq. (3) that governs the potential. The final result280

may be derived using the same methods than Eq. (6).

3.2. Functional expansion techniques for the effective conductivity

Functional techniques combined with the variational formulation are useful
to derive directly second order perturbation expansion of the effective conduc-
tivity and of its associated variance. The starting point is to evaluate the
sensitivity of effective conductivity with respect to local perturbations of the
local conductivity, as it was derived in Noetinger (2013) and Appendix A. The
starting point is to decompose the local hydraulic conductivity as:

k(r) = ⟨k⟩ + δk(r).

The brackets ⟨. . . ⟩ correspond to ensemble averaging over the conductivity real-
izations, to be not confused with volume averaging denoted by ⋯. So ⟨δk(r)⟩ = 0.
One can use the formal equivalent of Taylor series formula, up to second order,
also valid for functionals:

Keff = ⟨k⟩ + ∫
Ω
dDr

δKeff

δk(r)
δk(r)+

+
1

2
∫

Ω
dDr∫

Ω
dDr′

δ2Keff

δk(r) δk(r′)
δk(r) δk(r′) + ... (10)

The reader must note that in these equations, the functional derivative must
be evaluated while the nominal value of the conductivity map is a uniform

10



value k(r) = ⟨k⟩ (in usual function Taylor’s expansions, this corresponds to the285

point at which the derivative is evaluated). Averaging Eq. (10) yields a second-
order expansion that coincides with LLM conjecture up to this limited order.
A concise derivation using functional derivatives is given in Appendix B.

4. Estimation of the variance of the effective conductivity at second
order.290

In this section, we present expressions of the variance of the effective con-
ductivity that are obtained in the context of second order perturbation theory.
The derivations are given in Appendix C. Finally, closed expressions are given
for the cases when those expressions are particularized for Gaussian covariance
functions.295

For the variance of the effective conductivity given by

CKeff
(L) = ⟨K2

eff ⟩ − ⟨Keff ⟩
2
= ⟨(Keff − ⟨Keff ⟩)

2
⟩

the following expression can be obtained, Eq. (C.4):

CKeff
(L) =

1

∣Ω∣2
∫

Ω
dDrdDr′Ck(r − r′). (11)

A mean-field approximation allows to replace each occurrence of Keff and
k by the corresponding logarithm, Eq. (C.7), providing the following expression
that can be expected to have a more extended domain of validity for practical
applications:

ClogKeff
(L) =

1

∣Ω∣2
∫

Ω
dDrdDr′Clogk(r − r′). (12)

The resulting formula is similar to Eq. (11), replacing the covariance function
by the log conductivity covariance function. For the special case of lognormal
media, this is a quite natural transformation. The same can be done with the
simplified formula (C.5).300

In the case of the Gaussian covariance with Ck(r) = Ck(r = 0) e
− r2

2I2
c where

Ic is the correlation length, explicit analytical expressions can be derived for
CKeff

(L) from Eq. (11) (see Appendix C.2 Eq. (C.8))

CKeff (L) = Ck(r = 0) (
Ic
L

)

2D

[
√

2π
L

Ic
erf (

√
2
L

Ic
) + 2e

− L2

2I2
c − 2]

D

. (13)

Likewise, using the simplified Eq. (C.5), one gets after integration (Eq. (C.9)):

CKeff
(L) ≃ Ck(r = 0) [

√
2π
Ic
L

erf (2
√

2
L

Ic
)]

D

. (14)

The same calculations can be carried out for ClogKeff
(L) applying the logarith-

mic transformation and give analogous results using Clogk(r = 0) and the same305

spatial dependence.
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5. A posteriori multiscale estimators of Keff distributions

In this section, two estimators providing intermediate scale effective con-
ductivity distributions are presented. Both are computed using low-cost post
processing of one up scaling closure problem at the largest available scale. These310

distributions will be compared to reference distributions determined by comput-
ing numerically permeameter effective conductivity of every coarse block at any
scale. The resulting pdf’s will be compared, as well as the associated log con-
ductivity mean and variance. For completeness, the latter will be compared
with preceding analytical results.315

5.1. Dissipation estimator

5.1.1. Definition of the estimator

We consider now that the up-scaling Laplace problem was solved on a single
conductivity realization on the entire block Ω. The subscale effective conduc-
tivity Kdiss(ϑ) on any given cubic (or square) sub-block of size λ included in
the overall domain Ω can thus be defined as the relation between the dissipation
and the average potential gradient at the block level by:

Kdiss(ϑ) =
∫ϑ d

Drk (∇p)2

λD∇p
2
ϑ

. (15)

It can be observed, using Eq. (7), that if ϑ = Ω, Kdiss(ϑ) = Keff ×
∇px

2

∇p
2 ≤

Keff . In the case of statistically isotropic k(r), if Ω is sufficiently large, the
average potential gradient ∇py perpendicular to the mean flow vanishes, so the320

effective conductivity determined by dissipation is equal to the usual definition:
Kdiss(ϑ→ Ω) ≃Keff .

Considering the opposite limit, ϑ → 0, it can be shown, using a Taylor ex-
pansion of the potential gradient under the integral sign, that Kdiss(ϑ) = k(r)

if and only if ∇p
2
≃ (∇p)2 ≠ 0. This last condition corresponds to stagnation325

(no-flow) points. This condition is not surprising, as it can correspond to both
infinite conductivity regions or to screened regions of vanishing hydraulic con-
ductivity. In both cases, effective conductivity is not defined. Assuming that
the set of these points is of vanishing measure, in most cases the original detailed
conductivity map must be recovered. This criterion was already introduced and330

discussed by Sánchez-Vila et al. (1995) and Bauer et al. (2008). The proposed
indicator fulfills two intuitive conditions for both extreme ϑ sizes. In Appendix
D it is shown that the average of the dissipation estimator is in agreement with
that derived for Keff for volumes ϑ tending to Ω, and the structure of the finite
size corrections is given too. In next Section 5.1.2, it is shown up to second335

order that the variance of Kdiss(ϑ) coincides with expression (11) by replacing
Ω by ϑ as integration domain. This implies that the evaluation of the variance
ClogKdiss

(λ) is obtained by replacing L by the length of the considered subscale
block, λ, in Eq. 12.
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5.1.2. Evaluation of the variance of block dissipation conductivity Kdiss340

The block equivalent conductivity Kdiss(ϑ) is given by Eq. (15), and its
variance may be evaluated following the same steps that in Appendix C. It is
defined by ⟨Kdiss(ϑ)

2⟩ − ⟨Kdiss(ϑ)⟩
2 = ⟨(Kdiss(ϑ) − ⟨Kdiss(ϑ)⟩)

2
⟩. So, one gets

finally:

⟨Kdiss(ϑ)
2
⟩ − ⟨Kdiss(ϑ)⟩

2
= ∫

Ω
dDrdDr′

δKdiss(ϑ)

δk(r)

δKdiss(ϑ)

δk(r′)
⟨δk(r)δk(r′)⟩ + ...

