

Optimization of flow cytometry parameters for high-throughput screening of spores of the filamentous fungus Trichoderma reesei

H. Mathis, Antoine Margeot, M. Bouix

▶ To cite this version:

H. Mathis, Antoine Margeot, M. Bouix. Optimization of flow cytometry parameters for high-throughput screening of spores of the filamentous fungus Trichoderma reesei. Journal of Biotechnology, 2020, 321, pp.78-86. 10.1016/j.jbiotec.2020.05.015. hal-02955679

HAL Id: hal-02955679 https://ifp.hal.science/hal-02955679

Submitted on 2 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 2 2	Optimization of flow cytometry parameters for high-throughput screening of spores of the filamentous fungus <i>Trichoderma reesei</i>		
3 4	H. Mathis ^a , A. Margeot ^a , M. Bouix ^b		
5	^a IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France		
6	^b Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 78850 Thivernal-Grignon,		
7	France		
8			
9	Key words		
10	Flow cytometry; fungi; spores; kinetics; GFP; early stage growth indicators		
11			
12	Highlights		
13	- Engineering of fluorescent spores of <i>T. reesei</i> expressing EGFP proteins through transformation		
14	- Optimization of flow cytometry parameters for detecting early stage fluorescence expression		
15	- Taking into account both growth and EGFP production as complementary signals		
16	- Screening of nine promoters for fluorescence expression under FCM conditions: pTEF > pPKI >		
17	pGPD > pPDC.		
18			
19	Abstract		
20	Flow cytometry (FCM) is a powerful technique still little used to study filamentous fungi due to		
21	physical constraints: the hyphae are too large to enter the FCM fluidic system, unless spores can be		
22	analyzed at a very early stage of germination. The technique nevertheless has strong potential for the		
23	study of these micro-organisms (spore sorting, viability, characterization etc.). This study focused on		
24	the investigation of several parameters, ranging from germination and storage conditions of T. reesei		
25	spores through to FCM gating, to detect their fluorescence during the first 24h of germination.		
26	Fluorescent spores were first obtained after aerobic germination at 25°C and monitored over 24h using		
27	FCM, to screen for nine promoters controlling a green fluorescent protein gene. The fluorescence		
28	signal (FL1) was then acquired, in addition to the growth characterization of the spores, based on the		
29	size signal or Forward Scatter (FSC). They were combined to identify the best candidate(s) from		
30	among the nine promoters for the strongest- and earliest-possible fluorescence emission, which		

resulted in the following ranking: pTEF > pPKI > pGPD > pPDC. There are numerous possible
 applications of this work, ranging from molecular biology to monitoring fermentation.

33

34 **1. Introduction**

35 Micro-organisms produce various metabolites with industrial relevance. They display a high potential as biological alternatives to petroleum-derived fuels or chemicals such as ethanol (Bouws et al., 2008; 36 37 Harman and Kubicek, 1998; Kumar et al., 2008). They often need to be improved through genetic 38 engineering, which involves genetic transformation, *i.e.* the introduction of recombinant DNA in the 39 cell nuclei and selection of the recombinant cells using selective markers. These should not be 40 antibiotic resistance markers, commonly used in the lab for their efficiency and convenience of use, 41 for safety reasons and due to concerns about horizontal gene transfers in the environment. Instead, if 42 elimination of the marker is not possible or practical, auxotrophic or fluorescent markers must be used. 43 Moreover, most selection, isolation and routine analyses in molecular biology optimization of microorganisms are well-known methodologies. However, they remain very time consuming, since several 44 45 weeks or at least days are required before the desired transformed strain can be identified, isolated and retrieved. Faster techniques have been developed to overcome these limitations, such as flow 46 47 cytometry (FCM). This technique is a measure of physical and optical properties of cells transported 48 by a liquid vector until a source of light excitation. The main advantage of FCM is to consider each 49 cell individually, allowing an analysis based on quantitative as well as qualitative information. In 1934, 50 Andrew Moldavan introduced the concept of cell counting using extinction signals when cells passed a 51 photoelectric detector (Moldavan, 1934). The technique was improved by adding an injection system 52 (Crosland-Taylor, 1953) and a laser as the light source (Van Dilla et al., 1969). Many optimizations 53 were added later, and FCM became a key technique for the study of mammalian cells, bacteria and 54 yeasts. The main advantages of this method are: 1) it is much faster than any other screening method, 55 2) it is nondestructive, highly sensitive and multiparametric allowing simultaneous study of cell size, 56 structure and fluorescence, and 3) with the addition of a sorter, cells that can be selected for further 57 study (technology called Fluorescent Activated Cell Sorter or FACS, sorting a population in sub 58 populations based on a labelling which can be fluorescence, size etc). However, FCM is not 59 commonly applied to filamentous fungi due to a physical limitation: the mycelium growth mode.

