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Abstract 12 

Advanced characterization of the products of gas oils hydrotreatment is of high interest for the refiners 13 

and can be achieved by using ultra-high resolution mass spectrometry (FT-ICR MS). However, the 14 

analysis of gas oil samples by FT-ICR MS generates complex datasets with numerous variables whose 15 

exhaustive analysis requires the use of multivariate methods. Relevant information about nitrogen and 16 

sulfur compounds contained in several industrial gas oils are obtained by using three different ionization 17 

modes that are electrospray ionization (ESI) used in positive and negative polarities and atmospheric 18 

pressure photo-ionization (APPI) used in positive polarity. For datasets generated for a single ionization 19 



 

 

mode, classical multivariate methods such as Principal Component Analysis (PCA) are commonly used. 1 

When the key information is spread into several ionization modes and thus into several datasets, a data 2 

fusion approach is highly interesting to simultaneously explore these datasets and can be followed by 3 

Parallel Factor analysis (PARAFAC). Nevertheless, many more variables are simultaneously considered 4 

when data fusion is performed and the sensitivity of PARAFAC and its ability to extract the most 5 

relevant variables compared to classical multivariate methods has not been assessed yet in the 6 

framework of FT-ICR MS. In this paper, the comparison of the classical data analysis (PCA) approach 7 

and the data fusion combined with the PARAFAC analysis approach is presented. The results have 8 

shown that applying PARAFAC on fused datasets is highly sensitive and able to put forward features 9 

and variables that individually identified through the classical data analysis with greater ease of 10 

implementation and interpretation of results. As an example, dibenzothiophenes and carbazole families 11 

(DBE 9) have explained most of the variance between samples and remain the most refractory 12 

compounds in hydrotreated samples. A significant difference in alkylation between the different types of 13 

gas oils has also been spotted. This paper validates the power and efficiency of this approach to explore 14 

complex datasets simultaneously without any loss of significant information.  15 

Introduction 16 

The improvement of the hydrotreatment (HDT) process is of major importance as the environmental 17 

specifications for sulfur content in commercial on-road diesels are getting more and more severe
1
. This 18 

process allows reducing the sulfur content to a very low concentration (below 10 ppm) to limit sulfur 19 

emissions and thus respect legal specifications. In gas oils, sulfur is found in different organic 20 

structures: thiophenic compounds, alkyl-benzothiophenes, and alkyl-dibenzothiophenes. The repartition 21 

of the sulfur structures in gas oils can be very different depending on their origins. Indeed, gas oil cuts 22 

found in refineries can be obtained from distillation of the crude oils (Straight Run gas oils called 23 



 

 

SRGO) or can be produced from several conversion processes such as fluid catalytic cracking (FCC, 1 

producing gas oil cuts called LCO), coking (producing gas oil cuts called GOCK) and catalytic 2 

hydroconversion (producing gas oil cuts called FBGO with fixed-bed technology or EBGO samples 3 

with ebullating-bed technology). 4 

The efficiency of the HDT process is reliant on the molecular composition because the kinetic of the 5 

hydrodesulfurization (HDS) reactions depends strongly on the structure of the sulfur compounds in the 6 

gas oil cuts
2
. The efficiency of hydrodesulfurization is also dependent on nitrogen compounds. Indeed, 7 

basic nitrogen compounds are deactivating the acidic catalysts used while the neutral nitrogen 8 

compounds are refractory and compete with sulfur compounds reducing the overall sulfur removal
3–6

. 9 

Thus, hydrodenitrogenation (HDN) is also targeted during hydrotreatment. 10 

Molecular-based kinetic modeling approaches are increasingly used
7
 to predict the reactivity of the 11 

different gas oil cuts and to optimize the operating conditions of the HDT process. There is then a real 12 

need for molecular characterization of these different gas oils
2
. The detailed characterization of sulfur 13 

compounds in gas oils can be achieved through atmospheric pressure photo-ionization (APPI) coupled 14 

to ultra-high resolution mass spectrometry (Fourier Transform Ion Cyclotron Resonance Mass 15 

Spectrometry known as FT-ICR MS) analysis
8–11

 while nitrogen compounds are described using the 16 

electrospray ionization (ESI) source in two different polarities (negative polarity for neutral nitrogen 17 

compounds and positive polarity for basic nitrogen compounds)
12,13

. As FT-ICR MS generates big 18 

datasets, multivariate analysis is more and more used to fully explore the resulting datasets
14–16

. 19 

Generally, principal component analysis (PCA) is applied on single datasets obtained for a given 20 

ionization mode or on several datasets with variables being the molecular formula of the compounds 21 

and their corresponding abundances or relative intensities
17,18

. This methodology does not allow to 22 

directly assess the contribution from the aromaticity and the alkylation degrees throughout the loadings 23 



 