Note that at present stage, the integration volume remains the whole volume
Ω, it is not restricted to ϑ because Keff(ϑ) depends on the entire conductivity
map that is defined on the support Ω in which the Laplace equation is solved at

the beginning. We have to evaluate the functional derivative
δKdiss(ϑ)

δk(r)
. The

evaluation cannot be simplified because the variational principle that charac-
terizes Keff as defined in Ω is not relevant at any smaller scale. The derivative
is given by:

δKdiss(ϑ)

δk(r)
=

(∇p0(r))
2

λD∇p0
2

1ϑ(r) +
2

λD∇p0
22

1

λD
[∇p0

2
∫
ϑ
dDr′k∇p0(r

′
) ⋅
δ∇p(r′)

δk(r)
−

−
1

λD
∫
ϑ
dDr′k∇p0(r

′
)
2
∫
ϑ
dDr′′∇p0(r

′′
) ⋅
δ∇p(r′′)

δk(r)
] .

In that equation, the first term involving the indicator function of ϑ denoted by
1ϑ(r) is the remaining of the result that would be provided using the variational
approach, as shown in Appendix C, equation C.1. The first integral arises from
the derivative of ∇p2 under the integral sign, the second corresponds to the
functional derivative of 1

∇p
2 . Both terms are equal to 0 if ϑ = Ω. At lowest order,

the spatial dependence of the conductivity k must be discarded. It appears
that the second line involving twice integration vanishes because ∇p0(r

′) = ex

is constant up to this order, so both terms cancel each other. So we obtain
the same result that would be provided by the variational approach if it was
applicable for block dissipation:

δKdiss(ϑ)

δk(r)
=

(∇p0)(r)
2

λD∇p
2

1ϑ(r).

Gathering all the preceding results, we obtain the following formula for the
variance of the dissipation estimator at scale ϑ:

⟨(Kdiss(ϑ)
2
− ⟨Kdiss(ϑ)⟩

2
⟩ =

1

∣ϑ∣2
∫
ϑ
dDrdDr′Ck(r − r′). (16)

Up to second order, this formula is analogous to the variance in Eq. (C.3) of
the full up scaled hydraulic conductivity Keff . The corresponding formulation
using logarithms is similar at this order. This result allows to extend the validity
of Eqs. (11) and (12) to subscale blocks ϑ.
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5.2. Block average conductivity estimator345

Another Keff estimator on subvolume ϑ can be introduced, defined as

Kave(ϑ) =
Qx

λD−1∇P x
.

This expression is based on Darcy equation where Q is the flow rate and ∇P
the potential gradient, both volume-averaged over domain ϑ of size λ. This
estimator was studied by Rubin and Gómez-Hernández (1990), Sánchez-Vila
et al. (1995), Renard and De Marsily (1997), Bauer et al. (2008). In particular,
using a second order expansion, Rubin and Gómez-Hernández (1990) computed
the average and variance of log(Kave(ϑ)) as a function of ϑ and the input co-
variance function of the conductivity that correspond to the observed statistical
parameters observed at scale L. They give the following expressions:

⟨logKave(ϑ)⟩ = logKg + (
1

2
−

1

D
) (1 − α)Clogk(r = 0)

⟨(logKave(ϑ) − ⟨logKave(ϑ)⟩)
2
⟩ = αClogk(r = 0)

The normalized variance correction factor α given by

α =
1

∣ϑ∣2
∫
ϑ
dDrdDr′

Clogk(r − r′)

Clogk(r = 0)
,

depends only on the geometrical form of the covariance function and on the
averaging volume ϑ size λ. It can be observed that it shares the same form
than the scale-dependant variance (11) derived before. It can be noticed that
using directly LLM formula for estimating Keff for large size λ using these350

parameters, Eq. (1) under its second form is recovered as terms involving α
terms cancel. This highlights some internal consistency of this estimator.

In practice, once the potential is solved, the evaluation of Kdiss(ϑ) and
Kave(ϑ) is straightforward and of negligible extra computational cost. For a
given size λ, one obtains a set of (L

λ
)D, D = 2,3 values of Kdiss(ϑ) and Kave(ϑ)355

that can be studied using statistical tools. This will be the main topic of next
sections.

6. Numerical methodology

6.1. Generation of media samples

We first compare the formulations over random lognormal media samples360

with low and high variance, and then, over binary media samples that have
a high contrast of characteristic conductivities. We employed a fast Fourier
transform (FFT) moving average (FFT-MA) method (Le Ravalec et al., 2000)
to generate these samples. Lognormal hydraulic conductivity fields with unitary
geometric mean Kg were generated. Gaussian covariance, with an integral scale365

I = 16∆ defined as the practical range of the covariance function (I =
√

3Ic),
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Figure 3: Maps of log(k). (left) Lognormal medium obtained from FFTMA. Input data:
σ2
logk = 7, I = 16∆. (right) Binary medium. Input data: p = 0.5, k+/Kg = 100, k−/Kg = 0.01.

was used to spatially correlate the samples. Fig. 3 (left) shows, as an example,
a realization of a lognormal medium obtained with this procedure. All media
samples generated have 1024 × 1024 cells, with a linear size of 1024∆. In order
to reduce the numerical truncation error when computing the potential field, a370

refining stage of degree 4 was performed (Romeu and Noetinger, 1995, Liu and
Wang, 2013), resulting in a grid of 4096×4096 computational cells of linear size
∆/4.

Binary random media is generated as follows: We start by generating a
lognormal one with an arbitrary geometric mean Kg and variance σ2

logk. Then,375

this lognormal distribution is binarized using a threshold value kt, assigning
each cell a characteristic k+ (high conductivity) or k− (low conductivity) value
(with k+/k− = 104). The value of kt controls the relative population p of high
conductivity cells. Three values of p were studied, one at the 2D percolation
threshold pc = 0.5, one smaller (p = 0.4) and one greater (p = 0.6) than pc. At380

pc, 50% of the realizations percolate. We used CONNECT3D software (Pardo-
Igúzquiza and Dowd, 2003) to explicitely verify the percolation condition.

The spatial correlation function of the resulting binary medium remains
gaussian. In turn, the integral scale of the binary medium is determined by the
integral scale of the original lognormal medium, but also by p. To be able to use385

the former as an input parameter, we’ve performed an iterative search for each
of the values of p studied. Fig. 3 (right) shows, as an example, a realization of
such a binary medium.

