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Superheating control of an Organic Rankine Cycle for recovering waste heat from an
engine cooling system

Donatien Dubuca, Paolino Tonaa

aControl, Signal and System Department - IFP Energies nouvelles, Rond-point de l’échangeur de Solaize BP3, 69360 Solaize, France

Abstract

This paper proposes a set of strategies to control the superheat (SH) value of an Organic Rankine Cycle (ORC). This

ORC corresponds to an experimental test bench aimed at developing a waste heat recovery system to be connected to

the cooling circuit of a light-duty vehicle. Three strategies have been developed and tested experimentally. The first one

is a linear control based on a PI controller valid for a given operating point. The second, valid for the same operating

point, proposes an LPV (Linear Parameter-Varying) approach, less conservative and more accurate than the first one.

Finally, a third strategy also using the LPV framework provides a controller valid in the full operating range of the test

bench.

Keywords: Organic Rankine Cycle, LPV systems, H∞ control, automotive, Waste Heat Recovery.

1. Introduction

The aim of this paper is to propose a control strategy

for an Organic Rankine Cycle used to recover the heat dis-

sipated in an engine cooling system. The system, briefly

called ORC in the sequel, corresponds to an experimental

test bench installed at IFP Energies nouvelles in Lyon (de-

picted in Figure 1) and aimed at developing an industrial

waste heat recovery solution for a light-duty vehicle.

Figure 1: Test bench view at IFP Energies Nouvelles

The ORC is schematically described in Figure 2. The

working fluid inside the ORC is a NovecTM 649, a com-

mercial heat transfer fluid. It is moved by a volumetric

Email addresses: donatien.dubuc@ifpen.fr (Donatien
Dubuc), paolino.tona@ifpen.fr (Paolino Tona)

pump that can be controlled in voltage from 0 to 10 V.

The hot source, represented by the red circuit in Figure 2

consists of water heated at a controlled temperature Tevap
and circulating in the evaporator (or boiler) which permits

to transform the working fluid into vapor. The energy thus

recovered is converted into mechanical energy by a turbine.

The cold source contains water at the controlled tempera-

ture Tcond which circulates in the condenser and brings the

working fluid back to liquid state. The evaporator of the

test bench is a plate heat exchanger designed to exchange

18 kW of heat for a hot source at 115 ◦C.

For more details on the operation and the architectures

of ORCs, see for example [1] and [2]. The main ORC ap-

plications in the automotive industry since the 1970s are

described in [3]. Regarding control strategies, a recent

state of the art is presented in [4]. Examples of control

strategies specific to the automotive area are described in

[5]. It should be noted that, to the best of our knowledge,

there is no documented research on the control of ORC

systems that recover heat from engine coolant in a road

vehicle. These systems are usually considered simpler to

design and to deal with than ORCs for waste heat recov-

ery from exhaust gas, but may actually prove challenging

to control, depending on the variability of the operating

conditions induced by the specificities of the cooling sys-

tem. Even if the methodologies developed in this paper

aim at controlling a low-temperature ORC for automo-

tive applications, they could be easily extended to other

Rankine-based waste heat recovery systems.

The key variable to control an ORC is the superheat

SH. Superheat is defined as the difference between the

fluid temperature and the saturation temperature (at a

Preprint submitted to Elsevier July 6, 2020
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Figure 2: Test bench architecture of the ORC

given pressure) when the fluid changes to the liquid state.

In summary:

SH = Tfluid − Tsat(pressure) (1)

where, Tsat(pressure) is given by known maps.

It is commonly accepted that the lower the superheat,

the more energy is absorbed by the working fluid. There-

fore, more mechanical energy can be recovered by the ex-

pansion machine (here, a kinematic turbine). Besides, the

superheat has to be positive to ensure that the Rankine

cycle operates properly and does not damage the compo-

nents. It is the mass flow rate of the working fluid through

the evaporator that regulates the superheat. From a prac-

tical point of view, for given temperatures Tevap and Tcond,

an increase in this flow rate, and consequently in the pump

command voltage, will lead to a decrease in superheat (at

steady state).

Remark 1.1. Note that the water flows in the cold and

hot sources are kept constant. Thus, only the variables

Tevap and Tcond define the operating point.

The objective of this paper is to design, from experi-

mental data, a controller that regulates superheat via the

pump voltage as shown in Figure 3. Two cases will be

studied:

(1) A local control valid for a given operating point.

(2) A global control valid regardless of the operating

point, which is also capable of rejecting temperature

disturbances for a fixed reference.

