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1	Introduction
Instrumentations	designed	to	analyze	the	composition	of	the	thermal	desorbed/pyrolyzed	hydrocarbons	from	the	artificial	maturation	of	organic	matter	have	been	used	for	decades.	Lattimer	(1993)	performed	one	of	the	first

thermal	desorption/decomposition	 experiments	 coupled	with	mass	 spectrometry	 (TD-MS)	 to	 identify	 residual	 volatile	 chemicals,	 organic	 additives	 and	degradation	products	 of	 several	 polypropylene	 compounds.	Since	 then,	many

thermal	desorption	experiments	coupled	with	gas	chromatography	(GC)	and/or	mass	spectrometry	analysis	have	been	performed.	Most	have	used	a	simple	thermally	isolated	furnace	directly	connected	to	a	gas	chromatography	inlet

followed	by	a	FID	and/or	MS	detection.	TD-GC-FID-MS	has	been	demonstrated	to	be	a	versatile	system	with	many	applications	in	petroleum	geochemistry	including,	source	rock	kerogen	and	asphaltene	characterization	(e.g.,	Larter

and	Horsfield,	1993;	Zhang	et	al.,	2016,	2017)	and	fossil	fuel	kinetics	(e.g.,	Seeley	et	al.,	2018	Larter	and	Douglas,	1982;	Tang	and	Stauffer,	1994).	TD-GC-FID-MS	has	also	found	wider	applications	in	environmental	studies	where	it	has

been	used	to	assess	the	impact	of	oil	pollution	(e.g.,	Otto	et	al.,	2015;	Harshman	et	al.,	2017;	Seeley	et	al.,	2018),	and	the	consequence	of	oil	spills	on	human	health	(e.g.,	Shultz	et	al.,	2014),	coastal	restoration	(e.g.,	Zengel	et	al.,

2015),	marine	species	effects	(e.g.,	Wilson	et	al.,	2014),	and	microbial	ecology	(e.g.,	King	et	al.,	2015).	It	is	a	key	tool	in	characterizing	microplastic	contaminants	in	the	environment	(e.g.,	Nuelle	et	al.,	2014;	Yanagisawa	et	al.,	2018;

Duemichen	et	al.,	2019;	Rios	Mendoza	and	Balcer,	2019).	Other	applications	have	been	made	in	the	characterization	of	soil	organic	matter	(e.g.,	Leinweber	and	Schulten,	1999)	and	radiocarbon	dating	(e.g.,	Rosenheim	et	al.,	2013).

Many	customized	instrument	configurations	have	been	designed	for	specific	applications.	For	example,	compositional	analysis	of	organic	volatiles	in	fluid	inclusions	requires	the	decrepitation	of	the	mineral	matrix.	This	has

been	accomplished	by	various	systems	including	an	on-line	crushing,	thermal	expansion,	and	laser	ablation	(Volk	and	George,	2019).	Otto	et	al.	(2015)	interfaced	a	thermal	desorption/pyrolysis	unit	to	a	gas	chromatography	that	split
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Abstract

The	Rock-Eval®	device	has	been	widely	used	to	identify	the	type	and	the	thermal	maturity	of	sedimentary	organic	matter	as	well	as	quantifying	the	total	organic	carbon	content.	Traditionally,	it	is	a	screening	tool	to

estimate	the	petroleum	generation	potential	of	source	rocks	using	standardize	parameters.	More	recently,	a	new	Rock-Eval®	method	(Shale	Play™)	was	proposed	to	investigate	the	hydrocarbon	content	in	liquid-rich	tight

rock	samples.	In	this	study,	we	describe	a	dual	vacuum	and	on-line	system	that	was	developed	to	recover	most	compounds	that	are	thermally	released	during	a	Rock-Eval®	Shale	Play™	analysis.	Thermally	vaporized	products

are	divided	so	that	half	is	analyzed	by	the	Rock-Eval®	flame	ionization	detector	(FID)	while	the	other	portion	is	cryogenically	trapped	in	the	on-line	recovery	system.	The	trapped	products	can	then	be	transferred	via	a	vacuum

line	system	into	a	sample	vial	for	subsequent	molecular	and/or	isotopic	composition	analyses.	The	recovery	vacuum	line	volumes	were	calibrated	using	known	quantities	of	gas	(CH4	and	CO2).	Sample	transfer	from	without