For each set of parameters, we generated 50 samples in order to obtain an
acceptable statistical sampling at largest scale L.390

6.2. Potential field calculation

For the Kave and Kdiss formulations, it is only required to solve the potential
in Ω once, and then post-processing of the obtained field is performed to obtain
Keff at any scale λ. For the Kperm formulation, the potential must be solved
independently for all the sub-domains ϑ under study.395
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To obtain the potential field we used MODFLOW-20051 software (Harbaugh,
2005) with the corresponding boundary conditions. This solver uses the finite
difference method with a classical 2D + 1 point stencil. Particularly, the Block-
Centered Flow package (BCF6) was used, and the linear equation system was
solved with the Preconditioned Conjugate-Gradient package (PCG).400

6.3. Implementation of the permeameter scheme

We used classical permeameter boundary conditions in the computation of
the potential fields. In MODFLOW, these boundary conditions are applied as-
signing constant potentials (Dirichlet type) to two opposite cell layers, each of
them representing a domain face. A unitary potential difference (∆P ) between
them is set. All other faces are constrained by no-flow boundary conditions
(Neumann type) applied to ghost cell layers outside the domain. These bound-
ary conditions are applied at ∂ϑ to compute Kperm defined as

Kperm =
Q

λ∆P
, (17)

The integral of the flow, Q, is calculated at the inlet or the outlet face of the
block ϑ with permeameter boundary conditions. For each medium, Kperm was
computed for the whole set of subscales λ = 2n, with integer n between 1 and
10, resulting in (L

λ
)2 = 22(10−n) values at each subscale. The same procedure405

was followed for the other two estimators.

6.4. Implementation of the dissipation scheme

Based on the resulting potential field computed using MODFLOW with
permeameter boundary conditions (Sections 6.2 and 6.3) on domain Ω, and the
theoretical development presented in Section 5.1, the dissipation-based block
estimator computation is as follows. As the finite difference scheme adopted
in MODFLOW is cell centered, after solving the potential field in Ω, both the
hydraulic conductivity ki,j and potential Pi,j at each cell center are known.
Notations are referred to cell (i, j) of ϑ, where (i − 1, j), (i + 1, j), (i, j − 1)
and (i, j + 1) are the left, right, top and bottom neighbouring cells respectively.
Using an electrical analogy, the local cell dissipation can be computed as

εi,j = ∫
ϑi,j

d2rki,j (∇p)
2

= 2ki,j [(Pi+ 1
2 ,j

− Pi,j)
2
+ (Pi− 1

2 ,j
− Pi,j)

2
+ (Pi,j+ 1

2
− Pi,j)

2
+ (Pi,j− 1

2
− Pi,j)

2
]

(18)

The factor 2ki,j corresponds to the conductivity of the half bond between the
center and any face of ϑi,j . The potential subscript with minus or plus halves

1https://water.usgs.gov/ogw/modflow/mf2005.html
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refer to cell face potentials computed invoking the equality of flux at both sides
of the face. For example the potential on the left face of cell (i, j) is given by:

Pi− 1
2 ,j

=
(ki,jPi,j + ki−1,jPi−1,j)

(ki,j + ki−1,j)
.

The other cell face potentials are defined analogously. Using equivalent equa-
tions to eliminate face potentials in Eq. (18), we get:

εi,j =
1

2ki,j
[(Ti+ 1

2 ,j
(Pi+1,j − Pi,j))

2
+ (Ti− 1

2 ,j
(Pi−1,j − Pi,j))

2
+

+ (Ti,j+ 1
2
(Pi,j+1 − Pi,j))

2
+ (Ti,j− 1

2
(Pi,j−1 − Pi,j))

2
] .

The coefficients T.,. are the usual intercell harmonic averages given by Ti+ 1
2 ,j

=

2ki+1,j ki,j
ki+1,j+ki,j

and Ti,j+ 1
2
=

2ki,j+1 ki,j
ki,j+1+ki,j

.

Ohm’s law for dissipation can be recognized through the squares of the fluxes
flowing through the faces. The cell face potentials are also used to compute the
cell potential gradient as

∇PTi,j = [
Pi+ 1

2 ,j
− Pi− 1

2 ,j

∆
,
Pi,j+ 1

2
− Pi,j− 1

2

∆
] .

Thus, the averaged potential gradient of the block is

∇P =
∑i,j ∇Pi,j

ninj
,

with ni, nj the number of cells in each direction inside the block. In every
case, the sum runs over all the fine grid-blocks included in ϑ. Finally, the block
dissipation-based estimator of Eq. (15) for block ϑ is computed as

Kdiss(ϑ) =
∑i,j εi,j

λ2∇P
2
. (19)

Fig. 4 presents the resulting dissipation maps for lognormal and binary me-410

dia samples. A strong localization (channeling) effect may be noticed close to
percolation threshold for the binary case.

6.5. Implementation of the block average conductivity scheme

Based on the computation of the potential field in Ω, the second Keff esti-
mator can be defined in ϑ as:

Kave =
Qx

λ∇P x
. (20)

This expression is based on a large-scale Darcy equation where Q is the flow
rate and ∇P the potential gradient, both averaged over the domain ϑ of size λ.415

With the proper boundary conditions it is possible to recover the full hydraulic
conductivity tensor (Bauer et al., 2008). In this study, we only considered the
direction of the imposed potential difference ∆P .

17



Figure 4: Local dissipation (ε) maps: (left) lognormal medium with σ2
logk = 7 and (right)

binary medium with p = 0.5.

Table 1: Simulation parameter names, definitions and values

Definition Symbol Values
Lognormal Binary

Size of the full domain L 1024∆
Covariance function C(r) Gaussian
Integral scale I 16∆ 8∆
Fine grid geometric mean Kg [m/day] Kg 1
Fine grid variance of log(K) Clogk(r = 0) = σ2

logk 0.1; 7

Characteristic conductivity [m/day] k+; k− 100; 0.01
Proportion of cells with k+ p 0.4; 0.5; 0.6

7. Results

We begin this section by comparing, as a form of validation, the outcomes420

of the analytical developments of Section 4, for lognormal media, with the cor-
responding numerical results using the well-known Kperm estimator. Then, for
both type of media, we study the scale-dependence of the pdf of the three pro-
posed estimators, to later focus on the first two gaussian moments i.e. mean
and variance. For this latter case, a comparison with the mean-field analytical425

variance of Keff , Eq. (13), is performed.

7.1. Comparison of the different analytical expressions for CKeff
(λ) with nu-

merical results

Fig. 5 shows the variance of Keff given by Eqs. (13) and (14), and their
equivalent expressions within the mean-field approximation, compared with the430

Kperm estimator, as a function of the coarsening scale λ, that varies between
fine grid scale ∆ and L. A low (σ2

logk = 0.1) and a high (σ2
logk = 7) fine grid

variance are used as extreme cases.
The analytical results are in good agreement with the numerical simulations

for σ2
logk = 0.1 when using the expressions based on the conductivity variance435
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Figure 5: Analytical and numerical results for Gaussian covariance media. (Left) σ2
Keff

compared against Eqs. (13) and (14). (Right) σ2
logKeff

compared against Eqs. (13) and (14)

using the mean-field approximation. ( ) Numerical; ( ) Analytical; ( ) Simplified
analytical. Input variance: (○) σ2

logk = 0.1, (Ö) σ2
logk = 7.

