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Abstract: In this paper, a linear model with grouped explanatory variables is considered. The idea is to per-
form an automatic detection of different successive groups of the unknown coefficients under the assumption
that the number of groups is of the same order as the sample size. The standard least squares loss function
and the quantile loss function are both used together with the fused and adaptive fused penalty to simulta-
neously estimate and group the unknown parameters. The proper convergence rate is given for the obtained
estimators and the upper bound for the number of different successive group is derived. A simulation study
is used to compare the empirical performance of the proposed fused and adaptive fused estimators and a real
application on the air quality data demonstrates the practical applicability of the proposed methods.
Keywords: Adaptive penalty; Different successive groups; Diverging-dimensional group model; Fused
group.
Subject Classifications: 62F12; 62F35; 62J07.

1. INTRODUCTION

The idea of this paper is to automatically detect different successive groups of unknown coefficients
of some explanatory variables in a multivariate linear model. The number of groups is supposed
to be of the same order as the number of observations. For a given loss function, the fused type
penalties allow this automatic detection of these successive groups of the unknown coefficients.
Depending on the assumptions imposed on the model errors, two modeling frameworks are con-
sidered: either the standard least squares loss function is used or the robust quantile loss function is
considered instead. Moreover, for each framework, two fused group penalties are proposed: firstly,
the fused-type penalty which is later used to construct the adaptive fused penalty leading to a more
accurate selection of different successive groups. For each of the two estimators the convergence
rates are provided and the upper bound for the number of the successive groups is derived.
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In order to highlight the novelty of our work, we firstly make the state of the art regarding the
proposed fused method with the automatic detection of the grouped explanatory variables in the
multivariate linear model. Let g ∈ N denote the number of variable groups and let n ∈ N be the
total number of the available observations. The fused quantile method for a particular case of non-
grouped variables with the quantile level τ = 0.5 was already considered in Liu et al. (2018) where
the fused LASSO penalized least absolute deviation (LAD) estimator in a high-dimensional linear
model is discussed and the proper convergence rate of the obtained estimator is derived together
with a linearized alternating directional method for finding the numerical solution.

The quantile linear model with a finite number of non-grouped explanatory variables is inves-
tigated by Jiang et al. (2013) and Jiang et al. (2014) by utilizing the adaptive fused penalization.
In Jiang et al. (2013), the oracle property for the difference in the estimated coefficients for two
different quantile levels is proved. More precisely, an automatically detection of the unchanged
quantile slope coefficients across various quantile levels is discussed. In Jiang et al. (2014), the
adapted fused method is used to automatically select the explanatory variables and to identify their
successive differences at the neighhoring quantile levels. For a linear quantile regression with g
groups of explanatory variables, Ciuperca (2017) shows the oracle property for the adaptive fused
estimator when g = O(nc), for 0 ≤ c < 1.

If the model errors satisfy the classical conditions (i.e., zero mean and bounded variance) then
the least squares (LS) loss function is more appropriate: in such case, the high-dimensional linear
model with the automatic selection of the corresponding groups of the explanatory variables with
the adaptive LASSO penalty is considered by Wei and Huang (2010) for the Gaussian errors when
the number of groups is much larger than the sample size (g � n) and by Zhang and Xiang
(2016) for non Gaussian errors. These results are further elaborated in Wang and Tian (2019) for
a generalized linear model when g = nc, with 0 < c < 1. The automatic selection of the grouped
variables is also considered in Guo et al. (2015) where the SCAD penalty is utilized under the
assumption that the number of groups can grow at a certain polynomial rate with n. A combination
of the L1 and L2 norms under the Gaussian model errors is investigated in Campbell and Allen
(2017), where the authors propose a structured variable selection in order to select at least one
variable from each group. To our best knowledge, the only papers considering the fused penalty
with the main focus on the selection of variable groups, there is a paper of Li et al. (2014) where the
LS loss function is penalized with the fused LASSO penalty, where the L1 norm si considered for
the magnitudes of the parameters and also for the successive differences of between the estimated
coefficients.

In the present paper, the penalty is of the fused type, that is, it is built against the Lq,1 norm
(with q ≥ 1) of the difference between two successive groups of parameters, while in the mentioned
just before papers, the norm in the penalty is L2,1 or L1,1 of each parameter group, the goal being
to automatically select the significant coefficient groups and not the identical successive coefficient
groups. In a model, it can have successive vectors of non-zero parameters that are not different.
A practical example is given in Section 4 of the present paper on the influence of the groups of
meteorological variables measured every hour, on the daily maximum benzen concentration. It is
this type of automatic detection that interests us in the present work. Whether for the quantile or
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LS methods, particular cases of Lq,1 penalties of the difference between two successive groups
of parameter vectors were considered within the change-points automatic detection framework in
linear model. Except that, in the literature, for linear models with change-points the statistical
model is different from that considered in this paper, because the parameter number of the model
was constant. For the LS loss function, we have in Zhang and Geng (2015) the sum of the penalties
L2,1 and L1,1, while in Qian and Su (2016) the penalty is L2,1. For the quantile loss function,
Ciuperca and Maciak (2020) consider the L2,1 penalty.
The paper is organized as follows. In Section 2 we introduce the model, assumptions and general
notation. In Section 3, fused and adaptive fused group estimators for LS and quantile loss function
are defined and asymptotically studied. In Section 4 we present a simulation study on the proposed
estimators ans an application on real data. The proofs of the results in Section 3 are given in Section
5.

2. MODEL

In this section we state the model definition and some general assumptions imposed on the model
design. Let us start, however, with some notation which will be used throughout the paper: All
limits in are taken with respect to n → ∞; All vectors are columns and matrices and vectors
are denoted with a bold face; For some matrix A we denote its transpose as A> and for a set
A, we denote by |A| its cardinality and by A its complement; Expressions µmin(.) and µmax(.)
are used to refer to the smallest and largest eigenvalue of some positive definite matrix and for
x = (x1, · · · , xp)> ∈ Rp being some p dimensional vector ‖x‖q =

(
|x1|q + · · · + |xp|q

)1/q
denotes its Lq norm while ‖x‖∞ = max(|x1|, · · · , |xp|) stands for the maximum norm. If, in
addition, x = (x>1 , · · · ,x>g )> is a vector split into g subvectors, then

∑g
j=1 ‖xj‖q defines for the

Lq,1 norm of x.
Moreover, βj = (βj,1, · · · , βj,p)> ∈ Rp stands for the corresponding group specific vector of

the dimension p ∈ N, for any j ∈ {1, . . . , g}, where g ∈ N is the number of the successive groups.
Last but not least, C denotes some positive generic constant not depending on n which may take
different values in different formulas throughout the paper.

