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Abstract. We present a smooth surface interpolation method enabling to take discontinuities (e.g. faults) into
account that can be applied to any dataset defined on a regular mesh. We use a second-derivative multi-scale
minimization based on a conjugate gradient method. Our multi-scale approach allows the algorithm to process
millions of points in a few seconds on a single-unit workstation. The interpolated surface is continuous, as well
as its first derivative, except on some lines that have been specified as discontinuities. Application in geosciences
are numerous, for instance when a structural model is to be built from points picked on seismic data. The result-
ing dip of interpolation extends the dip of the input data. The algorithm also works if faults are given by broken
lines. We present results from a synthetic and real examples taking into account fault network.

1 Introduction

The picking of surfaces, isochrones or faults, is difficult and
uncertain because of low signal to noise ratio of surface seis-
mic or other reasons, so that most often only a partial pick-
ing can be achieved. However, for some geoscience
applications (Schneider, 2002; Perrin and Rainaud, 2013),
a complete picking is required through these areas. An
interpolator is thus needed with following characteristics:
it has to be fast, able to process millions of data points,
adaptable to all kinds of dataset (Fig. 1), and it has to pre-
serve the dip of the data (if any). Moreover, the interpolator
has also to take faults into account.

Numerous interpolation techniques (Awange et al.,
2018) like polynomial interpolations (Léger, 1999) are not
compatible with the above requirements, also spline inter-
polations are currently used in the scope of Computer
Aided Design (CAD) to define object representation and
to perform various manipulation of surfaces. Nevertheless
these representations require mandatory conditions like,
global and local shape control using control point of a sur-
face. As well, to insure a continuity at the junction of two
patches, it is necessary to define a smoothing quality factor
around control points, usually first order with tangent and
second order with curvature. Another difficulty is also to
define control points outside of the surface to limit the edge
effects, so the control points are not located on the surface.

We have mainly two kinds of models called Bezier- and
B-spline surfaces (Bézier, 1977, 1987), both are used

according to the chosen application. It exists also two
implementations of these models rational or non-rational.
In this last case a control point of a Bezier model has a glo-
bal influence and with B-spline it is only a local influence.
With the rational implementation, we speak about Non
Uniform Rational B-Spline (NURBS), which consists to
associate at each control point a weighting factor to give
more or less influence in the representation (Rogers and
Earnshaw, 1991). Another aspect is due to the degree of a
rational Bezier surface defined by the number of control
point minus one, and the degree of a B-spline surface which
could be chosen, weak to have more local control on the sur-
face. One can think to the user difficulties of choosing the
best parameters to build a NURBS surface and to avoid
edge effects to interpolate a surface with discontinuities.

Another approach is based on a local optimization of a
parametric surface (Hjelle and Dæhlen, 2005). It is a local
least-square approximation with a regularization term.
They used hierarchical triangulations iteratively refined if
the data are irregular, typically contour lines maps. More
precisely, the process begins with a regular square mesh
and using each square centers, it makes four triangles.
Then, considering the middle of the longest edge it makes
two triangles instead of one. This kind of dichotomy only
occurs if the data are sufficiently numerous and the process
is iterative, so they work with a varying spatial step. The
main difficulty of the method is how to weight the smooth-
ing term. Another method uses a combination of Radial
Basis Functions (RBFs) and Moving Least Squares
(MLS) in Ohtake et al. (2004). Other authors used hierar-
chical bases using B-splines and spline-(pre)wavelets with
a regularization parameter (Castaño et al., 2009). At each
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stage a least squares approximation of the data is computed
which is quite efficient to approximate large amount of scat-
tered data points (up to 300 000). More recently, huge
amount of data come from Light Detection And Ranging
(LiDAR) for the derivation of Digital Terrain Models
(DTMs), a least squares Compactly Supported Radial Basis
Function (CSRBF) interpolation method is quite efficient
and four times faster compared with ordinary kriging (Chen
et al., 2018a, 2018b).