σ2
Keff

(Eqs. (13) and (14)). The difference increases for the case of σ2
logk = 7,

specially for scales equal or greater than the integral scale, defined as the prac-
tical range of the covariance function. The estimation of the variance of the
logarithm, σ2

logKeff
(Appendix C.1) provides a better agreement with the nu-

merical results even for σ2
logk = 7. In this case, the analytical equations correctly440

capture the tendency as the scale increases, with small discrepancy from the nu-
merical results beyond the integral scale. In both cases, the simplified formulas
(Eq. (14)) coincide to a large extent with the complete ones except at the scales
close to the integral scale, where a small difference appears. In view of these
observations, comparison against analytical results in the next sections will be445

only carried out with respect to Eq. (13) using the mean-field approximation.

7.2. Lognormal media

7.2.1. Probability density function of the different estimators

Pdf’s of Kdiss, Kave and Kperm are plotted in Fig. 6 (left) for σ2
logk = 7.

Although Kdiss and Kave present a sharper pdf, they are rather similar. The450

dependence of the pdf of Kdiss with the coarsening scale λ is shown in Fig. 6
(right). It can be observed that the pdf remain Gaussian at all scales. As
a Gaussian pdf is fully described by its mean and variance, in the following
subsection, we focus our attention on these two moments..

19



4 2 0 2 4

log(Keff)
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P(
K e

ff
)

Kdiss

Kave

Kperm

6 4 2 0 2 4 6

log(Keff)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

P(
K e

ff
)

= 64
= 32
= 16
= 8
= 4

Figure 6: Pdf’s of log(Keff ). Input data: σ2
logk = 7, I=16∆. (Left) For the three estimators

at λ = 32∆. (Right) Pdf of Kdiss for λ = 4, 8, 16, 32 and 64∆.

7.2.2. Scale dependence of the mean and variance of Keff455

Fig. 7 compares the values of the geometric mean of Keff , indicated by
⟨⟨. . . ⟩⟩ (left), and the variance σ2

logKeff
scaled by (λ

I
)2 (see Appendix C) (right)

for the three estimators. As λ tends to ∆, ⟨⟨Keff ⟩⟩ approaches to the fine scale
mean Kg for both variances. For σ2

logk = 0.1, the three formulations yield very

similar results, while for σ2
logk = 7 some discrepancies are observed. Moreover,460

for λ close to I, a depart from the theoretical value (of upto 12%) is observed
for Kdiss. We recall that, as developed in Section 5.1.1, if ϑ = Ω, the potential
gradients transverse to the mean flow vanish, due to the boundary conditions
applied at that scale in all cases, but, if ϑ < Ω, these gradients may exist and be
non negligible. Also, they are stronger as the heterogeneity increases, explaining465

the slump in Kdiss for λ close to I.
The variances of Keff were evaluated analytically using the mean-field ap-

proximation of Eq. (13). In Fig. 7 (right), the variances of the three estimators
show an excellent agreement with the analytical results for σ2

logk = 0.1, while,

for σ2
logk = 7, a slight difference for λ > I is observed for the three estimators,470

probably due to discretization effects (Romeu and Noetinger, 1995).
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Figure 7: Keff as a function of λ, for the three estimators,for lognormal media: (left)

geometric mean and (right) rescaled variance λ2

I2 ClogKeff
. Input variance: ( ) σ2

logk =

0.1, ( ) σ2
logk = 7. Upscaling method: (Ö) Kperm, (○) Kdiss, (◻) Kave. The vertical

line indicates the integral scale. ( ) Analytical variance Eq. (13) using the mean-field
approximation.

7.3. Binary media

7.3.1. Probability density functions of the Keff estimators

In binary media, the lower limiting case is when the upscaling scale λ tends
to the fine grid scale ∆, with only two possible conductivity values: k+ with475

probability p, and k− with probability (1 − p). Consequently, the pdf of the
effective conductivity tends to a two-peaked distribution with relative heights
given by p and (1 − p), and its mean is similar to that of the original medium
at the fine grid scale. On the other hand, the upper limit correspond to the
upscaling scale reaching the domain scale L. In this case, the pdf of the effective480

conductivity looks more like a unimodal distribution with its mean approaching
k+ when p > pc, and k− when p < pc. At intermediate scales, a transition
between both extreme behaviors occurs. Pdf’s of Kdiss, Kave and Kperm

are plotted in Fig. 8 in order to compare them with the expected behavior.
Three situations, with p smaller, close to and greater than pc = 0.5 (for which485

percolation transition occurs), are shown in this figure.
In the left column of the figure, the three methods are compared for λ = 32∆.

At this intermediate scale different behaviors are observed depending on the
method. The pdf’s of the three estimators considered here exhibit some differ-
ences: the Kperm estimator presents more peaked distributions with two clearly490

separated modes while those of global methods, Kdiss and Kave, are relatively
more homogeneous, with a continuous variation between the peaks. Also, the
values of conductivity corresponding to the facies that does not percolate are
only retained in the case of Kperm, while Kdiss and Kave smooth them out.
This is a direct effect of the permeameter boundary conditions that are im-495

posed for each sub domain ϑ when computing Kperm. This renders percolation
in ϑ much more critical for Keff . On the other hand, analyzing the behavior
when small, middle and large scales are adopted for λ, the expected behavior is
recovered. Kdiss converges to an unimodal distribution as λ increases, faster as
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p departs from pc, as it was observed in a previous study for Kperm (Boschan500

and Noetinger, 2012). In addition, as p departs from pc, for a given λ, the distri-
butions become narrower. This implies that the convergence to a representative
mean is slower near percolation.
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Figure 8: Pdf’s of the effective conductivity log(Keff ) resulting from the three studied esti-
mators. Input data: relative population p = 0.4, p = 0.5 and p = 0.6 (top to bottom). (Left)
Results obtained with the three methods for λ = 32∆. (Right) Kdiss results for three block
sizes λ = 4, 32, and 256 ∆.