Following the work of [6] and [7], a simple PI controller

will be designed based on a linear model identified from

experimental data to deal with the first case. This con-

troller, experimentally tested, will be used as a reference

to be improved. Then, based on the same experimental

data, an LPV model will be identified. From this model,

SH(meas)SH(ref)
Controller ORC

Tevap

U

Tcond

Figure 3: Superheat control scheme

an H∞ LPV controller will be designed and validated on

the test bench. The second case, more representative of

the real operation, significantly increases the complexity

of the system. To deal with it, the previous methodology

is extended and also experimentally validated.

Among the variables measured or estimated on the test

bench, those represented in Figure 2 will be used, depend-

ing on the controller to be designed:

(1) The water temperature at the evaporator inlet Tevap;

(2) The water temperature at the condenser inlet Tcond;

(3) The pressure at the pump outlet Po,pump;

(4) The superheat SH value estimated using a pressure

and temperature sensor plus a map provided by the

REFPROP thermophysical property database [8].

Finally, it should be noted that all controllers defined in

continuous time have been discretized by the Euler method

with a sampling time of 0.02 s. Then, they have been in-

cluded in the embedded software via Simulink Coder

and the test bench control software Morphee 2.

2. Contributions

This paper provides the following contributions:

(1) Superheat control design for ORC systems that re-

cover heat from engine coolant.

(2) LPV ORC modeling from experimental data and

methodology to obtain these data.

(3) H∞ LPV controller design applied to said LPV model.

(4) Experimental validations of the controllers.

3. Control for a given operating point

This section is devoted to solving the problem of track-

ing several superheat levels for a given ORC operating

point. With the architecture of the test bench in Figure 2,

this point is defined by the temperature pair (Tevap, Tcond).

In this part of the study, the temperature references

for Tevap and Tcond are set at 80 ◦C and 30 ◦C respectively.
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Note that, although these temperatures are controlled by

two PID implemented in a programmable logic controller

(PLC), they can vary by 1 ◦C around the references as

shown in Figure 4.

Figure 4: Chosen operating point

3.1. Preliminary analysis and identification protocol

To design a control-oriented model, a black-box ap-

proach will be used. The ORC system will be excited via

the pump control voltage, then a model describing the dy-

namics of the superheat will be identified.

In order to get an overview of the ORC behavior, let

us submit the system to a train of voltage steps as shown

in Figure 5.

Figure 5: Steps submitted to the ORC

The steady state values can be closely approximated by

a linear regression, as shown in Figure 6. Thus, it can be

assumed that the static gain of the system follows a linear

trend of −15.7 ◦C V−1. On the other hand, the analysis of

the superheat settling time in Figure 5 shows a non-linear

behavior. Indeed, steady state is reached in about 40 s for

high superheat values and more than 100 s for low ones.

This first basic analysis leads to the conclusion that the

ORC is a non-linear system. We therefore need an input

Figure 6: Linear regression of the steady state values

signal which permits to excite the system on several lev-

els of intensity. That is why a multi-level pseudo-random

sequence (mPRS) [9] will be used. Unlike the pseudo-

random binary sequence (PRBS) which provides two exci-

tation levels, mPRS provides several excitation levels while

maintaining an autocorrelation function similar to white

noise. It is therefore particularly suitable for non-linear

systems.

Following the methodology described in [9], a sequence

is generated from the GALOIS1 software. A 7-level signal

with two shift registers has been generated, with a switch-

ing time of 25 s and a multiple of 2 harmonic suppression.

This results in the voltage command sequence presented

in Figure 7, to be applied to the system.

Figure 7: mPRS voltage

3.2. Linear identification and control

3.2.1. First-order system identification

For comparison purposes, let us design a controller that

will serve as a reference for the sequel. As mentioned in [6]

and [7], it is possible to approximate the system by several

first order plus time delay transfer functions, depending

1GALOIS can be downloaded at:
https://warwick.ac.uk/fac/sci/eng/research/grouplist/

biomedicaleng/bbsl/signal_design/galois
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on the operating point. As it can be seen in Figure 5, the

delay between the command U and superheat SH can be

neglected. Thus, for the operating point (Tevap, Tcond) =

(80 ◦C, 30 ◦C) let us try to approximate the system by:

FOTF ,
∆SH(s)

∆U(s)
=

K

τs+ 1
(2)

To identify (2), the mPRS illustrated in Figure 7 is

applied to the ORC. The result is the data depicted in

Figure 8, where ∆SH represents the output to be identi-

fied and ∆U the input. Each signal is sampled at a rate

of 0.1 s and consists of 13× 103 points.