 

analysis and thus the direct identification of the sulfur and basic/neutral nitrogen compounds explaining 1 

the observed variance between samples. Recently, a new approach has been introduced by merging 2 

several datasets obtained from different ionization modes and applying the PARAFAC method on this 3 

multi-dimensional hypercube
19

. This new approach seems promising to extract the key features (DBE, 4 

nC) of the different samples
20–22

. However, the exhaustivity and sensibility of this method have not been 5 

compared to classical multivariate methods when considering a large number of variables. In this paper, 6 

two different approaches have been studied to evaluate the benefits of the data fusion and the 7 

PARAFAC approach over the classical chemometric analysis (PCA) using the same variables that are 8 

the DBE (Double Bond Equivalent) and the number of carbon atoms. The classical data analysis has 9 

been first performed on single datasets to provide an exhaustive chemometric analysis of these datasets. 10 

Then, datasets have been merged and the PARAFAC method was applied to compare information 11 

extracted from the single PCA analysis and the fused PARAFAC analysis. Besides, the evolution of the 12 

nitrogen and sulfur species over hydrotreatment has been followed using these approaches and put 13 

forward some refractory species such as carbazoles or dibenzothiophenes. 14 

Material and Methods  15 

Gas oil samples. 23 different gas oils with various industrial origins were analyzed in this study:  5 16 

SRGO, 3 LCO, 4 GOCK, 1 EBGO, 1 FBGO, 5 HDT and 4 blends (MIX). The macroscopic properties 17 

of these samples are shown in Table 1. The preparation and ionization conditions were optimized with a 18 

Design of Experiments (DoE) approach and detailed in a previous work
13

. 19 

FT-ICR MS analysis. Each gas oil sample was analyzed using ESI(+), ESI(-) and APPI(+)-FT-ICR MS 20 

considering 6 technical replicates. Mass spectrometry (MS) analyses were performed using a LTQ FT 21 

Ultra Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR MS) (ThermoFisher 22 

Scientific, Bremen Germany) equipped with a 7T magnet (Oxford Instruments) and an ESI source 23 

(ThermoFisher Scientific) used in positive and negative modes and an APPI source (Syagen 24 



 

 

Technology, Tustin CA, USA) used in positive mode. The mass range was set to m/z 98-1000. 70 scans 1 

with 4 µ-scans were recorded with an initial resolution set to 200,000 (transient length of 1.6s) at m/z 2 

300 (center of average gas oil mass distribution). The transient signal was recorded to enable further  3 

Table 1. Macroscopic properties of gas oil samples used in this study. The ASTM standard methods used for 4 
analysis are mentioned for each property.  5 

Sample Type (*) 

Total sulfur 

(ppm) 

Ref. method: 

ASTM 

D2622 

Total 

nitrogen 

(ppm) 

Ref. method: 

ASTM 

D4629 

Basic 

nitrogen 

(ppm) 

Ref. method: 

ASTM 

D2896 

Density at 

15°C (g/cm3) 

Ref. method: 

ASTM D4052 

Boiling point 

range (°C) 

Ref. 

 method: 

ASTM 

D86 

GO 1 SRGO 13555 115 47 0.8541 219-386 

GO 2 SRGO 7044 254 100 0.8665 258-396 

GO 3 SRGO 10979 350 129 0.8878 244-396 

GO 4 SRGO 8892 114 42 0.8484 221-381 

GO 5 SRGO 4189 96 48 0.8491 186-392 

GO 6 LCO 9496 928 91 0.9130 199-386 

GO 7 LCO 11074 1170 49 0.9413 248-390 

GO 8 LCO 2231 496 141 0.9035 166-304 

GO 9 GOCK 14796 893 404 0.8501 148-358 

GO 10 GOCK 12723 838 390 0.8581 163-371 

GO 11 GOCK 15314 1200 449 0.8640 173-375 

GO 12 GOCK 24270 1260 569 0.8813 188-401 

GO 13 EBGO 1248 1719 855 0.8712 199-429 

GO 14 FBGO 344 195 121 0.8522 180-359 

GO 15 MIX (65% GO 5 + 35% 

GO 6) 

6400 380 63 0.8708 189-391 

GO 16 MIX (67% GO 9 + 33% 

LCO) 

14004 988 436 0.8576 151-351 

GO 17 HDT from GO 16 190 93 14 0.8585 184-383 

GO 18 HDT from GO 16 261 140 23 0.8591 187-386 

GO 19 
MIX (55% GO 5 + 30% 

GO 7 + 15% GO 11) 
14162 586 122 0.8828 218-390 

GO 20 HDT 3 from GO 19 626 205 38 0.8617 209-387 

GO 21 HDT 2 from GO 19 2813 464 107 0.8678 211-388 

GO 22 HDT 1 from GO 19 3656 723 330 0.8691 210-389 

GO 23 
MIX (50% LCO+50% 

LCO) 
9125 925 98 0.9310 206-368 

(*): SRGO = Straight Run Gas Oil; LCO = Light Cycle Oil; GOCK = Coker Gas Oil; EBGO = Gas Oil from 6 
Ebullating Bed reactor; FBGO = Gas Oil from Fixed Bed reactor; MIX = blended Gas Oil, HDT = Hydrotreated. 7 

 8 

data processing. The ionization and ion transfer conditions for each ionization mode are available in 9 

Table 2. External mass calibration was performed using a home-made sodium formiate clusters solution 10 

(sodium formiate from VWR, Fontenay-sous-Bois, France) from about 90 Da to 1000 Da.  11 



 

 

 

 

6 

 

Table 2. Ionization and ion transfer conditions for each ionization mode. Tol=Toluene, 

MeOH=Methanol, AA=Acetic Acid and AmHy = Ammonium Hydroxide. (-) indicates the parameter is 

not considered.. 