7.3.2. Scale dependence of the mean and variance of Keff

In the binary case, as it is clearly seen in Fig. 8, the pdf’s of Keff are far from505

being unimodal, and then, the mean and variance become less representative
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Figure 9: Dependence of the three estimators of Keff with the scale in binary media: (left)

geometric mean and (right) rescaled variance λ2

I2 ClogKeff
. Input data: ( ) p = 0.4, ( )

p = 0.5, ( ) p = 0.6. Upscaling method: (Ö) Kperm, (○) Kdiss, (◻) Kave.

of the pdf, compared with the lognormal case (cf. section 7.2.1). For example,
one may note that, in panel C of Fig. 8, the mean would not be particularly
representative. However, previous studies analyzed the mean and variance much
more frequently than the complete pdf, so we consider interesting to present510

them for comparison.
Fig. 9 shows the variation of geometric mean of Keff (left), and of the

variance σ2
logKeff

(right), for the three estimators, as a function of λ for p = 0.4,

p = 0.5 and p = 0.6. The values of ⟨⟨Keff ⟩⟩ coincide as λ tends to the limiting ∆
or L, for all the values of p. The behavior at both limits of the range corresponds515

to which is expected for a representative effective conductivity. Furthermore, the
behavior far from those extreme values is strongly dependent on the particular
estimator. As observed in Fig. 8, the two peaks in theKperm histogram remained
clearly identifiable at larger λ values, in opposition to what happened in the cases
of Kdiss or Kave. The outcome is that if p is far from pc, Kperm converges more520

slowly than Kdiss or Kave to the asymptotic value of λ = L. This is consistent
with the faster homogenization shown by the global estimators in the pdf’s of
section 7.3.1. Comparing Kdiss and Kave, the former shows a slight bias to
lower ⟨⟨Keff ⟩⟩ values.

The variance σ2
logKeff

computed using the three formulations also coincides525

as λ tends to ∆ or L. At intermediate scales, Kperm always yields the highest
σ2

logKeff
, in agreement with the findings shown in section 7.3.1, where it was

shown that the pdf remained bimodal for a greater λ than for the other two
methods. Note that, in the non percolating case (p = 0.4), Kdiss produces
lower variances than Kave, while the opposite happens for the percolating case530

(p = 0.6), and, at pc = 0.5, both estimators yield similar values of σ2
logKeff

.

8. Summary, discussion and perspectives

After introducing an efficient Keff estimator based on energy dissipation,
we revisited numerically and analytically three of the most important upscaling
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formulations, analyzing the scale dependence of the resulting Keff distributions.535

For 2D lognormal media, Keff distributions remain lognormal at intermedi-
ate coarsening scales for all the formulations, a result that could be theoretically
related to the LLM formula (Landau and Lifshitz, 1960, Matheron, 1967). The
numerical results for ⟨⟨Keff ⟩⟩ and σ2

logKeff
are in agreement with the analyt-

ical ones. This is notable for intermediate coarsening scales, having in mind540

that these last results are not exact. In particular, the asymptotic behavior of
σ2

logKeff
for λ > I, varying as (1/λ)2, is reminiscent to a central limit theorem.

In the binary case, for p far from pc, the pdf of Keff evolves from a bimodal
to a unimodal distribution, with representative mean and variance. The mean
and variance of the three estimators converge to the same asymptotic Keff545

values for p = 0.4 or 0.6. It can be observed that the latter obeys the scaling
law with 1/λ2 in that case. Close to percolation threshold pc, the intermediate-
scale Keff distributions do not exhibit convergence to an asymptotic stable
distribution. The ⟨⟨Keff ⟩⟩ remains close to the fine grid geometric mean Kg.
This may be explained by the fact that in 2D, at 0.5 = pc, the analytical result550

of Matheron (1967) can be applied, yielding the geometric average in that very
specific case. Looking more carefully to Fig. 9, for p = pc, σ

2
logKeff

does not

follow the scaling law in 1/λ2. This should be related to the absence of a
representative elementary volume (Berkowitz and Balberg, 1993, Hunt et al.,
2014, Stauffer and Aharony, 2014). Quantification of such effects remains to be555

studied, and Keff estimators that comply to finite size scaling arguments might
improve the existing description.

The computation of Keff through Kave and Kdiss is much more efficient
than using Kperm, because, in this case, the potential is solved once for Ω,
and then by post-treating this solution, Keff can be obtained at all scales if a560

multiscale description is required, while providing similar results. Using Kperm

involves solving the potential independently for each scale, due to the strong
influence of the boundary conditions imposed at ∂ϑ.

Now comparing Kave and Kdiss, we illustrate the degree of discrepancy
between these two estimators as a function of the coarsening scale, showing in565

Fig. 10 the ratio between the geometric mean of Kave and that of Kdiss. It can
be observed that the greater discrepancy occurs, both for lognormal and binary
media, for λ ≈ I, where I is the practical range of the covariance function as
measured in both types of media samples, giving a characteristic lengthscale for
heterogeneity. Note thatKdiss (see section 5.1) is sensible to transverse potential570

gradients, while Kave isn’t, because it assumes a colinearity between potential
gradient and flow. These transverse potential gradients vanish at λ = ∆ and at
λ = L, while they have a maximum in-between, at a critical lengthscale, despite
that media samples are statistically isotropic. The degree of discrepancy is then
probably driven by the scale dependence of these transverse potential gradients.575

Except for the lognormal case of σ2
logk = 0.1, Kdiss is smaller than Kave up

to 12% in the lognormal case of σ2
logk = 7, and up to 80% in the binary case.

The bias of Kdiss towards lower values was also observed in the pdf’s shown in
the sections 7.2.1 and 7.3.1.

24



10 3 10 2 10 1 100

/L

1.0

1.2

1.4

1.6

1.8

K
a
v
e

K
d
is
s

p=0.4

p=0.5

p=0.6

10 3 10 2 10 1 100

/L

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

2 lo
g
k
=
0
.1

1e 4

1.00

1.02

1.04

1.06

1.08

1.10

1.12

2 lo
g
k
=
7

2
log k=0.1

2
log k=7

K
a
v
e

K
d
is
s

K
a
v
e

K
d
is
s

Figure 10: Discrepancy between the geometric mean of Kdiss and that of Kave. (Left)
Results for lognormal media, Section 7.2.2. (Right) Results for binary media, Section 7.3.2. (
) Integral scale.

The 3D generalization of this work is currently under development. In partic-580

ular, the appearance of an attractive conductivity distribution for the different
formulations, playing in 3D an analogous role to the lognormal distribution in
2D, is of central interest. Moreover, for binary media, it is highly interesting
to assess the slower convergence to an homogeneous Keff distribution close to
the percolation transition in 3D media in the context of the different formula-585

tions. More realistic or complex distributions such as non Gaussian or power-law
(Panzeri et al., 2016, Riva et al., 2017, Guadagnini et al., 2018) will be addressed
in future work. A major practical issue regarding non-homogeneous materials
is to find some self-contained estimation of the REV size allowing to determine,
for a given case, if the REV size is reached. That will help to find the optimal590

meshing size, and to quantify uncertainty propagation.