To analyze the performance of the different identified

models, we will use the FIT index defined as follows:

Definition 3.1. Given, an observation vector data x, and

its estimate x̂, the fit index is defined as:

FIT = 1− ‖x− x̂‖2
‖x−mean(x)‖2

(3)

Figure 8: Data used for identification of FOTF

Then, the identification through the Matlab function

tfest yields the following transfer function:

FOTF =
−16.1

18.07s+ 1
, (4)

which corresponds to the results obtained in Figure 9. The

static gain found is −16.1 ◦C V−1 which is consistent with

the one established by the linear regression in Section 3.1.

The obtained performance index FIT is only 63.5%

which is explained by the model inability to capture the

dynamics at low superheat values. Indeed, as explained in

Section 3.1, the time constant becomes significantly large

for these values. Thus a fixed time constant cannot model

the behavior of this part of the system.

Figure 9: Identification results of FOTF

3.2.2. PI controller design

To find the coefficients Kp and Ki of the following PI

controller:

PI(s) = Kp +
Ki

s
, (5)

the control scheme presented in Figure 10 will be used,

where the ORC system will be represented by the transfer

function (4).

SH(meas)SH(ref)
PI ORC

Figure 10: Block diagram of the PI regulation

To obtain a controller robust to model uncertainties,

the coefficients Kp and Ki are chosen such that the phase

margin is 90◦ and the closed-loop bandwidth is 0.01 rad s−1.

This gives:

Kp = −0.156 and Ki = −0.00838 (6)

3.2.3. Experimental results of the PI controller

By setting the setpoint of Tevap and Tcond to 80 ◦C

and 30 ◦C respectively, reference steps are applied to the

real system integrating the PI controller (6). The results

obtained are presented in Figure 11.

The control performance is good enough for superheat

values around 15 ◦C where steady state is reached in about

20 s without exceeding the set point. However, an over-

shoot appears for lower superheat values, which becomes

larger and larger as the superheat decreases. Besides, the

settling time increases to over 100 s then to over 200 s for

the last step.
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Figure 11: PI control for a given operating point

Nevertheless, the PI controller has proven to be able to

control different levels of superheat for a given ORC oper-

ating point. More complex PI controllers, with a feedfor-

ward loop, for instance, could improve the tracking per-

formance as in [10].

This first simple control strategy will be used as a ref-

erence to be improved in the sequel.

3.3. LPV-based regulation

In order to improve the results, in particular those of

the ORC modeling, a linear parameter-varying (LPV) ap-

proach is considered [11, 12]. The objective here is to

obtain, via an experimental system identification, an LPV

model and then a controller based on this model. To our

knowledge, this kind of global approach has never been

studied for ORCs, though related research does exist in

the literature. Indeed, in [13], the authors do propose an

LPV approach for an air conditioning system, but via the

linearization of a non-linear physical model. The work

in [14] proposes an LPV formulation for an ORC system

which is also based on a physical model, but the validation

is carried out only in simulation.

3.3.1. Choice of the LPV model and identification

The structure of the LPV system to be identified is

chosen as follows:

ẋ = A(ρ)x+Bu

y , SH(model)− y0 = Cx
(7)

with,

A(ρ) =

[
ρ1 1

ρ2 0

]
, B =

[
0

b0

]
, and C =

[
1 0

]
(8)

where y is the superheat minus a constant bias y0, u is the

pump voltage command, b0 is a constant and the varying

parameters ρ1 and ρ2 are defined as:

ρ1 = a10 + a11Po,pump + a12P
2
o,pump + a13P

3
o,pump

ρ2 = a20 + a21Po,pump + a22P
2
o,pump + a23P

3
o,pump.

(9)

The variables ρ1 and ρ2 are assumed to be bounded. Thus,

we can write that:

ρ ∈ Pρ := {ρ = [ρ1 ρ2]T ∈ R2

s.t ρ1 ∈ [ρ1, ρ1] and ρ2 ∈ [ρ2, ρ2]}
(10)

The choice of the external variable Po,pump is motivated

by the fact that it is a good image of the physical state of

the working fluid. In addition, it corresponds to a realistic

sensor choice, since this pressure will most certainly be

measured in the industrial application.