In the present paper, we consider a multivariate linear model with g groups of explanatory
variables. The number of groups g ∈ N depends on the sample size n ∈ N, g being known, such
that g ≤ n/p, while the number of explanatory variables in each group is fixed and does not depend
on n. Without reducing any generality, it is assumed that each group of the explanatory variables
contains the same number of variables, p ∈ N. Thus, the overall number of all parameters in the
regression model is rn ≤ n.

Let us consider the following linear model with the grouped explanatory variables

Yi =

g∑
j=1

X>i,jβj + εi = X>i βg + εi, i = 1, · · · , n, (2.1)

with βg ≡ (β>1 , · · · ,β>g )> ∈ Rrn , where βj ∈ Rp is the vector of parameters for the group
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j ∈ {1, . . . , g}. For each observation i ∈ {1, . . . , n}, the vector Xi ∈ Rrn contains the explanatory
variables Xi,j ∈ Rp from all groups. These group specific explanatory variables are assumed
to be deterministic, for any j = 1, . . . , g and i = 1, . . . , n. The error terms {εi}i are assumed
to be independent and the response variable is denoted as Yi., εi. The true (unknown) vector of
parameters is β0 = (β0>

1 , . . . ,β0>
g )>. For p = 1, the model with ungrouped explanatory variables

is obtained. Note that the order of appearance of the groups in the model in (2.1) is important and
some natural ordering is required.

Given the data {(Yi,X>i ); i = 1, . . . , n} we would like to automatically determine, using the
fused method, whether two successive groups of the explanatory variables have the same influence
on the response or not while, at the same time, quantifying the corresponding effect magnitudes.
In addition to the example on the air pollution in Section 4, a nice demonstration of the practical
applicability of the proposed estimation method can be also seen in the very recent work of Zhou
et al. (2012), where the fused group method allows for capturing the temporal smoothness of the
predictive biomarkers on the cognitive scores in the progression of the Alzheimer’s disease. To
achieve the sparsity property between two successive groups of the explanatory variables (in a
sense that the corresponding vectors of estimated parameters for two successive groups are mostly
the same), the fused and adaptive fused group estimators are proposed and studied with two loss
functions: the standard least squares and the quantile check function.

The asymptotic behavior of the group specific estimators for the fused and the adaptive fused
method with n ≥ gp are investigated for n → ∞ where, in addition, a deterministic sequence
(bn)n∈N is needed, such that

bn → 0, n1/2bn →∞. (2.2)

Example of such sequence which satisfies (2.2) is bn =
(
n−1 log n

)1/2.

Unlike Ciuperca (2017), where the number of groups is either fixed or it is of the order nc, with
0 < c < 1, the model in (2.1) assumes that the number of the successive groups may be of the
same order as the sample size. A similar model is also considered in Ciuperca and Maciak (2020)
where the change-point detection and estimation is performed in the quantile model with fused type
penalty, however, for the unknown vector of parameters with the dimension p, not depending on
n. The same model is also considered in Leonardi and Buhlmann (2016) where the change-point
locations are detected by utilizing the LS loss function with the LASSO type penalty.

Assumptions
The following regularity assumptions imposed on the model design are needed. The assumptions
required for the model errors will be presented in Subsection 3.1 for the quantile framework and in
Subsection 3.2 for the LS framework.

(A1) max16i6n ‖Xi‖∞ ≤ C0, for some constant C0 > 0.
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(A2) There exist two positive constants, 0 < m0 ≤M0 <∞, such that

m0 ≤ µmin(n
−1

n∑
i=1

XiX>i ) ≤ µmax(n
−1

n∑
i=1

XiX>i ) ≤M0.

Assumption (A1) is considered, for instance, in Leonardi and Buhlmann (2016) for the high-
dimensional regression model and, also, by He et al. (2016) for the penalized quantile regression.
Assumption (A2) is standard in the linear model to ensure the parameter identifiability (see, for
example, Zhang and Xiang, 2016, Ciuperca, 2019, Ciuperca, 2017, or Wu and Liu, 2009).

3. ESTIMATION METHODS

In this section, two estimation frameworks are presented: the automatic detection and estimation
of the successive groups of the explanatory variables is considered under two different model error
assumptions. For each framework, the asymptotic properties are investigated. Firstly, the fused
group estimator is proposed and, afterwards, the adaptive version of the fused group estimator is
defined.

If the model errors {εi}i6i6n in (2.1) do not meet the standard conditions for the existence
of the first two moments then the robust version needs to be employed, therefore, the quantile
estimation technique is appropriate. On the other hand, if the conditions E [εi] = 0 and Var [εi] <
∞ are satisfied, the penalized LS method is considered. The main results are presented for both
scenarios in next two subsections while the proofs are all postponed to Section 5.

3.1. Quantile Loss Function

Let the model errors in (2.1) satisfy the following:

(A3) Random errors εi, for i = 1, . . . , n, are independent and identically distributed (i.i.d.) with
the continuous distribution function F , such that F (0) = P[ε ≤ 0] = τ , for some known
τ ∈ (0, 1). The corresponding density function f with the nonzero compact support G ⊆ R
is supposed to be continuous and strictly positive in a neighborhood of zero. Moreover, the
first derivative of f is bounded in a neighborhood of zero.

Assumption (A3) on the errors is standard for the quantile regression models when the number
of parameters depends on the sample size n ∈ N (see, for instance, Ciuperca, 2019 and Wu and
Liu, 2009). The standard assumptions E [ε] = 0 and E [ε2] <∞ are not considered and, therefore,
the least squares method is not appropriate. Since P[ε < 0] = τ , we can consider the quantile
method with the fixed quantile level τ ∈ (0, 1), with the corresponding quantile check function
ρτ (u) = u(τ − 11{u<0}), for u ∈ R. Thus, for the model in (2.1) the following quantile random
process is obtained

Gn(β
g) ≡

n∑
i=1

ρτ (Yi − X>i βg), (3.1)
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with the group quantile estimator defined as

β̃g ≡ argmin
βg∈Rrn

Gn(β
g). (3.2)

For the particular case of τ = 0.5 we obtain the median regression, for which the quantile process
and the associated estimator (3.2) are reduced to the absolute deviation process and the least abso-
lute deviation estimator respectively. The following Lemma gives the appropriate convergence rate
of the group quantile estimator β̃g.