Appendix A. Functional differentiation

Functional differentiation is a generalization of calculus to functionals, i.e.,
functions having a function as argument. Our presentation is intuitive. Let
F ({k}) be a functional that depends on the whole set of values of k which is
an arbitrary function of position r ∈ Ω. The notation {...} recalls that F is a
functional. Examples of functional can be the value of field k at a given location
r0: F0({k}) = k(r0), the weighted average F<...>f

({k}) = 1
∣V ∣ ∫V d

Dr f(r) k(r)

in which f(r) is a fixed function that does not depend on k. The functional
derivative of a functional F ({k}) is defined by the following equation:

Limε→0
F ({k + εδk}) − F ({k})

ε
= ∫

V
dDr

δF

δk(r)
δk(r)

Here, δk is an arbitrary perturbation. The functional derivative has a supple-
mentary spatial argument (that corresponds in the case of partial derivatives to
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the choice of the variable with respect to which the derivative is performed). In
the examples of F0({k}) and F<...>f

({k}), one has

δF0

δk(r)
= δ((r − r0)

δF<...>f

δk(r)
=
f(r)

∣V ∣

It gives the sensibility of the variation of F with respect to a local variation of
its argument k at position r. N-th order functional derivatives can be defined,
as well as a Taylor formula, replacing summations by integrations.595

If f(x) is a standard differentiable real function, one has the chain derivative
formula:

δf(F )

δk(r)
=
df

dx
(F )

δF

δk(r)

If p(r) obeys a Laplace equation such as

∇ ⋅ (k(r) ∇p(r)) = 0,

Putting k(r) = k + δk(r), one obtains:

∇ ⋅ [(k + δk(r)) (∇p(r) +∇δp(r))] = 0,

Denoting by δp(r) the first order variation of potential p(r) with respect to
k(r), one obtains that δp(r) obeys the following equation, valid at first order:

∇ ⋅ (k ∇δp(r)) = −∇ ⋅ [δk(r) ∇p(r)] (A.1)

As the unperturbed potential p(r) fulfills the boundary conditions at the domain
boundary, δp(r) = 0 on Dirichlet boundaries, and same conditions for the normal
flux at the Neumann boundaries. This equation has the formal solution:

δp(r) = −∫
V
dDr′ Gk(r, r

′
) ∇ ⋅ [δk(r′) ∇p0(r

′
)] . (A.2)

Here, Gk(r, r
′) is the Green’s function of the Laplace operator that obeys the

following equations, to be supplemented by consistent boundary conditions:

∇ ⋅ (k ∇Gk(r, r
′
)) = δ(r − r′)

Gk(rx = 0,1, r′) = 0, ∂yGk(ry = 0,1, r′) = 0

So one gets finally after one integration by parts:

δp(r)

δk(r′)
= ∇r′Gk(r, r

′
) ⋅ ∇p0(r

′
) (A.3)

This result may recovered directly, applying the operator
δ⋅

δk(r′)
at both sides

of Eq. (3), providing:

∇ ⋅ (k ∇
δp(r)

δk(r′)
) = −∇ ⋅ [δ((r′ − r) ∇p(r)],
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which is equivalent to Eq. (A.3). Note that the base conductivity field k may
also depend on position, or be equal to ⟨k⟩, the choice depends on the application
at hand.

Appendix B. Second order estimation of the average effective con-
ductivity600

In order to illustrate the functional formalism, we carry out with this tool
the classical second order expansion of the effective conductivity (Dagan, 1989).
The Taylor expansion Eq. (10), gives directly a second order series expansion
that will provide the desired expansion after averaging:

⟨Keff ⟩ = ⟨k⟩ +
1

2
∫

Ω
dDr dDr′

δ2Keff

δk(r)δk(r′)
Ck(r

′
− r). (B.1)

The main task is to evaluate explicitly the second order functional derivative
that may be simplified in the following form, using Eq. (C.1) differentiated once
more time:

δ2Keff

δk(r) δk(r′)
=

1

∣Ω∣
2∇p0(r).∇

δp(r)

δk(r′)

In that equation, p0(r) is the non-perturbed potential. The derivative
δp(r)

δk(r′)
is given by Eq. (A.2). So, we get after substitution:

δp(r)

δk(r′)
=

1

⟨k⟩
∇G(r, r′) ⋅ ∇p0(r

′
). (B.2)

In that expression, G(r, r′) is the Green’s function of Laplace operator ∇2, this
explains the factor 1

⟨k⟩
. Note that due to the boundary conditions that break full

translational invariance of the system, this Green’s function does not depend
only on the argument (r − r′). Gathering these results in Eq. (B.1), and using
the fact that ∇p0(r) = ex, one obtains:

⟨Keff ⟩ = ⟨k⟩ −
1

⟨k⟩∣Ω∣
∫

Ω
dDr dDr′ ∇p0(r).∇

δp(r)

δk(r′)
Ck(r

′
− r)

= ⟨k⟩ −
1

⟨k⟩∣Ω∣
∫

Ω
dDr dDr′ ∂rx∂r′xG(r, r′)Ck(r

′
− r) (B.3)

Assuming that ∣Ω∣1/D is large compared with the integral scale I, one can re-
place G(r, r′) by the free space Green’s function G(r − r′). This is equivalent
to estimate the Green’s function assuming that the boundary conditions are
rejected at infinity.

Using the correlation function isotropy, the integral can be simplified using
a classical trace argument, yielding:

⟨Keff ⟩ = ⟨k⟩ −
1

⟨k⟩

1

D
Ck(r = 0).
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Up to the same order of approximation, this formula can be rewritten on a more
usual form as:

⟨Keff ⟩ = exp ⟨log(k)⟩e(
1
2−

1
D )Clogk(r=0).

For log normal media, this formula is equivalent to the LLM conjecture, Eq. (1).605

The second order expansion is thus recovered for large averaging volumes, with
a quite concise calculation.

Appendix C. Second order estimation of the variance of the effective
conductivity

The variance of the effective conductivity is given by

CKeff
(L) = ⟨K2

eff ⟩ − ⟨Keff ⟩
2
= ⟨(Keff − ⟨Keff ⟩)

2
⟩.

Using the Taylor expansion Eq. (10), and keeping only second order terms, one
gets dropping the averaging symbol ⟨⋯⟩ under the integral sign, a procedure that
is straightforward within the stochastic context Dagan (1989), Gelhar (1993),
Hristopulos (2020). The procedure would be different using a volume averaging
technique involving boundary of averaging-volume corrections, Hassanizadeh
and Gray (1979), Whitaker (2013):

CKeff
(L) = ∫

Ω
dDrdDr′ ⟨

δKeff

δk(r)

δKeff

δk(r′)
δk(r) δk(r′)⟩ + ...