Indeed, the size and structure of the filamentous mycelium prevent its analysis by flow cytometry due 60 61 to the risk of obstructing the flow system, since the nozzle and sheath fluid diameter range from 30 to 200 µm, depending on the system. However, some devices do exist that allow the detection of cells up 62 to 500 µm. To the best of our knowledge, the limitation here is that these would not be compatible 63 64 anymore with the high throughput needed for genetic engineering screnning. Consequently, the cells studied may not exceed this threshold size. The presence of spores could also be considered a 65 66 limitation, due to dissemination risks when different types of micro-organism are studied with the 67 same device. Even so, the first study on the metabolic activity of a filamentous fungus, Neurospora crassa, was carried out using FCM in 1978, showing the potential of this application (Serna & Stadler, 68 69 1978). Other studies were performed on several filamentous fungi such as Trichoderma, Penicillium, 70 Phoma and Candida, focusing especially on characterization of viability, metabolic activity and 71 morphology (Allman, 1992; Wenisch et al., 1997; Kullman, 2000; Bradner & Nevalainen, 2003; Peng 72 et al., 2014; Vanhauteghem et al., 2017; Wen et al., 2020). While the combination of FCM and fluorescence efficiency was proven long ago for enumeration and fast isolation of bacterial and yeast 73 74 cells, it was only recently that a study demonstrated the interest of this method for fungi, so long as the 75 right conditions can be achieved (Bleichrodt & Read, 2018). Nevertheless, the use of FCM for fungal 76 applications is still not possible for the mycelium, and thus focuses on spores. Spores exhibit very 77 weak activity, meaning that only a short germination step will allow the flow cytometry technique to 78 work properly. A proof of this concept was provided by Throndset et al. (2010), using a green 79 fluorescent protein (EGFP, *i.e.* enhanced GFP) to select improved *T. reesei* strains through flow 80 cytometry, at the stage of spore germination. The authors highlighted the importance of choosing the 81 most relevant conditions for the expression of EGFP, since both strong and very early production was 82 required for screening to work as expected. More recently, others have used FCM to screen T. reesei 83 strains through overexpressed fluorescence, using spores (Gao et al., 2018) or protoplasts (Qin et al., 84 2018). These studies all placed fluorescence expression under the control of the cbh1 gene promoter, 85 well known for its strong induction of cellulase production in fungi. The drawback of this promoter is 86 that it requires an induction step, which is usually done with the disaccharide sophorose, costly but 87 effective since it leads to a both strong and early induction, or with lactose, leading to strong but 88 slower induction, and therefore possibly incompatible with FCM requirements. To the best of our

89 knowledge, only one study tried promoters other than *cbh1* and proved that FCM can also be an 90 interesting tool for evaluating promoter strength (Wang et al., 2018). Promoter strength is a key 91 parameter in FCM, event if this is an indirect estimation. Indeed it would allow for easier and much more selective screening, given that there will be more separation between populations on cytograms. 92 93 The aim of this study is to obtain a methodological guide for developing a fast and discriminant FCM 94 approach for filamentous fungi. Trichoderma reesei was used as a model, for its industrial interest as a 95 strong producer of cellulases. We first identified suitable promoters for EGFP production in 96 Trichoderma reesei, under conditions compatible with the limitations of FCM, which means at the 97 strongest- and earliest-possible stage. Then, the base-line fluorescence (*i.e.* auto-fluorescence of 98 untransformed spores) was estimated for a control strain, allowing the design of some relevant gates of 99 analysis, proposed in order to process the data obtained and to create qualitative and quantitative 100 indicators. We also performed microscopy analysis in order to identify conditions compatible with 101 limitations of our FCM, *i.e.* the growth of the spores in terms of size. Finally, we were able to 102 distinguish between the fluorescence signal produced before and after induction and thus maybe 103 encapsulated after transformation when collecting protoplasts, or resulting from a leaky promoter. 104 Nine promoters were screened for fluorescence expression, which was monitored as a function of size 105 distribution of the germinating spores over 24 hours. Growth and fluorescence production could be 106 assessed separately but also combined and compared in order to identify the best candidate(s).