Parameter ESI(+) ESI(-) APPI(+) 

% dilution 1 0.5 1 

% solvents mix 
25%-75%  

Tol-MeOH 

25%-75%  

Tol-MeOH 

75%-25%  

Tol-MeOH 

% additive 0.05% AA 0.15% AmHy - 

Spray voltage (kV) 3.7 3.5 - 

Tube lens (V) 110 -140 70 

Capillary voltage (V) 50 -50 30 

Capillary temperature (°C) 275 275 275 

Vaporization temperature (°C) - - 250 

Sheath gas (a.u) - 5 20 

Auxiliary gas (a.u) - - 5 

Flow rate (µL/min) 5 5 10 

 

Spectral data processing. The full data processing has been described elsewhere
13

. Briefly, the 70 

transients have been summed and the resulting summed transient has been used to perform phase 

absorption and phase correction in order to obtain the absorption mode spectra for enhanced resolution 

and mass accuracy. After noise thresholding and peak picking, the obtained mass spectrum has been 

processed by a home-made software to perform molecular formula assignment using the following 

conditions C0-50H0-100O0-3N0-3S0-3 with maximum content of heteroatoms in one molecular formula set to 

3 and 5 ppm of maximum mass error as a first round. For clearer identification of the families identified 

in APPI(+) mode, the radical ions are identified as X families and protonated or deprotonated ions are 

identified as X[H] families. The mass spectrum has been then recalibrated using iterative mass 

recalibration considering the most intense family in each ionization mode with a maximum mass error 

set to 1 ppm for the second round of assignment. To compare the samples between one another, the 

relative intensities of the N1[H] or S1 compounds have been calculated and are equal to the peak 

intensity divided by the sum of intensities from all N1[H] or S1 peaks. Finally, the nitrogen and sulfur 

families have been attributed according to DBE values.  



 

 

 

 

7 

Chemometric analysis. This study is focused on the statistical analysis of neutral nitrogen, basic 

nitrogen, and sulfur compounds. These three families of interest are respectively identified using ESI(-) 

mode in the N1[H] class, using ESI(+) mode in the N1[H] class and using APPI(+) mode in the S1 

class. For each replicate and a given ionization mode, a DBE as a function of carbon number plot 

(DBE=f(#C)) has been generated considering relative intensities of the peaks. Then, all the DBE=f(#C) 

plots have been concatenated to obtain 3D arrays of size 50x25x138 for each ionization mode where 50 

corresponds to the range of the number of carbon atoms, 25 to the DBE range and 138 to the number of 

acquired MS spectra (23 samples times 6 replicates). Two strategies have then been followed: 1. The 

generated 3D cubes have been unfolded into 2D arrays of size 138x1250 (1250 corresponding to given 

DBE/number of carbon atoms pairs) for each ionization mode. Then a Principal Component Analysis 

(PCA) has been applied on each array
17

. 2. A low-level data fusion method has been applied to 

concatenate the previously obtained 3D cubes along the DBE axis obtaining one hypercube of size 

50x75x138 containing the information of the three ionization modes. In this specific case, the 

PARAFAC method has been applied using the Alternating Least Squares algorithm (ALS)
19

. These two 

chemometric strategies are presented in Figure 1. Further information about both statistical approaches 

and data fusion methods can be found elsewhere
18,20,23

.  
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Figure 1. Chemometric strategies applied in the present work 

All these models have been developed with the PLS_Toolbox version 8.6 (Eigenvector Research Inc, 

Wenatchee, WA, USA) for Matlab version R2018b (The Mathworks, Inc, Natick, MA, USA). For PCA 

analysis, the mixed blends samples (GO 15, 16, 19 and 23, see Table 1) were used for validation and all 

other samples were used for PCA calculation (calibration base). The matrices have been mean-centered 

before multivariate analysis. The mixed samples (GO 15, 16, 19 and 23) were also used for validation 

for the PARAFAC analysis which was performed with non-negativity constraints and the 3D matrices 

were block-scaled before data fusion.  

Results and Discussion 

1. PCA on individual datasets 

Basic nitrogen compounds. PCA analysis was applied to the matrix obtained from the analysis of 

N1[H] compounds in ESI(+) mode. Four principal components were selected and studied expressing up 

to 93% of the total variance. The gas oil 8 (LCO type) was considered as an outlier (large Hotelling's t-



 

 

 

 

9 

squared statistic T² and was discarded from the data set. The score plot obtained along the two first 

principal components (i.e. PC1-PC2) is shown in Figure 2A.  