The quantity
δKeff

δk(r)
can be written under a simple form:

δKeff

δk(r)
∇p

2
Ω,x ∣Ω∣ = ∇p(r)2. (C.1)

Derivation of Eq. (C.1) is straightforward using the variational characterization610

Eq. (9) that can be differentiated directly with respect to δk(r) ignoring the
implicit dependence of ∇p(r)2 with δk(r) that is known to vanish thanks to the
variational characterization. This Eq. (C.1) relates the influence of a local hy-
draulic conductivity change on Keff to the local potential gradient. This result
was already derived using similar methods by Jacquard (1965) and generalized615

to obtain shape derivatives of effective conductivity with respect to geometrical
shape of inclusions by Noetinger (2013). One can remark that in a location
where ∇p(r) = 0, the local conductivity has no influence at all on the large scale
conductivity: it is screened by other patterns that imply that there is no flow
at this location. This is a rather intuitive result.620

Thus using Eq. (C.1), we obtain:

CKeff
(L) =

1

∣Ω∣2
∫

Ω
dDrdDr′⟨

∇p(r)2

∇p
2
Ω,x

∇p(r′)2

∇p
2
Ω,x

δk(r) δk(r′)⟩ + ... (C.2)
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As we are seeking a second order expansion of the variance of effective con-

ductivity, the local quantity ∇p(r)2

∇p
2
Ω,x

(resp. ∇p(r′)2

∇p
2
Ω,x

) may be replaced by 1, getting:

CKeff
(L) =

1

∣Ω∣2
∫

Ω
dDrdDr′ ⟨δk(r) δk(r′)⟩. (C.3)

After averaging, introducing the pair correlation function Ck(r−r′) = ⟨δk(r) δk(r′)⟩
of the hydraulic conductivity fluctuations, we get a formula already obtained
by Rubin and Gómez-Hernández (1990), Sánchez-Vila et al. (1995), Wen and
Gómez-Hernández (1996):

CKeff
(L) =

1

∣Ω∣2
∫

Ω
dDrdDr′Ck(r − r′). (C.4)

Note that for small averaging volume size L compared to the integral scale I, this
formula gives by direct inspection CKeff

(L) = Ck(r = 0). On the other limit,
assuming that the unit volume size is very large compared to the underlying
integral scale, one gets the asymptotic behavior:

CKeff
(L) ≈

1

∣Ω∣
∫

Ω
dDrCk(r). (C.5)

For large L, one has the scaling :

LD

ID
CKeff

(L) ≈ ∫
Ω
dDr

Ck(r)

ID
. (C.6)

The factor LD/ID corresponds to the number of independent statistical units
that belong to volume Ω. This scaling corresponds thus to a central limit theo-
rem characterizing the emergence of a deterministic large scale effective conduc-
tivity. In other words, the system exhibits self averaging properties. Eqs. (C.4)
and (C.5) are solved for the particular case of the Gaussian covariance in Ap-625

pendix C.2.

Appendix C.1. Improved estimation of the variance, mean-field approximation

The preceding development is limited to small variances. In order to find an
improved approximation, one can use Eq. (C.2) written on an equivalent form:

⟨K2
eff ⟩−⟨Keff ⟩

2
=

1

∣Ω∣2
∫

Ω
dDrdDr′ ⟨

k(r)∇p(r)2

∇p
2
Ω,x

k(r′)∇p(r′)2

∇p
2
Ω,x

δk(r)

k(r)

δk(r′)

k(r′)
⟩+...

Now, one can replace k(r)∇p(r)2 and k(r′)∇p(r′)2 by their common average

value ⟨Keff ⟩∇p
2
Ω,x. So one gets:

⟨K2
eff ⟩ − ⟨Keff ⟩

2

⟨Keff ⟩
2

=
1

∣Ω∣2
∫

Ω
dDrdDr′⟨

δk(r)

k(r)

δk(r′)

k(r′)
⟩ + ...
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Up to this order of approximation, the result can be identified with the variance
of log(Keff) and the equation can be rewritten as:

ClogKeff
(L) = ⟨(log(Keff))

2
− ⟨log(Keff)⟩

2
⟩

=
1

∣Ω∣2
∫

Ω
dDrdDr′⟨δ log k(r) δ log k(r′)⟩ + ...

This equation, up to this order of approximation, is equivalent to Eq. (C.4), by
replacing every occurrence of a conductivity by the corresponding logarithm,
so:

ClogKeff
(L) =

1

∣Ω∣2
∫

Ω
dDrdDr′Clogk(r − r′). (C.7)

The resulting formula is similar to Eq. (C.4), replacing the covariance function
by the log conductivity covariance function. For the special case of lognormal
media, this is a quite natural transformation. The same can be done with the630

simplified formula (C.5).

Appendix C.2. Gaussian covariance case

In the isotropic Gaussian case, the covariance function is given by

Ck(r) = Ck(r = 0) e
− r2

2I2
c

The integral factorizes, and after changing variables x→ x/Ic, we obtain:

CKeff (L) = Ck(r = 0) (
Ic
L

)

2D

[∫

L/2Ic

−L/2Ic
∫

L/2Ic

−L/2Ic
dxdy e−

(x−y)2

2 ]

D

= Ck(r = 0) (
Ic
L

)

2D

{

√
π

2
∫

L/2Ic

−L/2Ic
dy [erf (

L/Ic − 2y

2
√

2
) + erf (

L/Ic + 2y

2
√

2
)]}

D

= Ck(r = 0) (
Ic
L

)

2D

[
√

2π
L

Ic
erf (

√
2
L

Ic
) + 2e

− L2

2I2
c − 2]

D

(C.8)

Considering small up-scaling volume, L small compared with Ic, we obtain
CKeff (L) = Ck(r = 0) as it should. In the opposite case, considering large up-
scaling volumes L provides

CKeff (L) ≃ Ck(r = 0) (
√

2π
Ic
L

)

D

This is a form of a central limit theorem for effective conductivity, quantifying
the variance reduction leading to convergence of the effective conductivity for
large averaging volume.635

Finally, using the simplified expression (C.5), one gets after integration:

CKeff
(L) ≃ Ck(r = 0) [

√
2π
Ic
L

erf (2
√

2
L

Ic
)]

D

(C.9)

It shares the same asymptotic behavior for extreme L than the exact (13). The
same calculations can be carried out for ClogKeff

(L) and give the same results
using Clogk(r = 0)) and the same spatial dependance.
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Appendix D. Second order evaluation of the average of block Kdiss

The block equivalent conductivity Kdiss(ϑ) is given by Eq. (15). Decom-
posing the conductivity as k(r) = ⟨k⟩ + δk(r), one can carry-out a second order
expansion of Kdiss(ϑ):

Kdiss(ϑ) =
∫ϑ d

Dr(⟨k⟩ + δk)(∇(p0 + δp)
2

λD∇(p0 + δp)
2

.