isotopic	fractionation	was	demonstrated	for	CO2	evolved	from	Rock-Eval®	preparation	of	pure	carbonate	standards	(siderite,	magnesite	and	azurite).	Recovery	efficiencies	were	first	measured	on	C8-C16	n-alkane	standards

and	then	on	produced	oil	samples.	Results	 indicate	a	high	quantitative	recovery	and	an	accurate	mass	balance	of	most	compounds	released	during	the	Shale	Play™	Sh0	thermovaporization	step	 (100–200 °C).	 Thermally

vaporized	compounds	released	at	higher	temperatures	Sh1	(200–350 °C)	are	recovered	at	 lower	efficiencies	but	are	still	suitable	for	subsequent	characterization.	The	coupled	Rock-Eval®	and	recovery	system	could	have

applications	beyond	petroleum	geochemistry.
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the	effluent	to	two	mass	spectrometers,	one	using	photon	ionization	and	the	other	using	electron	ionization,	allowing	for	the	simultaneous	detection	of	both	parent	ion	and	ion	fragment	spectra.	The	system	was	used	to	investigate

polycyclic	aromatic	hydrocarbon	(PAHs)	pollutants	and	their	degradation	within	dissolved	organic	matter	(DOM)	in	the	Baltic	Sea.	Kano	et	al.	(2015)	set	up	an	analytical	pyrolysis	device	that	allowed	for	the	measurement	of	the	less

volatile	pyrolyzates	consisting	of	a	vertical	microfurnace	pyrolyzer	and	a	movable	pyrolysis	tube,	which	allowed	the	less	volatile	pyrolyzates	to	be	trapped	in	the	lower	part	that	could	then	be	flushed	with	a	solvent	for	offline	analysis.

Nsaful	et	al.	(2015)	used	a	thermogravimetric	analyzer	(TGA)	to	thermally	degrade	lignocellulose	with	the	volatilized	pyrolyzates	trapped	and	subsequently	analyzed	by	GC–MS.

In	this	study,	we	describe	a	new	analytical	system	that	interfaces	a	Rock-Eval®	device	with	a	dual	vacuum	and	on-line	recovery	system.	Rock-Eval®	has	been	widely	used	over	the	last	forty	years	to	identify	the	thermal	maturity,

the	 total	organic	carbon	 (TOC)	content	and	 the	 type	of	organic	matter	 (OM)	within	sedimentary	rock	samples.	 It	 is	 the	primary	screening	 tool	 to	characterize	rocks	 for	 their	petroleum	generation	potential	 (Espitalié	 et	al.,	1977;

Espitalié	et	al.,	1986;	Behar	et	al.,	1997;	Lafargue	et	al.,	1998;	Behar	et	al.,	2001).	Modified	thermal	thermovaporization	and	pyrolysis	programs	have	been	developed	and	applied	to	evaluate	the	properties	of	various	investigated

samples	(e.g.	Abrams	et	al.,	2017;	Inan	et	al.,	2018).	The	Shale	Play™	method	developed	by	IFPEN	in	2014	is	a	specific	Rock-Eval®	pyrolysis	program	dedicated	to	the	characterization	of	liquid-rich	rocks	to	better	assess	the	in-situ

liquid	hydrocarbons	still	present	within	low	permeability	shales,	tight	sandstones	and	carbons,	and	other	solid	materials.	This	method	generates	new	Rock-Eval®	parameters	(Sh0,	Sh1	and	Sh2	peaks)	that	can	be	used	to	obtain	better

quantifications	of	free	and	adsorbed	liquid	hydrocarbons,	more	accurate	Rock-Eval®™	Tmax	values,	and	estimations	of	the	original	oil	in	place	(Fig.	1;	Romero-Sarmiento	et	al.,	2014,	2016a,b,	2017,	Romero-Sarmiento,	2019).	Selective

solvent	 extractions	 showed	 that	 Sh2	 is	 dominated	 by	 nonvolatile	 polar	 compounds	 and	 asphaltenes	 that	 behave	 similar	 to	 kerogen	 (Romero-Sarmiento	 et	 al.,	 2016b).	 The	 chemical	 composition	 of	 both	 Sh0	 and	 Sh1	 peaks	 was

determined	by	reproducing	 the	Shale	Play™	 temperature	program	 in	a	 thermal	desorption	device	directly	coupled	 to	a	gas-chromatography	using	dual	mass	 spectrometry	and	 flame	 ionization	detection	 (TD-GC-FID-MS;	Romero-

Sarmiento	 et	 al.,	 2016a).	 Sh0	 (100–200 °C)	 is	 comprised	 by	 free	 and	 sorbed	 low-to-medium	molecular	weight	 thermovaporized	 hydrocarbons	 (20),	whereas	 Sh1	 (200–350 °C)	 is	 comprised	 by	medium	 and	 high	molecular	 weight

thermovaporized	compounds	(∼C12	to	C30).