Lemma 3.1. Under Assumptions (A1), (A2), and (A3) it holds that

‖β̃g − β0‖1 = OP(bn),

where (bn)n∈N is the sequence defined in (2.2).

The convergence rate of the group quantile estimator for the number of groups g = O(n) is
different from that obtained when g = O(nc), with 0 ≤ c < 1. Indeed, for 0 ≤ c < 1 the
convergence rate of β̃g is of the order OP(gn

−1)1/2 = OP(n
(c−1)/2) (see Lemma 1 of Ciuperca,

2019) and the convergence rate of β̃g from (3.2) can not be obtained as a straightforward extension
of the situation where g = O(nc) for 0 ≤ c < 1, when c→ 1.

In order to preserve the group effect of the explanatory variables and to simultaneously detect
the successive groups of identical parameter vectors the Lq,1 norm of the consecutive differences
βj − βj−1, for j = 2, · · · , g, is used as a penalty with some q ≥ 1 fixed. Thus, the following
quantile process is considered

Qn(β
g) ≡ Gn(βg) + nλn

g∑
j=2

‖βj − βj−1‖q. (3.3)

For q = 1 the relation is (3.3) gives the process penalized with the standard L1 norm while for
q = 2 the process is penalized by the L2,1 norm. The positive sequence (λn)n∈N plays a role of a
tuning parameter, such that it converges to zero as the sample size tends to infinity. An additional
condition on (λn)n∈N will be given later when formulating the theorems with the main results.

Based on the penalized process in (3.3), the corresponding fused group quantile estimator is
obtained as

β̂g ≡ argmin
βg∈Rrn

Qn(β
g), (3.4)

where β̂g =
(
β̂
>
1 , . . . , β̂

>
g

)>. The estimator β̂g depends on the norm considered in the penalty
term of random process in (3.3) and, also, the tuning parameter λn > 0.

Let us define the set of indexes which form the true different successive groups

B0 =
{
j ∈ {2, · · · , g};β0

j 6= β0
j−1
}
. (3.5)
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Since the values of the true parameter vector β0 are unknown the set B0 is left unknown too. There-
fore, an analogous set is considered with respect to the differences of the estimated parameters of
two successive groups as

B̂n =
{
j ∈ {2, · · · , g}; β̂j 6= β̂j−1

}
.

It is obvious, that this set is used to provide a reasonable estimate for B0.

Remark 3.1. The results obtained in this section are also valid for p = 1, which is, to the authors’
best knowledge, the case which has not been previously considered with in any literature. The
number of the groups in Ciuperca (2017) is of order nc, with 0 ≤ c < 1 and, moreover, in Ciuperca
(2017), the goal is to select the groups of significant variables simultaneously with the group’s
inheritance.

The following theorem provides the convergence rate of the fused group quantile estimator
defined in (3.4), under the additional assumption that there is only a finite number of the successive
groups with different coefficients. For a suitable choice of the tuning parameter this convergence
rate is of the same order as the sequence (bn) and, moreover, it is the same as the one obtained for
the group quantile estimator in Lemma 3.1. The convergence rate of β̂g does not depend on the Lq
norm considered in the penalty term in (3.3).

Theorem 3.1. Under Assumptions (A1), (A2), and (A3), the condition in (2.2), if, moreover, |B0| <
∞ and λnb−1n −→n→∞0, then

‖β̂g − β0‖1 = OP(bn).

Examples of such sequences (λn)n∈N, (bn)n∈N which satisfy (2.2) and λnb−1n −→n→∞0 are λn =

n−1(log n)1/2 and bn =
(
n−1 log n

)1/2.

Similarly as for the standard LASSO type penalties, the consistent selection of the different
successive groups does not occur with the probability converging to 1 and some overfitting is
observed. The missclassification error |B̂n \ B0| is used to assess the number of the different
successive groups being mistakenly detected as different. The following theorem provides the
upper bound for this missclassification error.

Theorem 3.2. Under the same assumptions as in Theorem 3.1, there exists a positive constant
C1 > 0, such that

lim
n→∞

P
[
|B̂n \ B0| ≤ C1max

(
bn
λn
,
1

bn

)]
= 1.

Note, that the upper bound in Theorem 3.2 depends on the tuning parameter λn > 0 and the
sequence (bn)n∈N abd thus, it can be hypothetically unbounded from above. Nevertheless, this
result provides the upper bound for the number of elements in B̂n, more specifically, it gives the
upper bound for the number of successive groups of explanatory variables which have different
estimated effect on the response variable.
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Corollary 3.1. Since |B0| <∞ and
∣∣B̂n \ B0∣∣ ≥ |B̂n| − |B0| with probability one, we can deduce

by Theorem 3.2, that
lim
n→∞

P
[
|B̂n| ≤ Cmax

(
bnλ
−1
n , b−1n

)]
= 1.

Remark 3.2. For instance, if λn = n−1(log n)5/2 and bn =
(
n−1 log n

)1/2, then the upper bound
given by Theorem 3.2 is

|B̂n| ≤ Cmax
(
n1/2(log n)−2, n1/2(log n)−1/2

)
= Cn1/2(log n)−1/2,

which implies that the number of elements contained by B̂n is much smaller than n1/2, however, it
can converge to infinity for n→∞.

To improve the estimation accuracy of B0 we consider an adaptive penalty constructed on the
basis of the estimator in (3.4). Let us consider the random process

∨
Qn(β

g) ≡ Gn(βg) + nλn

g∑
j=2

ω̂n,j‖βj − βj−1‖q, (3.6)

with the adaptive weights

ω̂n,j ≡ 1/max
(
n−1/2,

p∑
k=1

|β̂j,k − β̂j−1,k|γ
)
,

for a fixed constant γ > 0, where β̂j = (β̂>j,1, . . . , β̂
>
j,p)
>. Let us remark that for j 6∈ B̂n we have

β̂j − β̂j−1 = 0p. The tuning parameter sequences in relations (3.3) and (3.6) may be different,
both with a convergence rate faster than the sequence (bn)n∈N. Therefore, the choice of n−1/2

in ω̂n,j is used as deterministic sequence that converges to 0 when β̂j = β̂j−1, however, with

the rate faster than bn because of the condition n1/2bn → ∞ in (2.2). Notice that
∨
Qn(β

0) ≡
Gn(β

0) + nλn
∑g

j=2 ω̂n,j‖β
0
j −β0

j−1‖q and the adaptive fused group quantile estimator for β0 is
defined as

∨
βg ≡ argmin

βg∈Rrn

∨
Qn(β

g),

where
∨
βg =

(∨
β
>

1 , · · · ,
∨
β
>

g

)>. By Theorem 3.1, we have that for all j ∈ B0 there exists a constant
c > 0 such that

lim
n→∞

P
[
ω̂n,j > c | j ∈ B0

]
= 1. (3.7)

Therefore, taking into account the relation in (3.7) and the fact that γ > 0 a similar proof to that of

Theorem 3.1 can be used to derive the convergence rate of
∨
βg which is the same as for β̂g.
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Theorem 3.3. Under Assumptions (A1), (A2), and (A3), the condition in (2.2), if |B0| <∞ the for
any sequence (λn)n∈N such that λnb−1n −→n→∞0 it holds that

‖
∨
βg − β0‖1 = OP(bn).