  

Figure 2. (A) Score plot along PC1 and PC2 obtained from ESI(+)-FT-ICR MS data for N1[H] class. (B) 

Loadings plots of PC1 and (C) PC2 for ESI(+)-FT-ICR MS data. THQ Ani Pyr = TetraHydroQuinolines Anilines 

Pyridines family 

This projection allows assessing graphically the repeatability of the different analysis which is here 

satisfying as the replicates from each gas oil are projected close to one another. Moreover, some clusters 

are observed according to the type of gas oil considered which is related to the specificities of each 

process. From a general point of view, most samples are negatively or poorly projected over PC1 while 

the LCO samples are positively projected. As a matter of fact, the relative intensities of the different 

basic nitrogen families presented in Figure 3A are quite similar for each type of gas oil except for the 

sample GO 7 (LCO) as it has a very low content in poorly aromatic compounds (DBE < 6,  



 

 

 

 

10 

Figure 3. (A) Evolution of the relative intensities as a function of the DBE for different gas oil samples for the 

three ionization modes. (B) Evolution of the relative intensities as a function of the number of carbon atoms for 

the three ionization modes. The standard deviation bars calculated from the 6 replicates are indicated in red. The 

graphics obtained as a function of the global identified families are available in Figure S2 in Supporting 

Information. THQ Ani Pyr = THQ Anilines Pyridines, BT = Benzothiophenes, DBT = Dibenzothiophenes and 

NBT = Naphtobenzothiophenes. GO 1 = SRGO, GO 7 = LCO, GO 9 = GOCK, GO 12 = GOCK, GO 13 = 

EBGO, GO 14 = FBGO, GO 19 = MIX, and GO 20 = HDT. 

 TetraHydroQuinolines [THQ] Anilines Pyridines) and high content in very aromatic compounds (DBE 

> 10, Acridines). Besides, the global carbon atoms distribution of the sample GO 7 (LCO) shown in 

Figure 3B exhibits a bimodal distribution with maximum intensities centered over C15 and C28 while 



 

 

 

 

11 

only Gaussian distributions are observed for the other samples with an average alkylation level lower 

than C28. In Figure 2A, the variables having positive contributions along PC1 are poorly alkylated 

aromatic quinolines (DBE 7, C12 and DBE 8, C14) and poorly alkylated acridines (DBE 10, C15) while 

the variables having negative contributions correspond to poorly aromatic compounds but rather 

alkylated (DBE 6, C18 and DBE 7, C20). Thus, the projection of the samples over PC1 is consistent 

regarding the projection of the LCO samples that contain more aromatic compounds that are poorly 

alkylated. 

PC2 mainly discriminates the moderate HDT samples including the sample GO 14 (FBGO) having 

positive scores and the SRGO samples having negatives ones. The variables having positive 

contributions in the loadings (Figure 2C) are poorly aromatic compounds (DBE 5, C14 and DBE 6, 

C15). The variables having negative contributions are more aromatic and more alkylated (DBE 7, C22). 

Thus, the observed projection of the samples is again consistent with the variables identified. The 

sample GO 14 (FBGO) is obtained through a relatively severe hydroconversion process (Fixed-bed 

hydroconversion) leading to quite light and poorly aromatic gas oils
24

 and the ions from the THQ 

Anilines Pyridines (DBE 4-5-6) family represents up to 80% of all ions identified (see Figure 3A). On 

the other side, SRGO samples contain compounds that are a little bit more aromatic and much more 

alkylated such as quinolines family up to 50% with a maximum intensity over C20 (see Figures 3A and 

3B).  

Another interesting point from the PC1-PC2 score plot is the projection of the hydrotreated samples 

obtained from the sample GO 19. Indeed, two clusters are observed depending on the hydrotreatment 

level of the samples so-called Moderate HDT (> 460 ppm of total nitrogen) or Deep HDT (< 210 ppm 

of total nitrogen). Moreover, the increasing efficiency of hydrodenitrogenation (HDN) is translated into 

negative scores along PC2. Thus, the moderately hydrotreated samples would contain more poorly 

aromatic compounds such as THQ Anilines Pyridines whereas the deeply hydrotreated samples would 



 

 

 

 

12 

contain more aromatic compounds such as Quinolines. These compounds would be less efficiently 

removed throughout hydrotreatment than THQ Anilines Pyridines. This is observed in Figure S1 

(Supporting Information) for the hydrotreated samples obtained from the sample GO 19. The THQ 

Anilines Pyridines family is more intense for the moderate HDT samples (samples GO 21 and 22 that 

are HDT 1 and HDT 2) than for the deep HDT sample (sample GO 20 that is HDT 3) while the relative 

intensities of the quinolines family are less intense for the moderate HDT samples than for the deep 

HDT sample. Moreover, these relative intensities evolutions seem to be related to the amount of total 

nitrogen in the sample and thus to the overall HDN efficiency. On the other side, the relative intensities 

of the acridines family are steady for every hydrotreated sample whichever operating conditions 

considered meaning that these compounds might be very refractory.  