The	 system	 described	 below	 utilizes	 a	 Rock-Eval®	 device	 coupled	 to	 a	 dual	 vacuum	 and	 on-line	 recovery	 system.	 This	 allows	 simultaneous	 determination	 of	 the	 Shale	 Play™	 parameters	 and	 subsequent	 chemical

characterization	 of	 the	 released	 hydrocarbons	 from	 the	 same	 sample,	 thereby	 eliminating	 any	 bias	 that	 could	 arise	 from	 conducting	 independent	 analyses	 on	 different	 samples.	 For	 instance,	 source	 rocks	 can	 be	 extremely

heterogeneous	and	while	efforts	can	be	made	to	homogenous	a	samples,	uncertainties	arising	from	sub-samples	remain.	The	main	objective	of	this	work	was,	therefore,	to	develop	a	recovery	system	interfaced	directly	with	a	Rock-

Eval®	device.	The	advantage	of	this	analytical	system	lies	in	(a)	the	recovery	of	most	compounds	released	during	a	Rock-Eval®	analysis	in	gaseous	or	liquid	phase	(in	solvent),	(b)	the	possibility	to	store	the	recovered	compounds	for

subsequent	off-line	analyses	using	different	 techniques	 (e.g.	GC-FID/MS,	GC-C-IRMS),	 (c)	 the	capability	 to	select	a	specific	compound	either	by	separating	and	using	different	cold	 traps,	or	by	changing	 the	pyrolysis	 temperature

program	and	(d)	the	simultaneous	acquisition	of	Rock-Eval®	parameters.

2	On-line	recovery	system	coupled	to	a	Rock-Eval®	device
In	this	study,	we	describe	an	analytical	system	designed	to	recover,	purify,	concentrate	and	re-sample	compounds	released	during	a	Rock-Eval®	analysis	(Fig.	2;	Romero-Sarmiento	et	al.,	2019).	The	first	design	section	consists

Fig.	1	Rock-Eval®	Shale	Play™	Sh0	and	Sh1	parameters	obtained	from	whole-rock	sample	and	its	corresponding	organic	matter	(OM)	concentrate	isolated	by	standard	non-oxidizing	acid	trea™ (treatments	)ents	and	drying	procedures.	An	analytical	approach

to	predict	both	free	versus	sorbed	hydrocarbon	contents	in	liquid-rich	source	rocks	(modified	from	Romero-Sarmiento,	2019).



of	a	U-trap	that	can	be	connected	to	or	isolated	from	the	Rock-Eval®	device	and	the	vacuum	transfer	line	system.	This	is	constructed	of	1/4 in.	stainless	steel	Swagelok	tubing	and	two	three-ways	valves	(Valves	V1	and	V2,	Fig.	2).	The

U-tube	condenses	thermally	desorbed/decomposed	products	from	the	Rock-Eval®	over	a	temperature	interval.	The	nitrogen	carrier	gas	flow	from	the	Rock-Eval®	device	fixed	at	100 µL/min	was	previously	controlled	and	split	into	two

equal	parts	(50/50).	A	two-way	valve	(V3)	isolates	the	U-tube	condenser	from	the	rest	of	the	vacuum-line	system	that	is	used	to	purify	and	separate	all	compounds	recovered	in	the	U-trap.	This	section	is	constructed	from	stainless	steel

VCR	Swagelok	tubing	and	VCR	Swagelok	sealed	valves	(V3	to	V12)	gaskets.	It	includes	two	gas	traps	(T1	and	T2,	with	and	without	silica	gel	respectively)	and	a	sample	recovery	port	for	collecting	liquid	in	a	glass	vial	that	is	also	cooled

with	liquid	nitrogen.	The	entire	unit	can	be	evacuated	by	both	primary	rough	and/or	secondary	turbo	pumps,	monitored	by	a	vacuum	Pfeiffer	gauge.	Like	the	U-trap,	it	can	be	heated	to	150 °C	to	facilitate	the	release	and	quantitative

transfer	of	less	volatile	compounds.