We present here a fast multi-scale interpolator able to
work with a very limited choice of interpolation parameters
and also to take into account any discontinuities. The main
differences of our interpolation with last cited work is the
use of a constant spatial step at each iteration and also
the use of a single cost-function defined overall. One can
note our cost-function has a single minimum as soon as
the data have at least three points (not aligned).

In the following the interpolator considers only vertical
faults but its extension to inclined faults is straightforward
(Léger, 2016).

This interpolator relies on the minimization of the
second derivative, using a conjugate gradient (Hestenes
and Stiefel, 1952). This leads to a good solution but the
computing cost is too large because large unknown regions
require a high number of iterations. To get a good conver-
gence for a large number of unknowns with a small number
of iterations, a good initial model is required. This is
achieved by decimating the data point set with a double
step in X and a double step Y (computational time divided
by 4) and the number of iterations being doubled. As a
whole, computation time is divided by 2. Reiteration of this
decimation answers the issue of getting the initial model.
The reiteration stops when the number of iterations is
greater than the number of unknowns, the minimization
of the cost function being thus complete. This explanation
goes from the fine grid to the coarser grids, but the compu-
tation goes from the coarser grids to the fine grid.

Faults are introduced, via broken lines, along which
the calculus of all derivatives crossing them are excluded.
This very simple trick allows interpolation of surfaces
presenting discontinuities such as faults, which is a great

improvement from a geological point of view. The compu-
tation time remains the same, whatever faults are present
or not.

The key point of this approach is that 100 iterations on
the final model are sufficient to converge in case of simply or
moderately complex models, whatever the size of the model
is, and whatever faults are present or not.

In Section 2, we explain the method. In Section 3,
we illustrate the method on different synthetic examples
without faults. Section 4 is devoted to synthetic examples
with faults. A real example is presented in Section 5.

2 Method

2.1 Principle

We consider a rectangular regular mesh and the integer
coordinates (i, j) discretize the coordinates X and Y. The
step in i and j are unit, but the trace distance in meters is
given to the program to manage possible anisotropies
between X and Y. The data points lie on the mesh, and
the unknown points also. To interpolate some given points,
we have chosen to compute a surface that goes through all
given points and to minimize its second derivative with the
conjugated gradient method, which is simple to implement.
However for some datasets, the number of iterations can be
close to the number of unknown points, making the algo-
rithm O(N2), which this is too expensive for many applica-
tions. The aim of this paper is to remove this disadvantage.

A solution to obtain a quick optimization is to initialize
the model optimization by a model very close to the solu-
tion. But how to get a such initial model? The solution
relies on the fact that optimizing a model with a number
of i and j twice less than the original ones, and doubling
the number of iterations makes overall twice less computa-
tions (Jespersen, 1984). Thus, how to get a new good initial
model? Just iterate! This reiteration stops if the conjugate
gradient converge in a number of iterations which is greater
than the number of unknowns. This is true because the sec-
ond derivative is a linear function of the unknowns, so the
cost-function is a quadratic (see Ref. “Conjugated Gradient
Method”). In this case, it is the first inversion, and the result
will be independent of the initial model. In practice, the
overall shape is obtained on the coarse grids, especially
the first, and next finer and finer details on other grids.

This multi-scale strategy makes the algorithm O(N)
instead of O(N2). The complexity of the data layout, and
especially of the fault network, increase the cost, that is,
we get O(aN) with greater a. For instance, a = 100 is a va-
lue adequate for simple data, but a = 1000 or more could be
necessary for more complicated data. Once the data set and
the faults are given, the cost is really in O(N) in case of
mesh refining.

2.2 Second derivative measurement

Starting from a regular mesh of points, it is easy to con-
struct a C2 piecewise polynomial surface, such as splines.
Via this possibility, we will use the slope and the second
derivative as well. Nevertheless, these first and second

Fig. 1. Any dataset can be interpolated on a regular 2D-grid
(all green and red points), taking into account random distri-
bution of given values at green points. (a) These green points
could represent lines, (b) dotted lines, (c) single points, (d) small
groups of points, (e) large datasets.
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derivatives (see Sect. 2.7) are specific to our model and
depend of its characteristics.