The gas oils obtained from mixed blends are used for validation purpose and their projection allow us to 

conclude on the additivity of the analysis as well as the efficiency of the chemometric model for the 

exploration of complex matrices. As an example, the mixed gas oils SRGO/LCO, SRGO/LCO/GOCK 

and LCO/LCO are correctly projected with respect to their original compositions. However, the mixed 

blend GOCK/LCO projection is quite surprising. The LCO used to produce the blend was not available 

for FT-ICR MS analysis so it might be atypical and the inconsistent projection of the GOCK/LCO 

mixed sample could be related unexpectedly to a high amount of THQ Anilines Pyridines family as it is 

largely positively projected over PC2. 

The information contained in the PC3-PC4 score plot is quite similar to those extracted from the 

analysis of the PC1-PC2 score plot so it is not exhaustively discussed in this paper (see Figure S3 in 

Supporting Information). Briefly, the sample GO 13 (EBGO) is put forward over both PC3 and PC4 and 

the loadings are related to very alkylated compounds which are consistent with its composition (Figure 

3B). 
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Neutral nitrogen compounds. PCA was applied to the matrix containing the neutral nitrogen 

compounds identified in the N1[H] class. Four principal components were again selected representing 

up to 97% of the total variance. The score plot obtained along PC1-PC2 is shown in Figure 4A. For the 

same reasons as before, the sample GO 8 (LCO) was excluded from the data set.  

 

Figure 3. (A) Score plot along PC1 and PC2 obtained from ESI(-)-FT-ICR MS data for N1[H] class. (B) 

Loadings plots from PC1 and (C) PC2 from ESI(-)-FT-ICR MS data. 

Again, good repeatability is observed regarding the projection of replicates for a given gas oil sample. 

Thus it indicates that ESI(-) mode also provides repeatable measurements.  

Some clusters are also observed according to the type of gas oil considered. Globally, PC1 reflects the 

variance between the LCO samples that are positively projected over PC1 and the samples GO 12 

(GOCK) and GO 13 (EBGO) that are negatively projected over PC2. It can be noted that the sample GO 

12 (GOCK) is projected quite far away from the other GOCK samples over PC1 which could be 
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characteristic of unique features. The variables responsible for the projections over PC1 are shown in 

Figure 4B. It is worth noticing that only 2 types of molecules express more than 60 % of the total 

variance between the samples. These molecules correspond to compounds with DBE equal to 9 and with 

a number of carbon atoms respectively equal to 14 and 18 that we assumed to correspond to carbazoles 

family. In particular, the variable C2-Carbazole (classical carbazoles with two additional carbon atoms) 

expresses most of the PC1 variance and explains the positive projection of the LCO samples and most 

of GOCK ones and the negative projection of the EBGO sample and GO 12 (GOCK) over PC1. Thus, 

the main difference between these samples is based on the amount of C2-Carbazoles which is lower in 

the samples EBGO and GOCK 12 as they are much more alkylated and contain more C4+-Carbazoles 

(general denomination for classical carbazoles with at least four additional carbon atoms, here it is 6 

carbon atoms)  as plotted in Figure 3B – ESI(-) mode. The carbon atoms distribution of the sample GO 

7 (LCO) is very centered around C14-15 which explains the strong positive contribution of the C2-

Carbazole variable. The overall carbon atoms distribution of the sample GO 12 (GOCK) is shifted to a 

higher number of carbon atoms with maximum intensity for C18 compared to other GOCK samples 

such as sample GO 9 (GOCK) whose maximum intensity is observed at C14. This is also related to a 

higher amount of more aromatic compounds (i.e benzocarbazoles) that contain more carbon atoms and 

thus increases the overall carbon atoms distribution. Both higher alkylation and aromaticity degrees 

explain its atypical projection. As regards the sample GO 13 (EBGO), its distribution shown in Figure 

3B is extremely shifted to a higher number of carbon atoms with a maximum intensity around C18-C23 

due to its larger boiling point range (see Table 1) explaining its large negative projection along PC1. 

Along PC2, the gas oils obtained from conversion processes with high content in neutral nitrogen (see 

Table 1) such as the EBGO, GOCK, and LCO samples are negatively projected while gas oils obtained 

from hydrotreament processes or crude distillation with lower nitrogen contents such as the SRGO, 

HDT, and FBGO samples are positively projected. Three molecules mainly explain PC2 variance: C2-



 

 

 

 

15 

Carbazole, C4-Carbazole, and C1-Benzocarbazole as seen in Figure 4C. The distribution of the sample 

GO 1 (SRGO) is very centered over C16 (C4-Carbazole) which explains the strong positive contribution 

of this variable while the distributions of the samples GO 7 (LCO) and GO 9 (GOCK) are more centered 

over C14 (C2-Carbazole) explaining the negative contribution of this variable (see Figure 3B). A higher 

amount of benzocarbazoles in the samples GO 7 (LCO), GO 12 (GOCK) and GO 13 (EBGO) explains 

the contribution of the C1-Benzocarbazole as seen in Figure 3A.  