During	a	Rock-Eval®	analysis,	the	nitrogen	carrier	gas	bearing	the	released	organic	compounds	is	split	to	the	FID	to	obtain	Rock-Eval®	parameters	and	the	U-trap	cooled	with	liquid	nitrogen	while	isolated	from	the	rest	of	the

vacuum	line.	Depending	on	the	analytical	purpose,	the	U-trap	can	be	connected	during	the	complete	pyrolysis	cycle	or	only	during	a	selected	part	of	the	thermovaporization	and/or	pyrolysis	program.	When	the	Rock-Eval®	analysis	is

completed,	the	U-trap	is	isolated	from	the	Rock-Eval®	device	and	connected	to	the	vacuum	line	where	the	evolved	gases	can	be	purify	between	cold	traps	T1	and	T2	and	the	gas/liquids	can	be	recovered	for	off-line	analysis.

2.1	Calibration	and	validation	of	the	vacuum	line	volumes
Several	 tests	were	performed	using	CO2	and	CH4	gas	standards	to	check	 for	 leaks	and	to	calibrate	the	segmented	volumes	through	the	entire	 trapping	and	vacuum	transfer	system.	Samples	of	pure	gas	CO2	or	CH4	were

introduced	into	the	vacuum-line	part	from	glass	vials	at	the	sampling	location	(T2;	Fig.	2)	and	then	sequentially	trapped	and	released	in	the	different	parts	of	the	vacuum	line	(T1	and	U-trap)	to	test	and	calibrate	the	different	volumes	of

the	vacuum	line	(Fig.	2).	Results	from	the	vacuum	line	volume	calibration	tests	performed	using	CO2	standards	are	illustrated	in	Fig.	3	and	the	raw	data	are	presented	in	Table	1.	Fig.	3	shows	the	three	different	volumes	studied	through

the	vacuum	line	(volumes	A,	B	&	C)	illustrating	the	relationship	between	the	pressure	values	obtained	with	the	Pfeiffer	gauge	within	the	vacuum	line	and	the	different	amount	of	CO2	introduced.	These	three	plots	(Fig.	3)	show	an

excellent	correlation	between	the	increase	of	CO2	amount	and	the	pressures	in	the	vacuum	line	(R2	between	0.996	and	0.997).	For	each	different	CO2	amount	introduced	in	the	vacuum	line	(five	different	amounts	between	191	and	623

μmoles;	Table	1),	three	analyses	were	performed	and	showed	a	reproducibility	better	than	±2%.	In	addition,	the	initial	pressure	(Pinitial)	obtained	at	the	beginning	and	the	end	of	each	analysis	in	the	same	volume	of	the	vacuum	line

indicates	a	complete	sample	recovery	(ΔPinitial:	100%	±	1%;	Table	1).

Fig.	2	Analytical	design	of	the	dual	vacuum	and	on-line	recovery	system	coupled	to	a	Rock-Eval®	device.



Table	1	Validation	of	the	vacuum	line	volumes:	Results	from	CO2	tests.

CO2 Vacuum	line	system

Amount Pinitial PB PC Pinitial Δ	Pinitial

(µmole) (mbar) (mbar) (mbar) (mbar) (%)

191 54.6 54.2 56.1 54.7 100

191 53.5 53.3 55.2 53.7 100

191 54.5 54.2 56.2 54.8 101

54.2 ± 0.5 53.9 ± 0.4 55.8 ± 0.4 54.4 ± 0.5 –

329 95.2 94.1 97.4 95 100

326 91.7 90.6 93.5 91.6 100

Fig.	3	Validation	of	the	vacuum	line	volumes	showing	pressure	variation	obtained	with	the	Pfeiffer	gauge	as	a	function	of	the	different	CO2	mass	introduced	into	the	volumes	A,	B	and	C.