In order to compute the three kinds of second deriva-
tives, we simply use the following formulas of a function f
(see Ref. “Finite Difference”). With our convention parame-
ters, the expression for the second derivative dii in i, where
the hi is the step in i and (i, j) is the position of the point on
the regular mesh is given by (1):

h2
i dii f i; jð Þ½ � ¼ f i þ 1; jð Þ � 2f i; jð Þ þ f i � 1; jð Þ: ð1Þ

The expression for the second derivative djj in j, where the
hj is the step in j and (i, j) is the position of the point on the
regular mesh is given by (2):

h2
j djj

f i; jð Þ½ � ¼ f i; j þ 1ð Þ � 2f i; jð Þ þ f i; j � 1ð Þ: ð2Þ

The expression for the second derivative dij in i and j could
be chosen as we like. The most popular equation is given by
(3), completely symmetric and easy to differentiate, but not
very compact:

4hihjdij f i; jð Þ½ � ¼ f i þ 1; j þ 1ð Þ � f i þ 1; j � 1ð Þ
� f i � 1; j þ 1ð Þ þ f i � 1; j � 1ð Þ: ð3Þ

Another possibility is less symmetric and mixes two
schemes, one positive in i and j, the other negative in i
and j, but the seven terms are a disadvantage for differen-
tiation (4):

2hihjdij f i; jð Þ½ � ¼ f i þ 1; j þ 1ð Þ � f i þ 1; jð Þ
� f i; j þ 1ð Þ þ 2f i; jð Þ � f i � 1; jð Þ
� f i; j � 1ð Þ þ f i � 1; j � 1ð Þ: ð4Þ

We have chosen for the cross-term dij a no-symmetric solu-
tion (5), with “positive in i and j” scheme, because it is com-
pact and easy to differentiate:

hihjdij f i; jð Þ½ � ¼ f i; jð Þ þ f i þ 1; j þ 1ð Þ � f i þ 1; jð Þ
� f i; j þ 1ð Þ; ð5Þ

whatever the scheme is, this cross-term must be taken into
account, as Figure 2 (bottom part) shows its influence.

2.3 Cost function

Cost function Q is the squared L2 norm of the second
derivatives:

2Q ¼ QII þ 2QIJ þQJJ ; ð6Þ
with,

QII ¼
X
NII

ðh2
iidii½f i; jð Þ�Þ2; ð7Þ

where NII is the set of points with at least an unknown in
the triplet in i,

QIJ ¼
X
NIJ

ðhihjdij ½f i; jð Þ�Þ2; ð8Þ

where NIJ is the set of points with at least an unknown in
the quadruplet, and,

QJJ ¼
X
NJJ

ðh2
jjdjj ½f i; jð Þ�Þ2; ð9Þ

where NJJ is the set of points with at least an unknown in
the triplet in j. The sets NII, NIJ and NJJ are usually some-
what different. These cost functions are computed on sev-
eral grids, at each scale.

Cost function Q is made of only one criterion, so the
result will be independent of any overall multiplicative fac-
tor such as uncertainties (Foster and Evans, 2008).

Since the cost-function at a given point depends on few
points, the gradient is computed by finite differences.

2.4 Faults

Faults correspond to discontinuities that are defined along
broken lines. The shape of these faults is defined at the
beginning, whatever the shape of the surface that will
evolve during the optimization. In others words, faults will
be vertical and the same fault model will be used at all
scales. These faults are used as such, without any extrapo-
lation which means the algorithm will introduce discontinu-
ities exactly where the customer has specified.