Considering the adaptive fused group quantile estimator
∨
βg we can also define an updated

estimator for the set B0 as
∨
Bn ≡

{
j ∈ {2, · · · , g};

∨
βj 6=

∨
βj−1

}
,

which is indeed more appropriate as shown by the next theorem where the upper bound for the

cardinality of
∨
Bn \ B0 is proved to be much smaller than the one for B̂n \ B0 in Theorem 3.2.

Theorem 3.4. Under the same assumptions as in Theorem 3.3, there exist a positive constant C2

such that,

lim
n→∞

P
[
|
∨
Bn \ B0| ≤ C2max

(
n−1/2, bγn

)
max

(
bn
λn
,
1

bn

)]
= 1.

Remark 3.3. (i) For γ > 1 and the tuning parameter (λn)n∈N such that n−1/2bnλ−1n → 0 and
bγ+1
n λ−1n → 0, we obtain that max

(
n−1/2, bγn

)
max

(
bnλ
−1
n , b−1n

)
→ 0, as n→∞. The examples

of sequences (λn) and (bn) from Remark 3.2 satisfy these conditions.
(ii) If 0 < γ ≤ 1 then, max

(
n−1/2, bγn

)
= bγn. In this case we have, bγnmax

(
bnλ
−1
n , b−1n

)
≥ bγ−1n

and the sequence on the right-hand side of this inequality converges to infinity for γ < 1 and it is
bounded for γ = 1. Thus, in this case, it seems like we should take the value γ = 1 and the same
sequences (bn), (λn) as in Remark 3.2.

Comparing now Theorem 3.2 and Theorem 3.4, we can deduce that the adaptive weights ω̂n,j

are responsible for a strong reduce the number of elements in
∨
Bn ∩ B0, e.i, the false discoveries

of different successive groups. This is also later confirmed by the simulation study performed in
Section 4.

3.2. Least Squares Loss Function

In a standard linear regression model the least squares (LS) objective function is standardly used
under the following assumptions imposed on the model errors:

(A4) The error terms (εi)16i6n are i.i.d., such that E [ε] = 0 and Var [ε] <∞;

We will now focus on the fused and adaptive fused group estimator based on the least squares
objective function. In this case, instead of (3.1), an analogous empirical process is considered

Ln(β
g) ≡

n∑
i=1

(Yi − X>i βg)2, (3.8)
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with the corresponding estimator given as

β̃g(LS) ≡ argmin
βg∈Rrn

Ln(β
g),

and the penalized process analogous to (3.3) is

Un(β
g) ≡ Ln(βg) + nλn

g∑
j=2

‖βj − βj−1‖q, (3.9)

with the corresponding fused group LS estimator

β̂g(LS) ≡ argmin
βg∈Rrn

Un(β
g).

A similar linear model with non-grouped explanatory variables (p = 1) with the penalty of the
form αν

(1)
n
∑g

j=1 |βj | + (1 − α)ν(1)n
∑

j<k |βj − βk|, for some α ∈ (0, 1], with the LS objective
function is also considered in Jang et al. (2015), however, for the situation where g ∈ N is fixed.
The corresponding fused estimator allows the selection of groups of predictors that are positively
correlated.

As already pointed out in Remark 3.1, the results derived in this section for the LS framework
are also novel for a model containing non-grouped variables (p = 1) as the number of groups is
allowed to increase with the sample size.

The convergence rates of the proposed estimators β̃g(LS) and β̂g(LS) are the same as those
obtained for the analogous estimators obtained for the quantile framework in Subsection 3.1.

Lemma 3.2. Under Assumptions (A1), (A2), and (A4), and the sequence (bn)n∈N as in (2.2), it
holds that

‖β̃g(LS) − β0‖1 = OP(bn).

Following the lines of the proof of Theorem 3.1 we also obtain the proof of the following
theorem.

Theorem 3.5. Under Assumptions (A1), (A2), and (A4), the condition in (2.2), if |B0| < ∞ and
λnb
−1
n −→n→∞0, then

‖β̂g(LS) − β0‖1 = OP(bn).

The estimator of B0 based on β̂g(LS) =
(
β̂
>
1,(LS), · · · , β̂

>
g,(LS)

)> is given in a straightforward
way as

B̂n,(LS) =
{
j ∈ {2, · · · , g}; β̂j,(LS) 6= β̂j−1,(LS)

}
,

and a similar result to the one in Theorem 3.2 can be derived again.
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Theorem 3.6. Under the same assumptions as in Theorem 3.5, there exists a positive constant C1

such that,

lim
n→∞

P
[
|B̂n,(LS) \ B0| ≤ C1max

(
bn
λn
,
1

bn

)]
= 1.

Similarly as for the quantile framework before, one can again improve the estimation accuracy
of B0 by taking the advantage of β̂g(LS) and defining the adaptive fused penalty with the corre-
sponding empirical process

∨
Un(β

g) ≡ Ln(βg) + nλn

g∑
j=2

ω̂n,j,(LS)‖βj − βj−1‖q, (3.10)

where the weights ω̂n,j,(LS) are again constructed on the basis of fused group LS estimator as
ω̂n,j,(LS) ≡ 1/max

(
n−1/2,

∑p
k=1 |β̂j,k,(LS) − β̂j−1,k,(LS)|

γ
)
, for some fixed γ > 0 and β̂j,k,(LS)

being the kth component of β̂j,(LS). Thus, the adaptive fused group LS estimator is

∨
βg(aLS) ≡ argmin

βg∈Rrn

∨
Un(β

g),

and the corresponding estimator for B0 is defined as
∨
Bn,(aLS) ≡

{
j ∈ {2, · · · , g};

∨
βj,(aLS) 6=

∨
βj−1,(aLS)

}
.