Speciation according to the hydrotreatment level is observed in the score plot in Figure 4A. The 

variance between the hydrotreated samples is only expressed by PC2 through a negative translation and 

thus by a slightly higher contribution of C2-Carbazole compared to C4-Carbazole. Thus, the deep HDT 

samples are less alkylated than the moderate HDT samples indicating that the present deep 

hydrotreatment operating conditions might enhance the hydrogenation of heavy species such as C4-

Carbazole rather than light species such as C2-Carbazole. The sample GO 14 (FBGO) is projected close 

to the hydrotreated samples due to the severe hydrotreatment occurring during the hydroconversion 

process. 

This time, all the mixed blends are correctly projected including the GOCK/LCO mixed blend that was 

not correctly projected throughout the analysis of the ESI(+)-FT-ICR/MS dataset (see previous 

explanation).  

The information obtained from the PC3-PC4 score plot and its corresponding loadings plots available in 

Supporting Information in Figure S4 are quite redundant and mostly express the unique features of the 

samples EBGO and FBGO due to their respective heavy and light character (regarding both aromaticity 

and alkylation).  

Sulfur compounds. The results obtained considering APPI(+)-FT-ICR/MS data have been exhaustively 

discussed in a previous work
17

. 6 principal components have been considered as significant and explain 
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96.7% of the total variance. The score plot obtained over PC1-PC2 is available in Figure S5 in 

Supporting Information. Briefly, the samples are correctly clustered according to their process origins. 

The samples SRGO and HDT are separated over PC1 with the deep HDT samples being positively 

projected and the SRGO samples being negatively projected. The  PC1 loading is shown in Figure 5B 

and reveals the strong positive contribution of the poorly alkylated dibenzothiophenes (DBE 9, C15) 

and the small contribution of alkylated benzothiophenes (DBE 6, C20). As a consequence, the negative 

projection of the SRGO samples over PC1 is explained by major content in alkylated benzothiophenes 

as seen in Figure 3A (in APPI(+) mode). On the opposite, the positive projection of the hydrotreated 

samples is related to their content in C3-dibenzothiophenes which is more intense in the deep HDT 

samples (S < 700 ppm) than moderate HDT samples (S > 2800 ppm). Dibenzothiophenes are identified 

in high contents in the sample HDT 20 as seen in Figure 3A which confirms its refractory character. On 

the opposite, moderate HDT samples contain more benzothiophenes compounds that are more easily 

converted than dibenzothiophenes and thus are poorly contributing to the variance of the deep HDT 

samples. 

Over PC2, the HDT, SRGO or FBGO samples are positively projected while the EBGO, GOCK or LCO 

samples are negatively projected. The PC2 loading (Figure 5B) show a positive contribution for 

alkylated benzothiophenes (DBE 6, C18) explaining the SRGO samples projection while more aromatic 

and moderately alkylated molecules are negatively contributing and are related to the negative 

projection of the EBGO, LCO and GOCK samples over PC2. Then, the HDT, SRGO and FBGO 

samples contain poorly aromatic and very alkylated compounds while the EBGO, GOCK and LCO 

samples contain more aromatic compounds that are less alkylated. This is consistent with the 

compositions of the gas oils SRGO 1, LCO 7, GOCK 9 and 12, EBGO 13 and HDT 20 in terms of 

aromaticity and alkylation that are respectively visible in Figures 3A and 3B.  
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Finally, the samples used for validation (mixed blends) are also well clustered and well projected in the 

considered PCA model. 

The score plots obtained over PC3 and PC4 and the corresponding loadings plots are available in Figure 

S5 in Supporting Information. They highlight the variance of the samples FBGO 14 and LCO 8 which is 

strongly influenced by their poorly aromatic (C4-BT) and poorly alkylated (C2-DBT) character. 

Data fusion. Finally, the three datasets have been concatenated into a single hypercube using a 

methodology described elsewhere
19

. To explore this multi-dimensional matrix, the PARAFAC method 

has been used with three main modes: DBE, the number of carbon atoms and the samples. When 

optimizing the model, we tried several models with several number of components and we observed the 

evolution of the core consistency and % explained variable as a function of the number of components. 

The optimal model was the one corresponding to the highest core consistency and % explained variables 

observed corresponding to a given number of PARAFAC components. The models obtained with a 

higher number of components had core consistency values close to 0 which correspond to a very poor 

decomposition of the data by the PARAFAC algorithm. As a consequence, two PARAFAC components 

have been selected to decompose data with a core consistency equal to 94 (100 being the maximum 

value) explaining 82% of the total variance. The GO 8 (LCO) was excluded from both ESI(+) and ESI(-

) data sets due to its large Hotelling's t-squared statistic T² but was considered in the APPI(+) one. When 

considering fused data, this gas oil still behaves as an outlier as nitrogen compounds are considered. 

This indicates that thcis approach is still able to retain the intrinsic characteristics of the samples even 

when more variables are considered. 

The projections of the samples over these two components in two-dimensions and one-dimension 

representations are shown in Figure 6.  
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Figure 6. (A) Score plot along the two first components obtained after data fusion. (B) 1D representation of the 

scores of all samples over both components (Experiment numbers from 1 to 6 correspond to the 6 replicates of 

sample GO 1, from 7 to 12 to the 6 replicates of sample GO 2 and so on). 