The system composed by (7)-(9) has 10 unknown pa-

rameters to be identified. There exist several papers deal-

ing with techniques for identifying LPV systems, such as

[15] and [16]. However, since (7) is continuous with a bias

y0 to be estimated, the unknown parameters will be iden-

tified by solving a nonlinear least squares problem with a

Levenberg-Marquardt algorithm. In short, to identify the

unknown parameters, we will solve the following optimiza-

tion problem:

min
b0,y0,aij ,(i,j)∈J1,2K×J0,3K

∑
(SH(model)− SH(meas))

2

subject to (7)-(9)
(11)

Remark 3.1. From a practical point of view, the system

(7)-(9) is designed with Simulink and the parameters are

initialized as follows: ai,j = −1, to ensure that the model

is stable and y0 = 30. Then the parameters are optimized

with lsqnonlin command.

From the same data used to identify the first-order

model in Section 3.2 (without the offset) and those rep-

resenting the pressure in Figure 12, we obtain the results

presented at the bottom of Figure 12. The FIT index has

increased from 63.5% to 90.0%. All the superheat vari-

ations are well modeled, except for the behavior at very

low superheat values which is less satisfactorily captured,

as can be seen around 200 s in the graph of Figure 12.

The results of a validation test are shown in Figure 13.

The model remains very accurate even when applied to

data that were not used for identification. Thus, the model

is validated for the design of an LPV controller.

3.3.2. Design of an H∞ LPV controller

As introduced in [17], if the parameter dependence of

an LPV system is affine and bounded, the system can be

transformed into a polytopic form which is a convex inter-

polation of a finite set of linear systems. In our case, since
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Figure 12: Top: pressure data used to compute ρ1 and ρ2. Bottom:
LPV identification results for a given operating point

Figure 13: Validation test of the LPV model

the dependence on the parameter vector ρ ∈ Pρ is affine,

(7) can be written as:

G(ρ) :


ẋ =

4∑
i=1

µi(ρ) (Aix) +Bu

y = Cx

(12)

where Ai corresponds to A(ρ) calculated at each vertex of

the polytope:

A1 =

[
ρ1 1

ρ2 0

]
, A2 =

[
ρ1 1

ρ2 0

]
A3 =

[
ρ1 1

ρ2 0

]
, A4 =

[
ρ1 1

ρ2 0

] (13)

and µi the interpolation functions:

µ1(ρ) =

(
ρ1 − ρ1
ρ1 − ρ1

)
×
(
ρ2 − ρ2
ρ2 − ρ2

)
µ2(ρ) =

(
ρ1 − ρ1
ρ1 − ρ1

)
×
(
ρ2 − ρ2
ρ2 − ρ2

)
µ3(ρ) =

(
ρ1 − ρ1
ρ1 − ρ1

)
×
(
ρ2 − ρ2
ρ2 − ρ2

)
µ4(ρ) =

(
ρ1 − ρ1
ρ1 − ρ1

)
×
(
ρ2 − ρ2
ρ2 − ρ2

)
(14)

which leads to
∑4
i=1 µi(ρ) = 1.

To obtain a H∞ LPV polytopic controller, we will use

the block diagram given in Figure 14 where K(ρ) is defined

as:

K(ρ) :


ẋk =

4∑
i=1

µi(ρ) (Akixk +Bki(r − y))

u =

4∑
i=1

µi(ρ) (Ckixk +Dki(r − y))

(15)

where xk is the internal state of the controller.

yr
K(ρ) G(ρ)

We

z1

Wu

z2

P (ρ)

u

Figure 14: Block diagram to design a H∞ LPV polytopic controller

From Figure 14, we can deduce the H∞ standard prob-

lem depicted in Figure 15. P (ρ) is deduced from the block

diagram as:

P (ρ) :



ẋe =

4∑
i=1

µi(ρ) (Aeixe +B1ir) +B2u

z =

4∑
i=1

µi(ρ) (C1ixe +D11ir) +D12u

r − y = C2xe +D21r
(16)

where xe is the extended state determined from the block

diagram.