As for the quantile framework, the sequence (λn)n∈N, in relations (3.9) and (3.10), can be different.
Finally, using now the same arguments as in Theorem 3.3 and following the same lines of the proof,

we obtain an analogous results also for
∨
βg(aLS).

Theorem 3.7. Under Assumptions (A1), (A2), and (A4), the condition in (2.2), if |B0| < ∞, the
for any sequence (λn)n∈N such that λnb−1n −→n→∞0, it holds that

‖
∨
βg(aLS) − β0‖1 = OP(bn).

The results presented in Subsection 3.1 and Subsection 3.2 show that the estimated number of
different successive groups is of the same order for both estimation frameworks with the adaptive
fused approach and, moreover, the convergence rates of the corresponding estimators for the model
parameters are also of the same order, all under the assumption that the true number of groups is
bounded. The finite sample performance is investigated in the next section.

4. NUMERICAL STUDY AND APPLICATION

In this section we firstly present a Monte Carlo simulation study to show some numerical properties
of the proposed fused methods for the varying number of groups, different sample sizes and error
distributions. Later, the application on the air quality data is presented. The goal is to detect daily
moments when the temperature and humidity contribution change their effect with respect to the
maximum daily benzene concentration.
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4.1. Numerical Study

The fused group quantile estimator β̂g defined in terms of the minimization in (3.3) and the adaptive

fused group quantile estimator
∨
βg in (3.6) are both compared with the fused group LS estimator

β̂g(LS) in (3.9) and its adaptive version
∨
βg(aLS) in (3.10) with respect to a wide range of different

simulation settings. In order to make the comparison meaningful the quantile level of τ = 0.5 is
considered. The dimension of the unknown group specific vector of parameters β ∈ Rp is either
p = 1 or p = 3 and three options are used for number of groups, g ∈ {20, 100, 200}. The sample
is given as n = pg. The model covariates are randomly generated from the normal distribution
and two distributions are used for the error terms (standard normal and Cauchy). The true number
of different successive groups in the model is either 2, 5, 10, or n/5, where the last option (20 %
of the sample size) clearly does not satisfy the model assumptions but it is still included in the
simulation setup for the comparison purposes. Obviously, if there are two change points in the
group parameter then there are three successive groups. Analogously for 5 changes in the group
specific vector parameter—there are 6 successive groups. The corresponding locations of changes
between successive groups are determined randomly and the jump magnitudes are also assigned
randomly on the scale from 0.5 to 2 to allow for various signal-to-noise ratio. The regularization
parameter equals λn = n−1(log(n))1/2 for the fused method and λn = n−1(log(n))5/2 for the
adaptive fused method with the adaptive weights defined in (3.6) and (3.10) for γ = 1.

All four methods are compared with respect to the quality of the final fit and, mainly, the
different successive coefficient group detection performance. The median (MED) of (Yi−Ŷi)16i6n
and the L1 norm of the difference between the true vector of parameters and its estimate are used to
evaluate the estimation performance while the true recovery rate (the proportion of truly detected
different successive coefficient groups with respect to all unknown changes) and the overestimation
rate (proportion of the number of detected different successive coefficient groups with respect to the
number of true changes) are used to assess the detection performance. The results are summarized
in Table 1 (for p = 1) and Table 2 (for p = 3).

For M independent Monte Carlo replications let β̂(m) denote the estimate of βg by one of the
four estimation methods for the m-th Monte Carlo run, with m = 1, · · · ,M . The corresponding
forecast for Yi is Ŷi,(m) = X>i β̂(m). For each Monte Carlo replication the median error med(m) =

median(Yi − Ŷi,(m); i = 1, · · · , n) is obtained and the reported results are averaged over all M
simulation runs MED= M−1

∑M
m=1med(m). For the parameter estimation the value of MAD=

M−1
∑M

m=1
1
pg

∑pg
j=1 |β0j − β̂j,(m)| is reported.

For some illustration of the model there is an example in Figure 1: the number of true different
successive groups is two (out of g = 20 in total) and the number of the explanatory variables
within each group is three (p = 3). The true vector of the group specific parameters for the
first group (group indexes j ∈ {1, . . . , 15}) is β0

1 = (1, 2, 3)> and the true vector of the group
specific parameters for the second group (group indexes j ∈ {16, . . . , 20}) is β0

1 = (1.5, 1, 5)>.
The sample size is n = gp (n = 80). All four proposed estimation methods are applied and the

12
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(b) Quantile Check Function

Figure 1. An illustration of the model in (2.1) for two truly different successive groups (out of g = 20 in total)
and three explanatory variables in each group (p = 3). The first group specific vector parameter is the same for the
groups j ∈ {1, . . . , 15} and it differs from the second group specific vector parameter, which is the same for the
groups j ∈ {16 . . . , 20}. The Cauchy error terms are considered to visualize the robust favor of the quantile estimation
approach for τ = 0.5 (right panel) when compared with the standard least squares (left panel).

corresponding estimates are given in Figure 1(a) for (3.8) and (3.9) and Figure 1(b) for (3.1) and
(3.3).
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From Tables 1 and 2 for the Gaussian errors, we deduce that for |B0| ∈ {2, 5, 10}, the fused
estimations for the least squares and the quantile methods have the same properties and the same
also applies for the adaptive frameworks which, moreover, have the recovery detection rates close
to one. On the other hand, if the assumption |B0| < ∞ does not hold, as for the models with
20% different successive groups, then not all of the different successive groups are detected and
the performance is worse.

The robustness of the quantile methods is obvious when the Cauchy errors are used instead:
while the LS based methods fail in both, the estimation and the group detection, the quantile ap-
proaches perform comparably well as in the situations with the Gaussian errors.

4.2. Application to Air Quality Data

In order to demonstrate the practical applicability of the proposed model we use the air quality data
from De Vito et al. (2009) which can be downloaded from the Machine Learning Repository site
http://archive.ics.uci.edu/ml/datasets/Air+Quality#. The hourly meteorological and air quality data
were recorded from March 2004 to February 2005. The idea is to use the daily temperature and
humidity profiles (recorded every hours) to predict the maximum benzene concentration level for
the given day. Optimally, it would be appropriate to use the temperature and humidity information
only from some few instant moments during the day instead of recording both continuous profiles
over the whole day. Given the data, there are g = 24 hourly groups and for each group there
is the corresponding vector parameter βj = (βTj , β

H
j )> ∈ R2, for j = 1, . . . , 24, where βTj is

responsible for the contribution of the temperature at ’j’ o’clock and βHj models the effect of the
humidity, again at ’j’ o’clock. Using the model formulation from Section 2 and the estimation in
terms of (3.3) it can be achieved that most of the corresponding parameter vector estimates are the
same. If otherwise, then the existing changes in the vector estimates identify some specific daily
segments with the same temperature and humidity contribution with respect to the maximum daily
benzene concentration. The corresponding magnitudes for both effects in each daily segment are
all estimated simultaneously.