The principle for handling faults is to remove the mini-
mization of the second derivatives crossing the faults.
Figure 3 shows a region where all points are unknown.
The displayed triplets in dotted red or blue show second
derivatives which are removed in the cost function, due to
the presence of the fault in green. Doing so, the two sides

Fig. 2. Top part (a) illustrates the three second derivatives of a
function at the filled red point (i, j). The numbers in orange
represent the components of the gradient, for the point (i, j).
Bottom part shows the influence of the second derivative (using
our four-term scheme) in the interpolation result: (b) with and
(c) without, both interpolations using the same initial data
(value of +1/�1 at the black crosses). We see on (b) a very
smooth result by the edge, whereas the corners are very far from
the data in (c). The ruled surface displayed in (c) is a
hyperboloïd.
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of the fault become disconnected. This trick works for any
scale in the multi-scale inversion.

2.5 Multi-scale data and results

Data are given on the fine regular grid. But they have to be
downscaled fully automatically on the coarser ones while
keeping the mean and also the slope of the given points, if
any. Like the interpolated values are scalars which could
represent anything we use the word slope in a general mean-
ing. If these points are on a plane, whatever their distribu-
tion, then the result should belong to such a plane. This
work must be done for each scale. It is possible that a group
of different points on finer grids becomes isolated on coarser
grids.

The results obtained on a coarser grid must be interpo-
lated by a bilinear method to initialize the next finer grid.
The problem is simple if there is no fault, a bilinear interpo-
lation is sufficient to guess the lacking points.

If there is a fault in the vicinity of the point, the bilinear
interpolation will fail because the error can be as large as
the throw of the fault. In this case, the conjugated gradient
will finish to solve the problem, by making a bulge with
increasing size and decreasing amount, but this is very long
to do so. For this reason, we need to accelerate it by a
“pre-conjugated gradient” phase. Before the optimization,
this phase consists in estimating the value of points closed
to the fault by using points on the same side of the fault
but further away. The aim is to completely decouple the
value of a point from any value on the other side of a fault.
The “pre-conjugate gradient” phase is the key for the quick-
ness of the procedure.

2.6 Optimization

The interpolator is defined as the function f(i, j) which min-
imizes the L2 norm of the second derivative, with arbitrary
data, i representing the abscissa X and j the ordinate Y. On
a rectangular grid of N points, the number of unknowns
may vary from 1 (a single point is given) to N � 1 (all
points are known except one). All intermediate situations
are allowed.

The multi-scale situation has consequences on the inver-
sion. A small set of given points may show an average slope
which will influence the result on the finer meshes. On coar-
ser meshes, this same small set of points will become a single
point, and no slope can be attributed to this point. This
means that the slope has a meaning only on the finer scales,
and since the number of iterations is reduced, the zone of
influence of it will be also reduced. This is different from
a single-scale inversion where this small set will have long
term influence up to others data points.

The implementation of the conjugate gradient is very
simple. The customer has to choose the number of iterations
on the last inversion, and the program computes the num-
bers of iterations for the others inversions. The ratio
between the number of unknowns and the number of itera-
tions on the last optimization decide how many scales are
necessary. The formula is:

NO ¼ 1þ ceiling ln2 NUð Þ=3 ln2 NIð Þð Þ; ð10Þ
with ln2(�) being the base 2 logarithm, ceiling the function
which associates the integer immediately superior to a real
value, NO the number of optimizations, NU the number of
unknowns, and NI the number of iterations on the last
model. To increase (respectively decrease) the number of
scales, the simplest is to divide (respectively multiply)
by 8 the number of iterations on the last model.

Consider an example with NU = 340 000. Optimization
in one pass, leads to NO = 340 000, and a lot of computa-
tions: 3611 s on a Dell T3610 workstation. If we optimize
in five steps with 100 iterations on the last model, then
the computation time decreases to 2 s. Table 1 shows the
relationship between the number of iterations on the last
model and the computation time.