To solve this standard problem, we need to find the

matrices Aki, Bki, Cki, Dki, i = 1, . . . , 4 of (15) such that:

(1) The closed loop in Figure 15 is stable;

(2) The upper bound γ of the induced-L2 norm from the

reference r to z is minimized, i.e:

min γ s.t sup
r 6=0,r∈L2

‖z‖2
‖r‖2

≤ γ (17)
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z =

[
z1
z2

]

r − y

K(ρ)

P (ρ)

u

r

Figure 15: Standard formulation

To fulfill these conditions, the following proposition will

be used:

Proposition 3.1 ([18]). Consider the LPV polytopic con-

troller (15) and the LPV polytopic system (12). The stan-

dard problem is solved, if there exist matrices Y,X and Ãi,

B̃i, C̃i, D̃i, i = 1, . . . , 4 such that the following LMIs hold

for all i = 1, . . . , 4:

min γ

s.t


M11 ∗ ∗ ∗
M21 M22 ∗ ∗
M31 M32 M33 ∗
M41 M42 M43 M44

 ≺ 0

[
X Inx

Inx
Y

]
� 0

(18)

where,

M11 = AeiX +XATei +B2iC̃i + C̃Ti B
T
2i

M21 = Ãi +
(
Aei +B2iD̃iC2i

)T
M22 = Y Aei +ATeiY + B̃iC2i +

(
B̃iC2i

)T
M31 =

(
B1i +B2iD̃iD21i

)T
M32 =

(
Y B1i + B̃iD21i

)T
M33 = −γInw

M41 = C1iX +D12iC̃i

M42 = C1i +D12iD̃iC2i

M43 = D11i +D12iD̃iD21i

M44 = −γInz

(19)

The reconstruction of the filter K(ρ) is obtained by the

following equivalent transformation,

Dfi = D̃i

Cfi =
(
C̃i − D̃iC2iX

) (
MT

)−1
Bfi = N−1

(
B̃i − Y B2iD̃i

)
Afi = N−1(Ãi − Y AeiX − Y B2iD̃iC2iX−

NB̃iC2iX − Y B2iC̃iM
T )
(
MT

)−1
(20)

where M and N are defined such that MNT = Inx −XY
which can be solved through a singular value decomposition

plus a Cholesky factorization.

Let us denote the sensitivity functions, Sr,e the transfer

from the reference r to e = r−y; and Sr,u the transfer from

r to the command u. Since Proposition 3.1 minimizes the

induced-L2 norm from r to z by γ, it is clear that (with

a slight abuse of language since the system considered is

LPV):

sup
r 6=0,r∈L2

‖z‖2
‖r‖2

≤ γ ⇒


‖Sr,e‖∞ ≤

γ

‖We‖∞
‖Sr,u‖∞ ≤

γ

‖Wu‖∞

(21)

Thus We and Wu will shape these two sensitivity func-

tions. Both functions are chosen as first-order filters:

W−1e (s) =
s+ ωeεe
s

Me
+ ωe

W−1u (s) =
εus+ ωu

s+
ωu
Mu

(22)

To choose the parameters, the following criteria will be

used:

(1) The static error must be small with a reduced over-

shoot and a good robustness. It means that the sin-

gular values of Sr,e have to be small at low frequen-

cies, without high resonance peak and below 6dB (a

standard value for a robustness margin).

(2) The actuator load must be reduced. It means that

the singular values of Sr,u have to be small at high

frequencies with a reasonable bandwidth.

This leads to the values given in Table 1.

Table 1: Parameter values of the weighting functions

W−1e W−1u

Parameter Value Parameter Value

ωe 0.02 ωu 15

εe 10−6 εu 10−4

Me 6 Mu 10

Applying Proposition 3.1, the controller matrices in

Appendix A and the sensitivity functions presented in

Figure 16 are obtained. It can be seen that the functions

at each vertex of the polytope are “below” the weighting

functions. This ensures a small static error without over-

shoot, good robustness and reduced actuator load.
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Sr,e

W−1e

(a) Sr,e

Sr,u

W−1u

(b) Sr,u

Figure 16: Sensitivity functions at each vertex of the polytope

3.3.3. Experimental results of the H∞ LPV controller

By setting the setpoint of Tevap and Tcond to 80 ◦C

and 30 ◦C respectively, reference steps are applied to the

real system integrating the H∞ LPV controller (15). The

results obtained are presented in Figure 17.

Figure 17: Regulation by the H∞ LPV controller for a given oper-
ating point

The control performance is very good for superheat

values between 20 and 10 ◦C. Steady-state is reached in

about 10 s then 30 s without overshoot. Therefore the per-

formance has been improved compared to the PI controller

in Figure 11, mainly because there is no more overshoot for

the second step. The quality of the regulation deteriorates

for superheat values around 7 ◦C. Indeed, the steady-state

is reached in 120 s with an overshoot of 0.5 ◦C.