329 91.7 90.7 93.9 91.7 100

92.9 ± 1.6 91.8 ± 1.5 94.9 ± 1.6 92.8 ± 1.5 –

458 126.5 124.7 129 125.7 99

457 123.9 121.5 125.8 123.1 99

459 127.2 125.3 129.6 126.8 100

125.9 ± 1.3 123.8 ± 1.6 128.1 ± 1.6 125.2 ± 1.4 –

533 155.4 153.9 159.4 155.4 100

534 152.3 150.9 156.4 152.2 100

531 151.4 149.9 155.3 151.2 100

153.0 ± 1.6 151.6 ± 1.6 157.0 ± 1.6 152.9 ± 1.6 –

623 175.4 173.4 179.5 175.5 100

623 172.8 171.3 177.3 173 100

623 175.9 174.9 181 176.4 100

174.7 ± 1.3 173.2 ± 1.3 179.3 ± 1.3 175.0 ± 1.3 –

Results	from	CH4	standards	tests	performed	on	the	vacuum	line	are	showed	in	the	Fig.	4	and	the	raw	data	presented	in	Table	2.	For	CH4	 tests,	Fig.	4	only	shows	 the	 two	different	volumes	studied	 through	 the	vacuum	 line

(volumes	A	&	B)	illustrating	the	relationship	between	the	pressure	values	obtained	with	Pfeiffer	gauge	within	the	vacuum	line	and	the	different	amount	of	CH4	introduced.	The	obtained	results	from	CH4	tests	also	confirmed	the	volume

validation	performed	by	CO2	standards,	showing	(i)	a	good	correlation	between	the	increase	of	CH4	amount	and	the	pressures	in	the	vacuum	line	(R2	comprise	between	0.97	and	0.98),	(ii)	a	good	reproducibility	of	all	data	for	the

different	CH4	amounts	introduced	in	the	vacuum	line	(better	than	±2%,	Table	2),	and	(iii)	a	good	recovery	percentage	between	initial	pressure	(Pinitial)	obtained	at	the	beginning	and	the	end	of	each	analysis	in	the	same	volume	A	of	the

vacuum	line	(Δ	Pinitial:	100%	±	1%;	Table	2).



Table	2	Validation	of	the	vacuum	line	volumes:	Results	from	CH4	tests.

CH4 Vacuum	line	system

Amount Pinitial PA Δ	Pinitial

(µmole) (mbar) (mbar) (%)

205 58.0 59.1 100

205 57.0 57.8 100

205 56.9 57.9 101

57.3 ± 0.5 58.3 ± 0.6

396 114.2 116.8 100

407 115.1 117.8 100

396 113.6 115.6 100

114.3 ± 0.5 116.7 ± 0.8

746 212.3 216.6 100

744 211.7 216.1 100

741 210.9 215.2 100

211.6 ± 0.5 216.0 ± 0.5

2.2	Validation	of	the	vacuum	line	transference	without	isotopic	fractionation
Varying	amount	of	two	CO2	gas	standard	references	with	different	δ13C	values	were	transferred	between	the	system	volumes	and	then	analyzed	by	gas	chromatography	conversion	isotope-ratio	mass	spectrometer	(GC-C-IRMS;

Fig.	5	and	Table	3).	All	tests	report	similar	δ13C	values	compare	to	direct	measurements	of	the	CO2	gas	standards	(<±0.6‰),	with	a	low	standard	deviation	calculated	from	at	least	three	measurements	and	a	good	reproducibility	for

each	sample	and	amount	(±0.2‰).	These	calibration	results	confirm	that	the	developed	vacuum-line	system	is	well	designed	to	quantitatively	trap	and	recover	gaseous	species	for	carbon	isotopic	analysis	without	fractionation.

Table	3	δ13C	values	of	the	recovered	CO2	after	vacuum	line	volume	calibration	tests.

CO2 Vacuum	line	system

Fig.	4	Validation	of	the	vacuum	line	volumes	showing	pressure	variation	obtained	with	the	Pfeiffer	gauge	as	a	function	of	the	different	CH4	mass	introduced	into	the	volumes	A	and	B.

Fig.	5	δ13C	values	of	the	recovered	CO2	after	vacuum	line	volume	calibration	tests	comparing	to	the	reference	isotopic	signature.