Similarly as in the simulation section, four different models are fitted: the fused group LS
approach and its adaptive version both presented in Figures 3(a) and 3(a) and the proposed fused
group quantile and the adaptive fused group quantile in Figures 3(c) and 3(d). The temperature data
and the humidity data are heavily skewed and, therefore, it can be assumed that robust approaches
are more appropriate for this situation.

Indeed, while the fused group LS and also its adaptive version can not identify any specific
daily moments which should be used to determine the maximum daily benzene concentration, the
fused group quantile and its adaptive version in particular clearly identify some segments during
the day when the contribution of the temperature and humidity is obvious.
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Figure 2. Daily temperature profiles (left panel) and daily humidity profiles (right panel) for 50 randomly selected
days out of 357 available days with full profiles in total. In addition, the maximum benzene concentration is recorded for
each day and the corresponding time of the maximum occurrence (in hours) is given in terms of the frequency histograms
in both panels.

5. PROOFS

Throughout the proofs, the following identity for the quantile check function ρτ is be used: for any
x, y ∈ R it holds that

ρτ (x− y)− ρτ (x) = y(11x<0 − τ) +
∫ τ

0
(11x≤v − ux≤0)dv. (5.1)

Proof of Lemma 3.1.
We will show that for all ε > 0, there exists a constant Cε > 0, such that for n large enough, we
have

P
[

inf
u∈Rrn ,‖u‖1=1

Gn
(
β0 + Cεbnu

)
> Gn(β

0)

]
≥ 1− ε. (5.2)

Then, for any constant c1 > 0, we can write the difference Gn
(
β0 + c1bnu

)
−Gn(β0) using the

form

Gn
(
β0+c1bnu

)
−Gn(β0) = E

[
Gn
(
β0+c1bnu

)
−Gn(β0)

]
+W>

n u+

n∑
i=1

(Ri−E [Ri]), (5.3)

with the rn-dimensional random vector Wn ≡ c1bn
∑n

i=1DiXi, the random variables Di ≡ (1−
τ)11{εi<0} − τ11{εi≥0}, andRi ≡ ρτ (εi − c1bnX>i u)− ρτ (εi)− c1bnDiX>i u.

Using the Holder’s inequality, we have that |X′iu| ≤ ‖Xi‖∞‖u‖1. Then, for all u ∈ Rrn such
that ‖u‖1 = 1, by Assumption (A1), we have that |X>i u| ≤ C.

Firstly, we study the first term on the right-hand side of relation (5.3). Using the identity in
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(a) Fused group LS solution
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(b) Adaptive fused group LS solution

0 5 10 15 20

−
1

.0
0

.0
1

.0
2

.0

Time [hours]

P
a

ra
m

e
te

r 
E

s
ti
m

a
te

s Daily Temperature
Daily Humidity

(c) Fused group quantile solution
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(d) Adaptive fused group quantile solution

Figure 3. The estimated parameter vectors β̂j = (β̂T
j , β̂

H
j )> ∈ R2, for j = 1, . . . , 24, for four different estimation

techniques: fused group LS, adaptive fused group LS, fused group quantile and adaptive fused group quantile. The
adaptive fused group quantile estimator in panel (d) clearly identifies some instant moments during a day when the
temperature and humidity information is relevant for the maximum benzene concentration. In other words, it seems
enough to record the temperature and humidity information at 2 pm and, also, after 6 pm.
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(5.1), we obtain

Gn
(
β0 + c1bnu

)
−Gn(β0) = −c1bn

n∑
i=1

X>i uDi +
n∑
i=1

∫ c1bnX>
i u

0
[11{εi<v} − 11{εi<0}]dv.

Applying now the mean value theorem, taking into account the fact that the derivative of f is
bounded in a neighborhood of zero by Assumption (A3), and the fact that ‖u‖1 = 1, E [Di] = 0
and bn → 0, we obtain

E
[
Gn
(
β0 + c1bnu

)
−Gn(β0)

]
=

n∑
i=1

E
[ ∫ c1bnX>

i u

0
11{0<εi<v}

]
dv

=
n∑
i=1

∫ c1bnX>
i u

0
[F (v)− F (0)]dv

=
f(0)

2
c21b

2
n

n∑
i=1

(X>i u)2 + o
(
b2n

n∑
i=1

u>(XiX>i )u
)
.

Using Assumption (A2) together with f(0) > 0, we get that

n−1E
[
Gn
(
β0 + c1bnu

)
−Gn(β0)

]
= Cf(0)b2n

1

n

n∑
i=1

u>XiX>i u(1 + o(1)) > 0. (5.4)

Next, we study the last two terms on the right-hand side of relation (5.3). For the last term we
have, with probability one, for any i = 1, . . . , n, that |Ri| ≤ c1bn|X>i u|11{|εi|≤c1bn|X>

i u|}. Since
(εi)16i6n are independent, then the random variables (Ri)16i6n are independent as well and, there-
fore

E
[ n∑
i=1

(Ri − E [Ri])
]2

=
n∑
i=1

E [Ri − E [Ri]]2 (5.5)

≤
n∑
i=1

E [R2
i ] ≤ Cb2n

n∑
i=1

|X>i u|2E
[
11{|εi|≤c1bn|X>

i u|}
]
.