The use of an LPV framework allows to obtain a better

representation of the real system. Therefore a more accu-

rate control is possible compared to the linear one. The

robustness criteria could be relaxed to improve controller

performance.

4. Global control

Unlike the previous section, which focused on control-

ling different superheat levels for a given operating point

(Tevap, Tcond), this section focuses on controlling superheat

regardless of the operating conditions of the ORC.

First, a global test reaching several operating points

will be performed. Then, based on the data of this test,

we will look for an LPV model describing the evolution of

the superheat. The varying parameters will be functions of

the pump command, the pressure at the pump outlet and

the two water inlet temperatures in the evaporator and

condenser. Finally, following the methodology proposed

in Section 3.3.2, an H∞ LPV controller will be designed

and tested on the experimental bench.

4.1. Global identification of an LPV system

In order to perform a global test for the identification,

we chose to apply a series of voltage steps for nine different

operating points. The test is summarized in Figure 18 with

the obtained superheat and the pump voltage. As before,

each signal is sampled at a rate of 0.1 s and now consists

of 56× 103 points. Note that the temperatures Tcond and

Tevap, i.e the operating points, are not completely station-

ary. Indeed, as previously mentioned, the control of Tcond
and Tevap is not very efficient on the test bench.

To identify a model with the data from Figure 18, we

choose the same LPV structure as the one defined in (7)

and (8) i.e:

ẋ = A(ρ)x+Bu

y , SH(model)− y0 = Cx
(23)

8



Figure 18: Description of the test used for identification

with,

A(ρ) =

[
ρ1 1

ρ2 0

]
, B =

[
0

b0

]
C =

[
1 0

]
.

(24)

But ρ1 and ρ2 are now depending on Po,pump, Tevap and

Tcond. They have the structure of a multivariate polyno-

mial as below:

ρi =ai0 + ai1Po,pump + ai2P
2
o,pump + ai3P

3
o,pump+

ai4Tevap + ai5T
2
evap + ai6T

3
evap+

ai7Tcond + ai8T
2
cond + ai9T

3
cond+

ai10Po,pumpTevap + ai11Po,pumpT
2
evap+

ai12P
2
o,pumpTevap + ai13P

2
o,pumpT

2
evap+

ai14Po,pumpTcond + ai15Po,pumpT
2
cond+

ai16P
2
o,pumpTcond + ai17P

2
o,pumpT

2
cond+

ai18TevapTcond + ai19TevapT
2
cond+

ai20T
2
evapTcond + ai21T

2
evapT

2
cond+

ai22Po,pumpTevapTcond + ai23Po,pumpTevapT
2
cond+

ai24Po,pumpT
2
evapTcond + ai25Po,pumpT

2
evapT

2
cond+

ai26P
2
o,pumpTevapTcond + ai27P

2
o,pumpTevapT

2
cond+

ai28P
2
o,pumpT

2
evapTcond + ai29P

2
o,pumpT

2
evapT

2
cond

i = (1, 2)
(25)

This represents a total of 62 unknown parameters to be

identified. As before, we propose to solve the following

optimization problem to estimate them:

min
b0,y0,aij ,(i,j)∈J1,2K×J0,29K

∑
(SH(model)− SH(meas))

2

subject to (23)-(25)
(26)

At the end of the optimization, the results presented

in Figure 19 are obtained. The FIT performance index is

80.7%, which indicates that the model captures most of

the ORC behavior. We can observe that the model is less

accurate at the end of the test, where Tevap is low and

Tcond high. At this operating point, heat exchanges and

phase changes are not very efficient which may explain the

difficulties in modeling this part.

4.2. Synthesis of a global H∞ LPV controller

In this section, we will use the notations and structures

defined in Section 3.3.2. The system described by (23)-(25)

can be written in the polytopic form (12)-(14). The K(ρ)

controller is still described by (15).

Unlike the control designed in Section 3.3.2, the main

objective of the controller considered here is to reject dis-

turbances represented by temperature variations in the

evaporator and condenser. If (23) and (25) are analyzed,

these temperature disturbances are not additive but will

influence the dynamics of the ORC system in a non-linear

way. The goals are: to be robust during the reference

change but also to reject these parametric disturbances as

quickly as possible. To design an H∞ LPV controller, we

propose the control scheme described in Figure 20. From

this, the same standard problem sketched in Figure 15 can

be deduced, where P (ρ) is obtained from Figure 20.