Amount δ13C σ* Expected	δ	13C

(µmole) (‰) (‰) (‰)

191 −27.96 0.07 −27.7

191 −28.11 0.11

458 −28.24 0.16

457 −28.41 0.11

205 −40.27 0.33 −39.7

205 −39.73 0.14

205 −39.70 0.16

396 −39.73 0.09

407 −39.72 0.14

396 −39.70 0.08

*σ	was	calculated	from	triplicate	δ13C	measurements

2.3	Validation	of	the	on-line	recovery	system	coupled	to	a	Rock-Eval®	device
In	order	to	validate	the	on-line	part	of	the	system	coupled	to	the	Rock-Eval®	device,	three	mineral	standards,	magnetite,	siderite	and	azurite,	were	analyzed	as	previously	described	by	Pillot	et	al.	(2014).	These	carbonates	have

different	thermal	stability	and	will	release	CO2	at	different	temperature	steps	during	the	Rock-Eval®	analysis.

The	CO2	generated	from	the	Rock-Eval®	pyrolysis	of	these	carbonate	samples	was	quantified	in	the	vacuum	line	using	the	previously	calibrated	volumes	C	(Fig.	6).	The	CO2	was	then	purified	and	recovered	for	GC-C-IRMS

analysis	(Fig.	7;	Table	4).

Fig.	6	Validation	of	the	on-line	volume	coupled	to	the	Rock-Eval®	device	showing	pressure (Please	replace	pressure	by	CO2)	variation	obtained	with	the	Pfeiffer	gauge	as	a	function	of	the	different	carbonates	mass	introduced	into	the	Rock-Eval®	device.



Table	4	Raw	data	of	vacuum	line	quantification	and	isotopic	measurement	by	GC-C-IRMS	analysis	of	carbonates	standards	(siderite,	magnesite,	azurite).

Dual	vacuum	and	on-line	system GC-C	IRMS

Sample Amount PB Concentration δ13C σ

(mg) (mbar) (µmole/mg) (‰) (‰)

Siderite 48 42 146 −11.79 0.11

55 42.6 148 −11.82 0.18

104 85.4 296 −11.94 0.12

102 86.6 300 −11.76 0.09

Azurite 49 41.3 143 3.03 0.06

49 41.3 143 2.89 0.15

100 79.5 276 2.95 0.04

101 80.1 277 2.90 0.10

Magnesite 85 79 274 −3.82 0.04

110 107 371 −3.81 0.03

153 146 506 −3.84 0.03

Fig.	 6	 shows	 a	 good	 correlation	 between	 different	 carbonates	 amount	 analyzed	 on	 the	 Rock-Eval®	 (R2	 at	 0.99	 in	 each	 case)	 and	 the	 pressures	 in	 the	 vacuum	 line	 (Table	 4),	 similar	 to	 the	 calibrations	 presented	 above.

Reproducibility	of	all	data	is	better	than ± 2%.	These	results	show	that	the	on-line	recovery	system	coupled	to	the	Rock-Eval®	device	is	well	designed	to	quantitatively	trap	and	recover	gaseous	species	released	from	the	Rock-Eval®	for

quantification	and	carbon	isotopic	analysis.

3	Application	to	the	Shale	Play™	method
The	dual	vacuum	and	on-line	system	coupled	to	a	Rock-Eval®	was	tested	using	several	n-alkane	standards	(octane,	decane,	tetradecane,	and	hexadecane)	using	the	Shale	Play™	temperature	program.	These	n-alkanes	were

selected	to	specifically	focus	on	the	100 °C	to	350 °C	temperature	range	spanned	by	the	Sh0	and	Sh1	peaks.	Following	procedures	described	in	Romero-Sarmiento	et	al.	(2016a),	several	aliquots	of	n-alkanes	were	weighed	in	Rock-

Eval®	crucibles	filled	with	silica.	A	part	of	the	hydrocarbons	released	during	the	Rock-Eval®	temperature	program	passed	through	the	U-trap	where	they	are	trapped	while	the	rest	of	the	vacuum	recovery	system	remains	isolated.

When	the	temperature	reaches	350 °C,	the	U-trap	was	isolated	from	the	Rock-Eval®	device,	heated	to	150 °C	to	facilitate	transfer,	and	connected	to	the	vacuum	line	section	where	it	is	collected	in	an	evacuated	glass	vial	cooled	with

Fig.	7	δ13C	values	of	carbonates	standards	(siderite,	magnesite,	azurite)	obtained	by	GC-C-IRMS	analyses	from	vacuum	line	recovery	system.



liquid	nitrogen.	When	the	 transfer	was	completed,	 the	glass	vial	containing	 the	recovered	 fraction	was	disconnected	 from	the	vacuum	line,	 rinsed	with	solvent	and	analyzed	by	a	 liquid	gas	chromatograph.	Rock-Eval®	FID	signal

normalized	by	the	initial	mass	for	each	pure	n-alkane	are	presented	in	the	Fig.	8	and	the	raw	data	as	well	as	the	percentage	of	organic	compounds	recovery	calculated	from	GC	traces	chromatogram	are	listed	in	Table	5.