Using the fact that the density f is bounded in a neighborhood of 0 by assumption (A3), adopting
the Taylor’s expansion, Cauchy-Schwarz and Holder inequalities, Assumption (A1), and the fact
that ‖u‖1 = 1, we obtain

E
[
11{|εi|≤c1bn|X>

i u|}

]
= 2c1bn|X>i u|f(di,n) ≤ Cbn max

16i6n
‖Xi‖∞ = Cbn, (5.6)

with di,n between c1bn|X>i u| and (−c1bn|X>i u|). Then, using Assumption (A1) together with the
relations in (5.5) and (5.6), and the fact that |X>i u| ≤ C, we have

E
[ n∑
i=1

(Ri − E [Ri])
]2
≤ Cb3n

n∑
i=1

(X>i u)2 = O(nb3n). (5.7)
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We consider a deterministic sequence (an)n∈N such that: an → ∞ and nb3n � an � n2b4n. An
example of such sequence is an = (log n)3/2 if bn =

(
n−1 log n

)1/2.
Considering the relation in (5.7) and since an � nb3n, then also

E [a−1n
( n∑
i=1

(Ri − E [Ri])
)2
] = O(a−1n nb3n) = o(1),

which implies, by the Bienaymé-Tchebychev inequality, that the last term of the right-hand side of
the relation in (5.3) equals to

n∑
i=1

(Ri − E [Ri]) = oP(a
1/2
n ). (5.8)

Finally, we study the second term of the right-hand side in (5.3). By the Central Limit Theorem
(CLT) for the independent random variables (DiX>i u)16i6n, we get W>

n u = OP(n
1/2bn). Using

now the fact that n−1
∑n

i=1 u
>XiX>i u is bounded by Assumption (A2), and by the condition in

(2.2) where n1/2bn →∞, since an � n2b4n, together with the relations in (5.4) and (5.8), we have
for (5.3) the following:

Gn
(
β0 + c1bnu

)
−Gn(β0) = Cnb2n

(
n−1

n∑
i=1

u>XiX>i u

)(
1 + oP(1)

)
> 0,

Therefore, the relation in (5.2) is proved. Moreover, it implies that ‖β̃g −β0‖1 = OP(bn) and,
therefore, the lemma is proved. �

Proof of Theorem 3.1.
In order to prove the assertion of the theorem, let us consider a vector u ∈ Rrn , such that ‖u‖1 = 1
and a constant c2 > 0. Then the following holds

Qn(β
0 + c2bnu)−Qn(β0) = Gn(β

0 + c2bnu)−Gn(β0)

+nλn

g∑
j=2

[∥∥β0
j + c2bnuj − (β0

j−1 + c2bnuj−1)
∥∥
q
− ‖β0

j − β0
j−1‖q

]
.

(5.9)

On the other hand, since ‖u‖2 ≤ ‖u‖1 = 1, by the proof of Lemma 3.1, we have with the
probability converging to 1, that

Gn(β
0 + c2bnu)−Gn(β0) ≥ c2nb2n

(
n−1

n∑
i=1

u>XiX>i u
)
≥ Cnb2n > 0. (5.10)
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If the components of u are denoted as u1, · · · ,ug, then, using the triangular inequality, for the
penalty in (5.9), we have

nλn

g∑
j=2

[∥∥β0
j + c2bnuj − (β0

j−1 + c2bnuj−1)
∥∥
q
− ‖β0

j − β0
j−1‖q

]
≥ nλn

∑
j∈B0

[∥∥β0
j + c2bnuj − (β0

j−1 + c2bnuj−1)
∥∥
q
− ‖β0

j − β0
j−1‖q

]
≥ −c2nλnbn

∑
j∈B0
‖uj − uj−1‖q = −Cc2nλnbn, (5.11)

where for the last equality in (5.11) we have used the fact that

‖uj − uj−1‖q ≤ ‖uj − uj−1‖1 ≤ ‖uj‖1 + ‖uj−1‖1,

together with ‖u‖1 = 1 and |B0| <∞. Since λnb−1n → 0, as n→∞, then also nλnbn = o(nb2n)
and taking into account the relation in (5.10), we obtain for (5.9) and (5.11) that

Qn(β
0 + c2bnu) > Qn(β

0),

which holds with the probability converging to 1, as n→∞. �

Proof of Theorem 3.2.
By Theorem 3.1 we have

lim
n→∞

P
[
β̂g = argmin

βg∈Vn(β0)

(
Qn(β

g)−Qn(β0)
)]

= 1, (5.12)

with the neighborhood Vn(β0) of β0 with the radius c2bn defined as

Vn(β0) ≡
{
βg ∈ Rrn ; ‖βg − β0‖1 ≤ c2bn

}
,

for some constant c2 > 0. Then, in order to prove the assertion of the theorem we consider the
parameter vector βg = (β>1 , . . . ,β

>
g ) ∈ Vn(β0) and the index set B ≡

{
j ∈ {2, · · · , g};βj 6=

βj−1
}

. Note, that B and βg both depend on n and the vector of true unknown parameters βg is not
random. Therefore, we consider only B ∩ B0 6= ∅, otherwise the theorem trivially holds.

Let us concentrate on the following decomposition:

Qn(β
g)−Qn(β0) =

n∑
i=1

[
ρτ (Yi − X>i βg)− ρτ (Yi − X>i β0)

]
+nλn

∑
j∈B∩B0

[
‖βj − βj−1‖q − ‖β0

j − β0
j−1‖q

]
+nλn

∑
j∈B∩B0

‖βj − βj−1‖q − nλn
∑

j∈B∩B0
‖β0

j − β0
j−1‖q

≡ S1n + S2n + S3n − S4n. (5.13)
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Using the identity in (5.1) we can write the sum S1n as

S1n =
n∑
i=1

(βg − β0)>Xi
[
11{Yi−X>

i β0≤0} − τ
]

+
n∑
i=1

∫ X>
i (βg−β0)

0

[
11{Yi−X>

i β0≤v} − 11{Yi−X>
i β0≤0}

]
dv

≡ T1n + T2n. (5.14)

For T1n, we have E [T1n] =
∑n

i=1(β
g −β0)>Xi

[
F (0)−F (0)

]
= 0 and using Assumptions (A1),

(A2), and (A3), we obtain for the variance that

Var [T1n] = τ(1− τ)
n∑
i=1

(
(βg − β0)>Xi

)2
= O

(
n‖βg − β0‖21

)
.

Then, by the Law of Large Numbers, we also have T1n = oP
(
n‖βg − β0‖21

)
.