Figure 4 shows the scheme of the algorithm. In violet, we
see the number of unknowns in a logarithmic scale, with a
factor equal to 4 (2 for X and 2 for Y). The number of inver-
sions is in blue. In red, the number of iterations with a factor
of 2. In case of one inversion and the computation time is one
hour, whereas it is only 2 s if 5 inversions are used.

2.7 Smoothness of the interpolated surface

In practice, we do not see in the results the difference with a
continuous slope surface. In Appendix, we show that
the optimization of second derivatives does not lead to a

Table 1. Computation time as a function of the number
of inversions, for 340 000 unknowns. We prefer 2 s (multi-
scale) than 1 h (single scale).

Number of
inversions

Number of
iterations

Computation time
(s)

1 400 000 3611
2 42 240 553
3 5300 78
4 670 11
5 100 2

Fig. 3. The red mesh and the blue mesh represent two scales of
modelling. The triplets are second derivatives which are
conserved in full lines, and removed in dotted lines if they cross
the fault.
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C 2 resulting surface, but to an almost C1 surface because of
the Sobolev inequality.

3 Synthetic examples

This section shows applications on several synthetic exam-
ples which develop the characteristics of the interpolator,
first without faults, and second with faults.

3.1 The continuity of the slope

Figure 5a presents the product of two sinusoids, one in X,
the other in Y. The size of the mesh is 200 by 300 dots
and the height varies from �100 to 100 m. We compare
our interpolation method with the inverse distance weight-
ing (see Refs. “Inverse Distance Weighting”; Lu and Wong,
2007). For simplicity and robustness, the inverse distance
weighting has the advantage to preserve the minimum-
maximum range between the data and the result. In gen-
eral, this is not true with our interpolator because the slope
is continuous at a maximum or minimum value, the dip
goes down in some direction and necessarily dip goes up
in the opposite direction.

Figure 5b shows white rectangles which are pairs of
points oriented along the length. Dark blue represents the
unknown. These points are very close to zero since their
maximum is less than 3.2 whereas the overall interval is
[�100, 100].

Figure 5c shows the result of the inverse distancemethod,
which preserves the data interval [�3.2, 3.2]. On the con-
trary, we can see on Figure 5d that our interpolator takes
into account the slopes themselves, and the overall interval
[�60, 60] is much closer to the theoretical [�100, 100].

We have added data points at minimum and maximum
values as shown in Figure 6. The result of the inverse

Fig. 5. (a) True model varying between �100 and þ100. (b)
Unknowns are in dark blue and bi-points give dips, with small
values included in the interval [�3.2, 3.2]. (c) Result of the
inverse distance weighting, which preserves the data interval
[�3.2, 3.2] with a yellow color everywhere. (d) Result of the
multi-scale algorithm which preserves slopes and gives [�60, 60]
overall range.

Fig. 4. Scheme of the algorithm.

Fig. 6. (a) Same true model. (b) Six points in orange are added
at minimum or maximum values. (c) Result of the inverse
distance weighting, with dip discontinuity at the data points.
(d) Result of the multi-scale algorithm with an maximal error
less than 6%.
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distance weighting appears in Figure 6c with discontinuous
slope at all data points, especially at orange points. Our
interpolator (Fig. 6d) yields a continuous slope everywhere,
even at data points, and the maximal error is less than 6%.

3.2 Anamorphosis

The inverse distance property to preserve the minimum-
maximum range may be comfortable because there no risk
to get aberrant values. We have seen in the previous
paragraph that this is not the case for our interpolator. It
may happen that some values become negative and this
might be an issue for properties like velocity. Figure 7a
shows three wells with extremely contrasted acoustic impe-
dance values, ranging from 3000 to 9000 (m/s) (g/cm3).
The result of the inverse distance (Fig. 7a) shows disconti-
nuities at wells but the overall shape is satisfactory. Never-
theless we can notice a “bubble effect” around the points 1,
2, 3 and if we consider them as well-measurements it could
have negative impact in model building (Sams and Carter,
2017) and further for geophysical applications like reservoir
characterization. This is not the case of our interpolator
(Fig. 7b) since the interpolator goes down to �1500
(m/s) (g/cm3), which is not acceptable for acoustic impe-
dance for instance.