Table	5	Pure	n-alkane	recovery	through	the	developed	on-line	system	coupled	to	Rock-Eval®	device	showing	loss	and	correction	factor	associated	with	the	evaporation	of	the	investigated	pure	n-alkanes.

n-alkanes Initial	Amount	(mg) Recovered	Amount	(mg) Recovery	(%) %Loss	to	evaporation*	(%) %Recovery	correct	for	evaporation	(%)

Octane 7.60 6.58 87 24.7 99

Decane 8.43 6.68 79 5.3 81

Tetradecane 7.77 6.13 78 1.1 79

Hexadecane 8.3 6.01 72 0.2 72

* Loss	from	evaporation	occurring	during	solvent	extraction	of	trapped	n-alkanes.

Measured	recoveries	of	the	n-alkanes	ranged	from	72	to	87%	(Table	5)	and	is	dependent	on	volatility,	with	the	lowest	molecular	weight	species	showing	the	lowest	recovery.	However,	a	portion	of	the	n-alkanes	is	known	to	be

lost	from	evaporation	as	the	trapping	vial	is	extracted	with	solvent	in	the	open	air.	The	amount	of	evaporative	loss	was	measured	from	vials	prepared	with	∼4 mg	of	each	n-alkane	and	solvent	extracted.	As	expected,	n-C8,	the	most

volatile	hydrocarbon,	experiences	the	greatest	lose	to	evaporation	while	nearly	all	of	the	n-C16	was	recovered	(Table	5).	Accounting	for	evaporation,	the	corrected	recoveries	range	from	99%	of	n-C8	to	a	low	of	72%	for	n-C16.	These

results	indicate	that	some	of	the	higher	molecular	weight	compounds	evolving	from	the	Rock-Eval®	device	condense	in	the	vacuum	lines	and	are	not	trapped	in	the	sampling	vials.	The	recovery	factor	is	most	likely	proportional	to	the

boiling	point	of	a	compound	under	vacuum.

The	system	was	also	tested	to	investigate	the	hydrocarbons	released	during	the	Rock-Eval®	Shale	Play™	analysis	of	produced	oil	samples.	A	39	°API	oil	was	prepared	following	the	same	method	used	for	the	n-alkane	standards

and	then	thermally	vaporized	from	100	to	350 °C	(Sh0 + Sh1	peaks)	into	the	U-tube	trap.	The	lightest	molecular	n-alkanes	(15)	are	mainly	released	at	the	Sh0	temperature	range	(100 °C	to	–200 °C).	Medium	molecular	weight	n-alkanes

(>C15)	are	released	at	both	Sh0	and	Sh1	temperature	range	(100 °C	to	350 °C;	Fig.	9).	The	trapped	material	was	then	transferred	to	the	vacuum	line	system	and	re-trapped	into	a	glass	vial	immersed	in	liquid	nitrogen.	A	solvent	extract

of	 the	sample	vial	was	analyzed	by	GC-FID	and	compared	 to	 the	 initial	oil	composition	 (Fig.	9).	Good	recovery	(∼70	 to	 –90%)	of	most	of	 the	 low-molecular	weight	hydrocarbons	 released	 in	 the	Sh0	and	Sh1	 temperature	 range	 is

observed.	For	this	oil	sample,	the	percentage	of	the	compound	recovery	is	similar	comparing	to	those	obtained	for	pure	n-alkane	samples	(i.e.	comprises	to	70%	and	90%).	The	observed	losses	are	mainly	with	the	heaviest	compounds

(>C15).	This	behavior	is	probably	due	to	the	retention	of	the	high-molecular	weight	compounds	in	the	dual	vacuum	on-line	system.	It	should	be	noted	that	some	of	the	hydrocarbons	between	C18	and	C23	are	missing	(Fig.	9).	This	is

Fig.	8	Rock-Eval®	FID	signals	between	100	and	350 °C	normalized	by	the	initial	mass	for	pure	n-alkane	standards:	decane,	tetradecane	and	hexadecane.



probably	related	to	the	imposed	plateaus	at	200 °C	for	3 min	to	obtain	a	better	separation	of	Sh0	and	Sh1	peaks	during	the	Rock-Eval®	Shale	Play™	analysis.	Nevertheless,	the	GC	analysis	of	the	recovered	oil	fraction	provides	a	good

qualitative	assessment	and	characterization	of	the	low	and	high-molecular	thermovaporized	compounds	(32).