For T2n =
∑n

i=1

∫ X>
i (βg−β0)

0

[
11{εi≤v} − 11{εi≤0}

]
dv, we can apply the Taylor expansion

E [T2n] =
n∑
i=1

∫ X>
i (βg−β0)

0

[
F (v)− F (0)

]
dv =

n∑
i=1

∫ X>
i (βg−β0)

0

[
vf(0) +

v2

2
f ′(ṽ)

]
dv,

for some ṽ between 0 and v. Since the derivative f ′ is bounded in some neighborhood of zero,
taking into account Assumption (A1), we obtain

E [T2n] =
f2(0)

2

n∑
i=1

(
X>i (βg − β0)

)2
= O

(
n‖βg − β0‖21

)
. (5.15)

On the other hand, since the error terms (εi)16i6n are independent, we have

Var [T2n] =
n∑
i=1

E
[∫ ui

0

([
11{εi≤v} − 11{εi≤0}

]
−
[
F (v)− F (0)

])
dv

]2
≤

n∑
i=1

E
[∣∣∣ ∫ ui

0

([
11{εi≤v} − 11{εi≤0}

]
−
[
F (v)− F (0)

])
dv
∣∣∣] · 2∣∣ui∣∣

≤ 2

(
n∑
i=1

∫ ui

0

(
F (v)− F (0)

))
· 2 max

16l6n
‖Xl‖∞‖βg − β0‖1,

where for brevity, we used the notation where ui ≡ X>i (β
g−β0). Taking into account Assumption

(A1) we have Var [T2n] ≤ 4C0E [T2n]‖βg − β0‖1. Hence, taking into account this last relation
together with (5.15), since βg ∈ Vn(β0), bn → 0 as n → ∞, and applying the Bienaymé-
Tchebychev inequality, we obtain

T2n = OP
(
n‖βg − β0‖21

)
.
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Therefore, since also T1n = oP
(
n‖βg − β0‖21

)
, we have for the relation in (5.14) that

S1n = OP(nb
2
n). (5.16)

For (5.13) it remains to study the sums S2n, S3n, and S4n. Since βg ∈ Vn(β0), together with
the fact that the cardinality |B0| is bounded and λnb−1n −→n→∞0, we obtain S2n = OP(nλnbn) =

oP(nb
2
n) and also

S3n ≡ nλn
∑

j∈B∩B0
‖βj − βj−1‖q ≥ nλnp−1+1/q

∑
j∈B∩B0

‖βj − βj−1‖1

= OP

(
nλn(|B ∩ B0|)bn

)
> 0.

We have also S4n = Cnλn ≥ 0, therefore, taking into account the fact that the differ-
ence Qn(βg) − Qn(β

0) must be negative for the minimizer β̂g in (5.12), using the relations
in (5.13)) and (5.16), we deduce that nb2n + nλn ≥ nλn(|B ∩ B0|)bn, which also implies that
|B \ B0| ≤ Cmax

(
bnλ
−1
n , b−1n

)
. This finishes the proof. �

Proof of Theorem 3.3.
In this case, for a positive constant c2 > 0, a vector u ∈ Rrn such that ‖u‖1 = 1, we study the

difference
∨
Qn(β

0+c2bnu)−
∨
Qn(β

0). The penalty related to this difference, similarly as in (5.11),
becomes

nλn

g∑
j=2

ω̂n,j

[∥∥β0
j + c2bnuj − (β0

j−1 + c2bnuj−1)
∥∥
q
− ‖β0

j − β0
j−1‖q

]
≥ −c2nλnbn

∑
j∈B0

ω̂n,j‖uj − uj−1‖q.

Taking into account the relation in (3.7) and using similar arguments as in the proof of Theorem

3.1, we obtain that
∨
Qn(β

0 + c2bnu) >
∨
Qn(β

0), which holds with probability converging to 1, as
n→∞. �

Proof of Theorem 3.4.
The proof is very similar to that of Theorem 3.2. We only give the main results, using the same
notation as in the proof of Theorem 3.2. For βg ∈ Vn(β0), the difference between the adaptive
processes can be expressed as

∨
Qn(β

g)−
∨
Qn(β

0) ≡
∨
S1n +

∨
S2n +

∨
S3n −

∨
S4n,
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with
∨
S1n = S1n = −OP(nb

2
n) < 0, where S1n is defined in (5.13) and the other sums are

∨
S2n ≡ nλn

∑
j∈B∩B0

ω̂n,j
[
‖βj − βj−1‖q − ‖β0

j − β0
j−1‖q

]
,

∨
S3n ≡ nλn

∑
j∈B∩B0

ω̂n,j‖βj − βj−1‖q,

∨
S4n ≡ nλn

∑
j∈B∩B0

ω̂n,j‖β0
j − β0

j−1‖q.

For
∨
S2n, taking also into account the relation in (3.7), similarly as for S2n in (5.13), we ob-

tain
∨
S2n = OP(S2n) = oP(nb

2
n). For

∨
S3n, by Theorem 3.1, we get

∨
S3n = OP

(
nλn(|B ∩

B0|)bnmin(n1/2, b−γn )
)
. Finally, for

∨
S4n, again by Theorem 3.1, we have

∨
S4n = OP(nλn) > 0.

Therefore, for the vector parameter βg ∈ B which minimizes
∨
Qn(β

g) −
∨
Qn(β

0) we have that
∨
S3n ≤

∨
S4n −

∨
S1n, which holds with the probability converging to one as n → ∞. This also

implies

|B \ B0| ≤ λn + b2n
λnbnmin(n1/2, b−γn )

= max(n−1/2, b−γn )

(
1

bn
+
bn
λn

)
.

�

Proof of Lemma 3.2.
For any constant c1 > 0 and some rn-vector u, such that ‖u‖1 = 1, we have

Ln
(
β0 + c1bnu

)
− Ln(β0) =

n∑
i=1

(
X>i β0 + εi − X>i

(
β0 + c1bnu

))2

−
n∑
i=1

ε2i

= −2c1bn
n∑
i=1

X>i uεi + c21b
2
n

n∑
i=1

(X>i u)2. (5.17)

By Assumption (A1), we have |X>i u| ≤ C. Therefore, using Assumption (A4) and CLT we get(∑n
i=1X>i εi

)
u = OP(n

1/2). By Assumption (A2), we also get
∑n

i=1(X>i u)2 = O(n) and taking
into account the condition in (2.2), we get that (5.17) is −OP(n

1/2bn) +O(nb2n) = OP(nb
2
n) > 0.

Thus, for any ε > 0, there exists a positive constant Cε > 0, such that,

P
[

inf
u∈Rrn ,‖u‖1=1

Ln
(
β0 + Cεbnu

)
> Ln(β

0)

]
≥ 1− ε.

�
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Proof of Theorem 3.6.
The proof is similar to that of Theorem 3.2 with the only difference that for (5.13) the sum S1n
equals

n∑
i=1

[(
εi − X>i (βg − β0)

)2 − ε2i ] = n∑
i=1

(
X>i (βg − β0)

)2 − 2
( n∑
i=1

X>i εi
)
(βg − β0)

which is, using the same arguments as in the proof of Lemma 3.2, of the order OP(nb
2
n). The rest

of the proof is omitted because it follows the same lines as the proof of Theorem 3.2. �

Proof of Theorem 3.7.
The proof follows the same lines as the proof of Theorem 3.3 and, therefore, it is omitted. �
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