Data fusion does not induce any supplementary bias on the existent variance between samples as some 

well-defined clusters are observed within replicates of a given sample in Figure 6A. Besides, better-

defined clusters as a function of gas oil type considered are observed compared to the previous single 

analyses. This indicates that the specificities of each gas oil type are logically better highlighted when a 

higher portion of the heteroatomic composition (Nbasic, Nneutral and Sulfur) of the gas oils is considered. 

Two clusters are also observed according to hydrotreatment level: a first cluster containing deeply 

hydrotreated samples (Deep HDT: N < 210 ppm, S < 700 ppm) and a second cluster containing 

moderately hydrotreated samples (Moderate HDT: N > 460 ppm, S > 2800 ppm). The sample GO 12 

(GOCK) is excluded from the other GOCK samples cluster due to its atypical character which has only 

been mainly observed during the single analysis of ESI(-)-FT-ICR/MS dataset. Indeed, a higher 

alkylation shift has been identified for this sample compared to other GOCK samples and directly 

visible through its projection on the ESI(-)-FT-ICR MS score plot over PC1 and PC2 in Figure 4A. It is 

worth noticing that this alkylation shift is visible in every ionization mode (see Figure 3A) but has not 

been statistically significant among all other variables identified during the single analysis of the 
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datasets. The application of PARAFAC on fused data is then very efficient to highlight atypical samples 

and condense the most significant contributions from all samples. The loadings from the sample mode 

are presented in Figure 6B as a function of the experiment number. It is a 1D projection of the Figure 

6A which confirms the high score over the first component of the LCO samples (experiments number 

from 31 to 42 and from 127 to 132), the FBGO sample (experiments number from 73 to 78) and the 

HDT samples (experiments number from 91 to 102 and from 109 to 126). Similarly, the samples that 

are best described by the second component have also high scores such as the SRGO samples 

(experiments number from 1 to 30), the HDT samples (experiments number from 91 to 102 and from 

109 to 126) and the sample GOCK 12 (experiments number from 61 to 66). 

 

Figure 7. PARAFAC loadings. (A) Loadings from DBE mode. (B) Loadings from the number of carbon atoms 

mode.  

The loadings for DBE mode are shown in Figure 7A. Globally, the first component is driven by the 

DBE 9 family within both APPI(+) and ESI(-) datasets which respectively correspond to 

dibenzothiophenes and carbazoles families. In particular, the carbazoles family represents the most 

intense contribution. The contributions from ESI(+) dataset are very low and spread over the whole 

DBE range. The projection of the hydrotreated samples and the FBGO sample over the first component 
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is then correlated to a very strong contribution of the DBT and carbazoles family that mainly remain in 

the sample as they are known to be refractory
2,25

. It should be noted that these observations are the same 

as the ones obtained throughout the single analysis of the ESI(-) and APPI(+) datasets hence proving the 

sensitivity and relevance of such data fusion approach to put forward significant information. Moreover, 

the score of the deep HDT samples over the first component is higher than those of the moderate HDT 

samples. This indicates that the DBT and carbazoles families are relatively more intense in the deep 

HDT samples whereas less refractory species such as benzothiophenes or benzocarbazoles have been 

mostly removed from the samples using deep hydrotreatment operating conditions. The same 

observation can be made for the FBGO sample that mostly contains DBT or carbazoles compounds. The 

separation of the sample GO 12 (GOCK) from the other GOCK samples is partly due to a smaller score 

on the first component as this sample contains less carbazoles and more benzocarbazoles (see Figure 

3B). The projection of the LCO samples over the first component is mainly due to the fact that only 

neutral nitrogen compounds are mostly found in these samples (see Table 1) so they do not have 

significant contributions from basic nitrogen compounds and are best described by the first component. 

The very low contribution of the GO 13 (EBGO) sample to the explained variance of the first 

component is related to its amount of very aromatic compounds such as benzocarbazoles (DBE 12) that 

are not contributing to the variance of the first component. 

The contributions of the second component are more equally spread over the three different ionization 

modes with a contribution from the DBE 6 family (BT) for APPI(+) data and to a lesser extent from the 

DBE 9 family (DBT). For ESI(-) mode, two contributions are also observed from the DBE 9 family 

(Carbazoles) and DBE 12 (Benzocarbazoles). Finally, the contributions from ESI(+) mode are spread 

over the whole DBE range with a maximum for the DBE 7 family (Quinolines). The contribution of the 

benzothiophenes family over the second component is correlated with the composition of the SRGO 

samples which have high benzothiophenes contents as they are not hydrotreated and are generally 
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poorly aromatic (see Figure 3B). The sample GO 12 (GOCK) also reveals higher content in 

benzocarbazoles (about 25%, see Figure 3B) and lower content in carbazoles (about 65%) compared to 

other GOCK samples which is consistent with an increased contribution of the second component. The 

basic nitrogen families are also contributing to the variance of the second component and explain the 

score of the HDT samples over this component. Indeed, most of the basic compounds are still found in 

HDT samples and there is no particularly intense family (see Figure 3B). The moderate score of the 

EBGO sample over the second component is mainly related to the small contribution of very aromatic 

neutral nitrogen compounds (Benzocarbazoles, DBE 12) which are intense in this very aromatic sample 

(see Figure 3B).  