To solve this problem, we need a technique that modi-
fies the values outside the interpolation. The anamorphosis
is adequate for that purpose. It requires a change of vari-
ables before the interpolation, which makes wishable inter-
val ] L1, L2 [ become ]�1, +1[, and the inverse variable

change from ] �1, +1 [ to ] L1, L2 [ after the interpola-
tion. With M12 = (L1 + L2)/2 and D21 = L2 � L1, the for-
mula of the forward anamorphosis is:

gd i; jð Þ ¼ M 12 þ D21

p
tan

p
D21

fd i; jð Þ �M 12ð Þ
� �

; ð11Þ

and for the backward anamorphosis is:

hi i; jð Þ ¼ M 12 þ D21

p
tan�1 p

D21
gi i; jð Þ �M 12ð Þ

� �
: ð12Þ

Functions fd and gd concern the data, whereas gi and hi con-
cern the interpolation result. Limits L1 and L2 should be not
too closed to the data. In Figure 7c, L1 = 1000 and
L2 = 11 000 (m/s) (g/cm3), have been chosen and the result
remains in this interval.

Note that the anamorphosis limits are not necessarily
constant, they can vary with i and j. In such a case, quan-
tities M12 and D21 become M12 (i, j) and D21 (i, j).

Finally, if we compare Figure 7a and the final result of
our interpolator (Fig. 7c), it does not include the “bubble
effect” and respect the physical range of limits of the consid-
ered parameter to interpolate.

4 Synthetic examples with faults

We now introduce faults in the models aiming to show
the efficiency of the “pre-conjugate gradient” phase,
which is critical for the accuracy and the quickness of the

Fig. 7. (a) Inverse distance weighting seems correct since the minimum-maximum range is preserved from data to result. (b) Our
interpolator is not correct since the minimum is negative. (c) Anamorphosis makes the result satisfactory inside the interval ]1000,
11 000[ (m/s) (g/cm3).
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interpolator. Another aim is to test the behavior of the
algorithm at the ends of faults.

4.1 Circle

This example has been designed to show the independence
between the result and the initial model. The white circle,
representing a closed discontinuity (Figs. 8a and 8f), is
going to show how the interpolator manages all orientations
of the fault. In this example we have only two given set of
values (two little black-squares with brown and blue col-
ors), one inside the white circle and the other outside.

The dataset consists of two horizontal squares, one at
1800 m depth, the other at 2200 m depth. The size of these

squares is 50 dots, and the size of the unknown domain is
700 by 500 dots. Figure 8a shows the initial model which
is the linear regression of the data. Because the same palette
is chosen, the larger range saturates the dark brown and
dark blue. In Figure 8b, the result of the first iteration
has nothing to be compared with the initial model, and
the two constant zones at 1800 and 2200 m are clearly
found. The number of iterations of this first inversion is
1600 and the number of unknowns is 1300. Figure 8c shows
the result of the second inversion, with some more details.
Figures 8d and 8e show the results of the third and fourth
iterations. Figure 8f shows the final result for the fifth inver-
sion. For a difference of 400 m in the data, the L2 deviation
to the theory is less than 3.5 m, that is less than 1%.

Fig. 8. (a) Initial model. (b) Result of the first iteration with 1300 parameters and 1600 iterations. (c) Result of the second iteration
with 5300 parameters and 800 iterations. (d) Result of the third iteration with 21 500 parameters and 400 iterations. (e) Result of
the fourth iteration with 85 000 parameters and 200 iterations. (f) Result of the fifth, and last, iteration with 340 000 parameters and
100 iterations. The L2 norm of errors is 3.5 m for a 400 m difference in the data.
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This synthetic case study demonstrates the efficiency of our
interpolator to take into account all fault-orientations and
even compartment (a closed limit). In the final interpola-
tion result (Fig. 8f), we have an uniform brown color inside
the white circle and an uniform blue color outside.