This formula must be expanded up to second order in a series expansion of δk.
Note that the technique that was presented in Appendix B cannot be followed
directly because the variational formulation is efficient at the scale of the whole
Ω only, not on every subvolume ϑ. In order to simplify notations, we introduce
δp(r) as the first order variation due to a variation δk(r). The numerator can
be expanded up to second order, discarding third order terms to yield:

∫
ϑ
dDr (⟨k⟩ + δk) (∇(p0 + δp))

2
≃ ∫

ϑ
dDr (⟨k⟩ + δk) (1 + 2∇p0 ⋅ ∇δp)+

+ ∫
ϑ
dDr⟨k⟩ (∇δp)

2
. (D.1)

An analogous calculation can be carried out for the denominator, recalling
that ∇p0(r

′) = ex:

λD∇(p0 + δp)
2
= λD (∇(p0)

2
+ 2∇p0 ⋅ ∇δp +∇δp

2
) = λD (1 + 2∇p0 ⋅ ∇δp +∇δp

2
)

(D.2)
Combining Eq. (D.1) and the second order expansion of Eq. (D.2), many can-
cellations occur, yielding still at same order of approximation:

Kdiss(ϑ) = k +
1

λD
[2∫

ϑ
dDr δk (∇p0 ⋅ ∇δp −∇p0 ⋅ ∇δp) +

+⟨k⟩∫
ϑ
dDr ((∇δp)2

−∇δp
2
)]

One has in the general case ∇p0 = ∇p0 = ex. It can be observed that in the case
of small averaging volume ϑ, Kdiss(ϑ) = k(r) as it should: all the contributions
cancel each other, because in that limit a volume average is equal to the local
value: ∇δp = ∇δp. Further simplifications can be obtained using Green’s formula
on the term ⟨k⟩ ∫ϑ d

Dr(∇δp)2 combined with Eq. (A.1) that drives δp, yielding:

Kdiss(ϑ) = k +
1

λD
∫
ϑ
dDr δk∇p0 ⋅ ∇δp −

−
1

λD
(2∫

ϑ
dDr δk∇p0 ⋅ ∇δp + ∫

ϑ
dDr⟨k⟩∇δp

2
)+

+
⟨k⟩

λD
∫
∂ϑ
dD−1r δp∇δp ⋅ n +

1

λD
∫
∂ϑ
dD−1r δk δp∇p0 ⋅ n. (D.3)
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We obtain after statistical averaging:

⟨Kdiss(ϑ)⟩ = ⟨k⟩ −
1

λD
∫
ϑ
dDr∫

Ω
dDr′∇p0(r).∇

δp(r)

δk(r′)
C(r′ − r)−

−
1

λD
∫
ϑ
dDr (2⟨δk∇p0 ⋅ ∇δp⟩ + ⟨k⟩⟨∇δp

2
⟩)+

+
⟨k⟩

λD
∫
∂ϑ
dD−1r⟨δp∇δp ⋅ n⟩ +

1

λD
∫
∂ϑ
dD−1r⟨δk δp⟩∇p0 ⋅ n.

Using
δp(r)

δk(r′)
=

1

⟨k⟩
∇ ⋅ [G(r, r′)∇p0(r

′
)],

and combining this result with Eq. (D.2), one obtains:

⟨Kdiss(ϑ)⟩ = ⟨k⟩ −
1

⟨k⟩lD
∫
ϑ
dDr∫

Ω
dDr′∂rx∂r′xG(r, r′)Ck(r

′
− r)−

−
1

λD
∫
ϑ
dDr(⟨2δk∇p0 ⋅ ∇δp⟩ + ⟨k⟩⟨∇δp

2
)⟩+

+
⟨k⟩

λD
∫
∂ϑ
dD−1r⟨δp∇δp ⋅ n⟩ +

1

λD
∫
∂ϑ
dD−1r⟨δk δp⟩∇p0 ⋅ n.

(D.4)

It can be checked by direct inspection that first line of this formula compares640

well with Eq. (B.3). The other contributions are finite size effects that cancel if
ϑ = Ω. They explain the observed differences in the numerical tests. If ϑ tends
to zero, ⟨Kdiss(ϑ)⟩ = ⟨k⟩.
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Wen, X.H., Gómez-Hernández, J.J., 1996. Upscaling hydraulic conductivities
in heterogeneous media: An overview. Journal of Hydrology 183, 9–32.

Whitaker, S., 2013. The method of volume averaging. volume 13. Springer880

Science & Business Media.

38



Willot, F., Jeulin, D., 2009. Elastic behavior of composites containing boolean
random sets of inhomogeneities. International Journal of Engineering Science
47, 313–324.

Wood, B.D., Valdés-Parada, F.J., 2013. Volume averaging: Local and non local885

closures using a Green’s function approach. Advances in Water Resources 51,
139 – 167. 35th Year Anniversary Issue.

Wu, B., Liu, Z.F., Wang, X.H., 2013. Statistical behaviors for renormalization
of correlated permeability field. Physica A: Statistical Mechanics and its
Applications 392, 3115 – 3121.890

Zheng, X.L., Liu, Z.F., Wang, X.H., Shi, A.F., 2017. Calculating the intern-
odal transmissibilities using finite analytic method and its application for
multi-phase flow in heterogeneous porous media. International Journal for
Numerical and Analytical Methods in Geomechanics 41, 79–92.

Zhou, X.Y., Gosling, P., Pearce, C., Kaczmarczyk, L., Ullah, Z., 2016.895

Perturbation-based stochastic multi-scale computational homogenization
method for the determination of the effective properties of composite ma-
terials with random properties. Computer Methods in Applied Mechanics
and Engineering 300, 84 – 105.

39


	Introduction
	Previous results
	Keff probability distributions
	Upscaling formulations and numerical implementations
	Objectives

	Geometry, driving equations and notations
	Geometry and local equations
	Classical Darcian definition of the effective conductivity

	Effective conductivity and viscous dissipation
	A variational characterization of Keff.
	Functional expansion techniques for the effective conductivity

	Estimation of the variance of the effective conductivity at second order.
	A posteriori multiscale estimators of Keff distributions
	Dissipation estimator
	Definition of the estimator
	Evaluation of the variance of block dissipation conductivity Kdiss

	Block average conductivity estimator

	Numerical methodology
	Generation of media samples
	Potential field calculation
	Implementation of the permeameter scheme
	Implementation of the dissipation scheme
	Implementation of the block average conductivity scheme

	Results
	Comparison of the different analytical expressions for CKeff() with numerical results
	Lognormal media
	Probability density function of the different estimators
	Scale dependence of the mean and variance of Keff

	Binary media
	Probability density functions of the Keff estimators
	Scale dependence of the mean and variance of Keff


	Summary, discussion and perspectives
	Functional differentiation
	Second order estimation of the average effective conductivity
	Second order estimation of the variance of the effective conductivity 
	Improved estimation of the variance, mean-field approximation
	Gaussian covariance case

	Second order evaluation of the average of block Kdiss