Figure 7B shows the loading corresponding to the number of carbon atoms mode. Two main 

distributions are observed: the distribution of the first component is focused over C15 while the 

distribution of the second component is spread over C12 and C19 with C19 being much more intense. 

Thus, compounds that are best described by the first component are less alkylated than those best 

described by the second component. This is observed as the SRGO samples are more alkylated than the 

LCO samples whichever dataset considered (see Figure 3A). The projections of most GOCK samples 

are intermediate between those observed for SRGO and LCO samples over both components reflecting 

their intermediate alkylation state compared to other feeds. The contribution of the FBGO sample over 

the first component is important as it is poorly alkylated due to severe hydroconversion conditions. The 

score of the deep HDT samples over the first component is a little bit higher than those observed for the 

moderate HDT samples reflecting a loss in alkylation when increasing the hydrotreatment level. It is 

also worth noticing that the distribution of the first component relies on the intense contribution of C15. 

C15 alkylation degree corresponds to C3-Carbazole or C3-DBT molecules that are refractory. As a 

consequence, these compounds are found in the deep HDT and FBGO samples which all have strong 

scores over the first component. On the opposite, the sample GO 13 (EBGO) shows a very low 
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contribution to the first component regarding its very alkylated character which is best described by the 

second component. Finally, the sample GO 12 (GOCK) is less contributing to the variance of the first 

component as it is globally more alkylated than the other GOCK samples and thus shows larger 

projection over the second component as already demonstrated before (see Figure 3B).  

The mixed blends have been used as validation samples.. The obtained projections over both 

components according to their compositions were all consistent whereas it was not the case for the 

single analysis of the ESI(+)-FT-ICR MS dataset. 

In summary, a single PARAFAC analysis allows extracting the main characteristics of each type of gas 

oil in terms of aromaticity as well as alkylation degrees. The projection of the LCO samples over both 

components reflects their very aromatic and poorly alkylated character. On the opposite, the projection 

of the SRGO samples is directly related to their poorly aromatic and very alkylated composition. Most 

GOCK samples have intermediate characteristics between the LCO and the SRGO samples whereas the 

unique character of the sample GO 12 is both due to higher alkylation and aromaticity degrees. The 

hydrotreated samples and the FBGO sample have very strong contributions over the first component 

which is consistent with their high contents in poorly alkylated refractory species such as C3-

Dibenzothiophene and C3-Carbazole. As regards the PARAFAC efficiency gain observed, we estimated 

that this new approach is about 5 times faster than PCA approach in our case. Indeed, our usual PCA 

approach is repeated three times (one for each ionization mode) including data pre-processing, choice of 

the appropriate number of principal components, outliers detection... while these steps are only 

performed once using PARAFAC. Moreover, the interpretation of scores plots and loadings extracted 

from PCA is certainly the most time-consuming step because in our case we potentially consider four 

components for each of the three ionization modes that is at least 12 in total. In comparison, only two 

components from PARAFAC are interpreted simultaneously in parallel on the same graphics.  
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Conclusion 

In this study, two different chemometric strategies have been assessed over a large gas oil database. As a 

first step, a classical chemometric approach has been followed applying PCA on selected single FT-ICR 

MS datasets corresponding to the main problematic compounds in the hydrotreatment processes that are 

the basic nitrogen, neutral nitrogen, and sulfur compounds. For a given dataset, some clusters have been 

observed according to gas oil type considered as well as speciation regarding the hydrotreatment level. 

The variables explaining these clusters have been identified through the analysis of the obtained 

loadings. Then, the evolution of the relative intensities of these given variables for the different samples 

has also been plotted to validate their relevance to explain the variance between samples and the 

efficiency of the chemometric model to extract significant variables. The most refractory compounds 

have been identified within each data set. As a second step, an innovative chemometric method has been 

assessed by merging the three datasets to obtain a single hypercube containing the information from the 

three different ionization modes. To explore this multi-dimensional matrix, the PARAFAC method has 

later been applied to this dataset studying simultaneously three different modes including DBE, number 

of carbon atoms and samples. The projection of the samples over the two principal components and the 

analysis of the obtained loadings have led to the same conclusions as those obtained throughout the 

single analysis of the datasets. This proves the efficiency of the PARAFAC method to explore very 

complex datasets and extract the most relevant variables to explain the variance between samples. 

Besides, it allows visualizing simultaneously the contribution of each ionization mode to the explained 

variance between samples which was not accessible through the single analysis of the datasets. The 

efficiency of such a method opens up perspectives for the analysis of complex datasets from different 

ionization modes as well as obtained with different sample introduction modes such as the comparison 

of direct infusion and gas or liquid chromatography coupled to FT-ICR MS analysis.  
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