The overall multi-scale computation time on a Dell
T3610 workstation is only 2 s for 100 iterations on the
last model, whereas a single direct inversion on the full
340 000 dots needs 3600 s. This is the deciding advantage
of the multi-scale technique.

4.2 Five faults example

This example with horizontal data sets at different levels
aims to illustrate the continuity of dip.

One square corresponds to 25 � 25 dots, and the others
to 50 � 50 dots. For each square, including the interior, all
points have the same height, and the interpolator makes dip
continuous from the data. In Figure 9a, blue data are
1700 m depth, blue–green 1800 m, green 1900 m, orange
2000 m, red 2100 m and brown 2200 m. The interpolation
result is shown in Figure 9b. Note than the flat orange zone
is disconnected from the others. Figures 9c shows the sec-
ond inversion result. The orange zone becomes connected
the brown zone. Figure 9d shows the final result. The com-
putation time is 2 s on Dell T3610 workstation for five
inversions and with 100 iterations on the last model. We
see that the overall shape of the solution is founded at
the end of the first inversion, the others iterations settling
finer and finer details. One can notice, especially with the

Fig. 9. (a) Initial model of the first model. (b) First model with 1300 parameters and 1600 iterations. (c) Second model with
5300 parameters and 800 iterations. (d) Final result. Faults are white and given points inside black squares.

Fig. 10. (a) Result of a 54 000 000 points interpolation with
50 iterations on the eighth and last model. (b) Result with only
three iterations on the 10th and last model.
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first inversions (Fig. 9b) the increased size of the square-
data (black squares) due to the convolution of the initial
black-squares (displayed on Fig. 9d) by the current pixel-
size.

Like the previous synthetic example, this more complex
case study shows how behaves the interpolator to take into
account all fault-orientations. In the final interpolated
result (Fig. 9d), we have a compartment with a closed limit
(see blue area) and a partial compartment (see orange
area). Notice also the intermediate case with the red–brown
contrast.

4.3 Big model with 54 000 000 points

This enlargement of the five faults example is designed to
show the ability of the interpolator to manage very big
meshes. This example shows 9000 points in X and 6000 in
Y. Figure 10a shows the result of the eighth inversion with
50 iterations on the last model. One pixel of the initial
model corresponds to 65 536 pixels of the final model. This
work necessitates 2 min 27 s on a Dell T3610 workstation.

Figure 10b shows the result with only three iterations on
the 10th and last model. We can see that the result is not
perfect (see inside dotted black circle). One pixel of the ini-
tial model corresponds to 262 144 pixels of the final model.
The computation time is 23 s.

5 Real case study: Alwyn (north sea)

We present the Alwyn dataset as a real field example. The
size of this example is 13 km long and 5.5 km wide, with

steps of 12.5 m in X and Y, which represents ~458 000
unknowns. Seismic sections have been picked and the result
is a triangulation, the typical distance between points being
about 100 m. These triangulation points are projected to the
closest points of the regularmeshwith the faults being edges.

We have removed all the points closer than 350 m from
a fault. This choice is the maximal value which preserve two
points along the eastern edge, the two points allowing the
dip computation. The reason to remove points close to
the fault is also justified by a greater picking-uncertainty
due to the signal-to-noise ratio.

We made two interpolations in Figure 11, without the
faults in (a), and with the faults in (b). From this real case
study, we can see the efficiency of the interpolator to take
into account a real discontinuity network (Fig. 11b). We
can see clearly a little narrow full compartment (at the
right) and partial compartments (at the bottom-right and
in the middle). The computation time is quite fast, it takes
only 3 s on a Dell T3610 workstation for this ~458 000
unknowns interpolation.