4	Conclusions
A	dual	vacuum	and	on-line	system	was	developed	to	recover	and	identify	compounds	thermally	released	during	a	Rock-Eval®	analysis	of	liquid	and	solid	samples.	This	system	was	developed	to	provide	from	the	analyzed	sample

both	the	Rock-Eval®	Shale	Play™	parameters	and	the	thermal	vaporized	(100–350 °C)	materials	for	subsequent	off-line	molecular	and	isotopic	analysis.	Test	results	indicate	that	a	quantitative	recovery	is	possible	for	thermovaporized

low	molecular	weight	compounds	(Sh0)	and	good	recoveries	for	the	less	volatile	species	(Sh1).	No	isotopic	fractionation	is	evident	in	CO2	evolved	from	carbonates	prepared	using	Rock-Eval®	suggesting	that	the	coupled	Rock-Eval®

vacuum	line	recovery	system	is	suitable	for	both	carbon	isotopic	measurements	on	recovered	gas	species	and	molecular	characterization	of	thermovaporized	compounds.

The	described	recovery	system	can	be	used	to	characterize	a	wide	of	geologic	solid	and	liquid	samples	including	source	and	reservoir	rocks	containing	natural	petroleum	or	contaminated	with	drilling	additives	and	various

petroleum	products.	Although	Rock-Eval®	device	was	primarily	developed	to	investigate	sedimentary	rocks	and	kerogens	from	the	perspectives	of	petroleum	industry,	this	analytical	technique	has	been	increasingly	used	in	other	geo-

applications	including:	(1)	the	characterization	of	organic	matter	in	soils	(e.g.,	Di-Giovanni	et	al.,	2000;	Disnar	et	al.,	2003;	Hetényi	et	al.,	2005;	Sebag	et	al.,	2006;	Graz	et	al.,	2012;	Saenger	et	al.,	2013;	Hétényi	and	Nyilas,	2014);	(2)

the	study	of	recent	lacustrine	sediments	(e.g.,	Campy	et	al.,	1994;	Di-Giovanni	et	al.,	1998;	Meyers	and	Lallier-Vergès,	1999;	Ariztegui	et	al.,	2001;	Steinmann	et	al.,	2003;	Jacob	et	al.,	2004;	Sanei	et	al.,	2005;	Boussafir	et	al.,	2012;

Zocatelli	et	al.,	2012;	Lavrieux	et	al.,	2013;	Sebag	et	al.,	2013);	and	(3)	the	evaluation	of	recent	marine	sediments	(e.g.,	Peters	and	Simoneit,	1982;	Hussain	and	Warren,	1991;	Calvert	et	al.,	1992;	Combourieu-Nebout	et	al.,	1999;

Ganeshram	et	al.,	1999;	Ozcelik	and	Altunsoy,	2000;	Holtvoeth	et	al.,	2001,	2003,	2005;	Tamburini	et	al.,	2003;	Baudin	et	al.,	2007,	2010;	Kim	et	al.,	2007;	Marchand	et	al.,	2008;	Tribovillard	et	al.,	2008,	2009;	Biscara	et	al.,	2011;

Riboulleau	et	al.,	2011;	Hare	et	al.,	2014;	Hatcher	et	al.,	2014).	Additional	testing	is	needed	to	determine	the	applicability	of	the	coupled	Rock-Eval®	–	vacuum	and	on-line	recovery	system	to	these	types	of	samples	and (replace	and	by

as)	well	as	for	material	studies	in	other	disciplines.
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Supplementary	data	1

Highlights

• Development	of	an	on-line	recovery	system	coupled	to	a	Rock-Eval®	device.

• For	one	sample,	Sh0	&	Sh1	peaks,	molecular	and	isotopic	compositions	are	provided.

• Most	released	compounds	were	recovered	by	the	dual	vacuum	and	on-line	system.

• The	system	can	be	used	to	characterize	both	solid	and	liquid	samples.
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