The weighting functionsWe andWu will be defined by

(22) and the filter on the reference by:

Wr(s) =
1

τrs+ 1
(27)

To illustrate the capacity of the control scheme in Fig-

ure 20 to reject parametric disturbances the control strat-

egy will be first tested on the model (23)-(25). To do this,

K(ρ) is designed with Proposition 3.1, using the parame-

ter values in table 2. Then, the following protocol is used:

the superheat reference goes from 15 to 10 ◦C at 250 s; then

a fault is simulated at 600 s by changing the values of ρ1
and ρ2. The controller design and tests are carried out for

τr = 0, 10 and 30. The results obtained are presented in

Figure 21. We can observe the desired behavior: τr adjusts

the reference tracking, without impacting the parametric

disturbance rejection performance specified by We. The

final configuration given by Table 2, with τr = 10, will be

retained. The controller matrices obtained with Proposi-

tion 3.1 are presented in Appendix B.

4.3. Experimental results of the global controller

First, the global H∞ LPV controller is tested for Tevap
and Tcond references set to respectively 90 ◦C and 50 ◦C.

Reference steps on the superheat SH(ref) are then ap-

plied on the test bench. The results obtained for this

operating point are presented in Figure 22. We observe

that the system approximately settles in respectively 40 s,

9



Figure 19: LPV identification results

yr
K(ρ) G(ρ)

Wu

z2

Wr

We

z1P (ρ)

u

Figure 20: Bloc diagram for a global H∞ LPV controller

Table 2: Parameter values of the weighting functions for the global
controller

W−1e W−1u

Parameter Value Parameter Value

ωe 0.1 ωu 1

εe 10−6 εu 10−4

Me 6 Mu 10

25 s and then in 15 s with an overshoot close to zero. This

matches the simulations carried out in the previous section

and meets the desired performance criteria. It can also be

seen that the control input variance due to output noise

can be large for low superheat values which can lead to a

high load on the actuator. Indeed, the variance for u is

0.4 for the PI controller (Figure 11), 0.43 for the first LPV

controller (Figure 17) and 0.69 for this one. This point

can be improved in a future design.

In order to assess the disturbance rejection performance,

SH(ref) is set to 10 ◦C, then the reference on Tevap is

changed from 90 to 80 ◦C. The results depicted in Fig-

ure 23 are obtained. During the transient phase the over-

shoot in superheat reaches a maximum of 0.7 ◦C and quickly

goes back to the reference when Tevap stabilizes.

The results are better for Tcond variations as it can be

seen in Figure 24. Indeed, from Figure 18, one can see

that Tcond has less influence on the superheat behavior

than Tevap.

5. Conclusion and further work

In this paper, three different controllers have been de-

signed for the superheat of an ORC system for waste heat

recovery from the engine coolant of a light-duty vehicle.

First, we have seen that a PI controller can fulfill this role

locally, for a given operating point. The design has been

based on an identified first-order model and the parame-

ters chosen to obtain a large robustness margin.

Then, to model the superheat as well as possible, an

LPV model has been proposed, where the varying param-

eters depend on the pressure at the pump outlet. It has

been established that this model represents the behavior

of the system very accurately. Based on this model, an

H∞ LPV controller has been designed by loop shaping.

The control performance has been significantly improved

for a given operating point.

Finally, the entire system operation was taken into ac-

count in the modeling and the design of a controller. In

this case, the varying parameters depend on the pump out-

let pressure but also on the temperature of the water in

the evaporator and the condenser. The controller has been

designed with the objective of rejecting parametric distur-

bances. Experimental tests have shown the effectiveness of

the method for controlling different superheat levels and

rejecting the disturbances caused by water temperature

changes, in both the hot and cold sources.

Future work will focus on extending the LPV approach

to a test bench setup closer to the industrial application.

Water flows through the hot and cold sources will be ma-

nipulated in order to reproduce operating conditions close

to those imposed by the real cooling system during a ve-

hicle standard cycle. Therefore, we will be looking for a

model valid for variable mass flows, and a controller based

10



reference change

parametric disturbance

(a) Whole test (b) Zoom on disturbance rejection

Figure 21: Control performance for parametric disturbance in simulation

Figure 22: Experimental results of the global H∞ LPV controller for
a fixed operating point

on this model in order to provide efficient superheat con-

trol for the ORC integrated in the vehicle.