Figure 12 shows the input data which are displayed in
(a), and in (b) we see the interpolation difference between
(b) and (a) of Figure 11. We can see clearly these differences
following the discontinuity network.

At this stage we speak about discontinuities and not
fault because we have access only to the (X, Y) position
of faults at a given depth, the height of surfaces along them
is unknown. With more information the interpolator could
be applied many times at different depth in order to
build 3D discontinuous surface-model. Many applications
in Geosciences could benefit from using a priori 3D
faulted-model (Mitra et al., 2017).

Fig. 11. We see the result of the interpolation of Alwyn data, without faults in (a), with faults in (b).
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6 Conclusion

During several years, the presented multi-scale interpola-
tion was used in various scope of work from Geosciences
without faults to fill sparse information in 2D regular
meshes. We bring into focus a multi-scale interpolator
which has many advantages. The interpolation is fast
because a million of unknowns requires only few seconds
to compute. This fact is due to our multi-scale approach
with several inversions instead of one, consequently the
algorithm passes from N2 to N. As well, the interpolation
follows not only the value of the given data, but also the gi-
ven dip (if any). From the various processed examples, one
can also notice the arbitrary distribution of dataset, from 1
to N � 1 known points. Finally, from the last real case
study from Alwyn, the interpolation is able to work with
any network of fault lineaments. The same interpolator
has been used with the same efficiency with a dozen of other
unpublished real cases studies, for confidential reasons.
Some of them included sixty faults. More generally, the
presented algorithm can interpolate any real property avail-
able on a regular mesh.
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Appendix

The smoothness of the interpolated surface

It is well known that a finite sum of any C1(R) functions
give a C1(R) function, but this property disappears if the
sum becomes infinite. For instance, if N ? 1, the function

SN xð Þ ¼ 4
p

Xn¼1þ2N

n¼1

1
n
sin

npx
L

� �
tends to a square-func-

tion of unit size and length L which is clearly not
continuous.

Similarly, what happens to our interpolator when the
step size tends to 0? We work with finite regular meshes,
and it is possible to define a C2 polynomial function which
is always integrable, whatever the finite step may be. As
long as steps are finite there is no problem, but when the
step tends to zero we need the Sobolev inequality.

Function f(i, j) belongs to Wm,p (X), where m is the
number of derivatives in LP, X being an open set of Rn.
Sobolev showed (see Ref. “Sobolev Inequality”):

k ¼ m � n
p
) W

m;p
Xð Þ � Ck�e 0Xð Þ;

where k is the degree of continuity, and e is a strictly pos-
itive real. For our needs, we have m = 2 since we minimize
the second derivative, p = 2 since we use squares in the
norm, n = 2 since the dimension of a surface is 2, and
the result is k = 1 � e since the Sobolev inequality. In
the following, the result is said almost C1, because of e.
There is a difference between the order of the derivative we
minimize, here 2, and the continuity of the result, what-
ever the mesh, which is here almost 1. For applications
in geosciences, the continuity of the dip is a consequence
of that for surfaces, including the isolated data points.

Note the influence of the dimension, we have simple con-
tinuity in 3D for isolated points, not the almost continuity
of the first derivative in 2D. However, around a differen-
tiable curve with differentiable property, the result will be
almost C1 in 3D.

The norm has also an influence. If we choose p = 1
instead of p = 2, the results are more robust. When a trav-
eller reaches a fork in the road, the l1-norm tells him to take
either one way or the other, but the l2-norm instructs him to
head off into the bushes. This citation can be found page 832
in Claerbout and Muir (1973), and also page 303 in
Tarantola (1987). The authors argue that the L1 norm is
more robust than the L2 norm. But the downside is that
the result will be only C0 instead of almost C1 according
the Sobolev inequality. The choice of p = 1 leads to the
opposite conclusion: the L1 norm takes minimum and
maximum curvatures into account, which is not at all
robust, but according to Sobolev inequality, the result will
be almost C2 instead of almost C1. Robustness and smooth-
ness are opposite.
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