Figure 23: Disturbance rejection of Tevap
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Figure 24: Disturbance rejection of Tcond

Appendix A. LPV controller for a given operat-

ing point

Ak1 =


−156.6 −3.3456 −0.00019167 8093.4

3.763 0.062312 0.0087353 −3.6295e+ 05

1.9305e− 06 4.1193e− 08 −1.9828e− 08 −0.0010861

5.35e− 05 1.347e− 05 −0.0038333 −3.5898



Ak2 =


−86.135 −1.7742 −0.00019213 8093.4

−6.961 −0.17682 0.0087304 −3.6295e+ 05

1.0373e− 06 2.1275e− 08 −1.9863e− 08 −0.0010861

4.5712e− 05 1.3298e− 05 −0.0038354 −3.5901



Ak3 =


−156.68 −3.3474 −0.00019288 8093.4

7.3351 0.14196 0.0087351 −3.6295e+ 05

1.9412e− 06 4.1431e− 08 −1.9824e− 08 −0.0010861

5.3387e− 05 1.3467e− 05 −0.0038332 −3.5898



Ak4 =


−86.215 −1.776 −0.00019292 8093.4

−3.389 −0.097172 0.0087301 −3.6295e+ 05

1.0479e− 06 2.1513e− 08 −1.9865e− 08 −0.0010861

4.6314e− 05 1.3312e− 05 −0.0038356 −3.5902


Bk1 =


781.3

−36.753

−1.1828e+ 08

144.1

 Bk2 =


483.65

43.498

−1.1828e+ 08

−517.99


Bk3 =


527.87

−40.002

−1.1828e+ 08

148.67

 Bk4 =


323.41

50.054

−1.1828e+ 08

−566.89


Ck1 =[

−7.7196e− 13 −9.0051e− 15 1.0263e− 13 −4.264e− 06
]

Ck2 =[
−7.7198e− 13 −9.0053e− 15 1.0256e− 13 −4.264e− 06

]
Ck3 =[

−7.7196e− 13 −9.0051e− 15 1.0262e− 13 −4.264e− 06
]

Ck4 =[
−7.7199e− 13 −9.0055e− 15 1.0256e− 13 −4.264e− 06

]
Dk1 = Dk2 = Dk3 = Dk4 = 0

Appendix B. LPV controller for global control

Ak1 =


−0.83581 −2.3748 −0.047259 0.11516 −0.01446

−9.2232 −60.843 −0.85356 −0.14814 3.9269e− 05

−0.050041 −3.5088 −0.079793 −0.020812 0.0035331

−1.8002 −18.292 −0.1311 −0.53102 0.061845

−1.2873 −89.793 −0.18188 −2.2034 −3837.5



Ak2 =


−0.70445 0.39243 −0.029409 0.12507 −0.014443

−7.1229 −16.602 −0.56819 0.010236 0.00039722

−0.042044 −3.3404 −0.078706 −0.020209 0.0035411

−1.1328 −4.2322 −0.040409 −0.48069 0.061965

1.2596 −36.134 0.16416 −2.0113 −3837



Ak3 =


−0.8853 −3.4172 −0.053983 0.11143 −0.014446

−9.2215 −60.809 −0.85334 −0.14802 0.00044062

−0.038098 −3.2572 −0.07817 −0.019911 0.003542

−1.6153 −14.395 −0.10596 −0.51708 0.062002

0.7223 −47.459 0.091174 −2.0519 −3837.4



Ak4 =


−0.75393 −0.65 −0.036133 0.12134 −0.014447

−7.1213 −16.568 −0.56797 0.010357 0.00039879

−0.030101 −3.0888 −0.077083 −0.019308 0.0035231

−0.94781 −0.33567 −0.015274 −0.46674 0.062021

3.27 6.2005 0.43733 −1.8596 −3837.7



Bk1 =


−100.78

−8.382

1533

916.62

6863.7

 Bk2 =


−100.78

−8.3844

1533

916.62

6864



Bk3 =


−100.78

−8.3842

1533

916.62

6864

 Bk4 =


−100.78

−8.3843

1533

916.62

6863.9


Ck1 =[

0.00036475 −5.2472e− 06 9.5986e− 06 −0.00013791 1.6418e− 05
]

Ck2 =[
0.00036475 −5.2472e− 06 9.5986e− 06 −0.00013791 1.6421e− 05

]
Ck3 =[

0.00036475 −5.2472e− 06 9.5986e− 06 −0.00013791 1.6419e− 05
]

Ck4 =[
0.00036475 −5.2472e− 06 9.5986e− 06 −0.00013791 1.6417e− 05

]
Dk1 = Dk2 = Dk3 = Dk4 = 0
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