107

108 **2. Materials & Methods**

109 2.1 Preparation of DNA vectors for transformation

EGFP cDNA (Eurofins, Val Fleuri, Luxembourg) was amplified at a hybridization temperature of
66°C with polymerase Q5 (New England Biolabs, Ipswich, Massachusetts, USA) using PCR. After
purification (QIAquick PCR Purification kit, QIAGEN, Hilden, Germany), the products were
submitted to digestion by the restriction enzymes *FspI* (5 U/µL) and *XhoI* (20 U/µL) (New England
Biolabs, Ipswich, Massachusetts, USA).
To construct the vector, the plasmid pUT1140 was made up of a hygromycin-resistance, a replication

116 origin from E. coli (pBR322), a T. reesei cbh1 promoter (pCBHI) and a T. reesei cbh11 terminator

117 (tCBHI). In order to insert the EGFP gene between the promoter and terminator, restriction enzymes

118 *FspI* (5 U/µL) and *XhoI* (20 U/µL) were used again for vector linearization. The two fragments were

119 ligated using a DNA Ligation kit (Takara Bio Inc, Kusatsu, Shiga, Japan).

120 After the ligation step, the vector was transformed in 10-beta E. coli (New England Biolabs, Ipswich,

121 Massachusetts, USA) following the kit instructions. 100 µL of the mix was spread on a petri dish

122 containing LB Broth Lennox medium (Becton, Dickinson & Co) with 50 µg.mL⁻¹ hygromycin

123 antibiotic (Invivogen, Toulouse, France). Incubation was carried out at 37°C overnight.

124 Colonies were transferred in liquid medium LB Broth Lennox with hygromycin and incubated

125 overnight at 37°C under 180 rpm agitation. Cultures were finally centrifuged (5,000 g; 5 min). The

126 pellets were recovered and submitted to QIAprep Spin MiniPrep Kit (QIAGEN, Hilden, Germany) in

127 order to extract the plasmids, which were titrated with NanoDrop (ThermoFisher Scientific). The

128 quality of the vector constructs was checked by electrophoresis after digestion using the same enzymes

129 as before (FspI and XhoI): the presence of 2 bands at the expected lengths (one for the linearized

130 plasmid and another for the insert) confirmed correct insertion.

131 The *cbhI* promoter was then replaced in order to screen different promoters (pTEF, pTBP, pPTP, pPKI,

132 pPDC, pHYD, pHFB, pGPD), using the same protocol and the same restriction enzymes *FspI* (5 U/µL)

133 and XbaI (20 U/µL) (New England Biolabs, Ipswich, Massachusetts, USA).

134 Finally, nine vectors containing EGFP were obtained under the different promoters.

135

136 2.2 *T. reesei* transformation process

137 The strain used as a reference is *T. reesei* CL847 (Durand et al., 1988), a close relative of the RUT

138 C30 strain (ATCC® 56765TM, ATCC, Manassas, Virginia, USA). Transformation of the reporter gene,

139 chosen as a green fluorescent protein or EGFP (enhanced GFP), was carried out using the protoplast

140 transformation process (PEG/CaCl₂) as described by Penttila et al. (1987). The final transformed

141 strains were selected for resistance to hygromycin ($50\mu g.mL^{-1}$).

142

143 2.3 Flow Cytometry acquisitions

144 All the analyses were carried out using a Cyflow Space cytometer (SYSMEX, Kobe, Japan), equipped

145 with an MLS Blue 480-50 V2 laser emitting at 488 nm with a power of 50 mW. The optical detector

146 range for FL1 was 520/20. Before analysis, the suspension of spores from a petri dish (9 cm) washed

- 147 with 5 mL of MilliQ sterile water, was diluted 1/40 in Mc Ilvaine Buffer (12.29 mL of citric acid (0.1
- 148 M) and 7.71 mL of Na₂HPO₄ (0.2 M), at pH 4). All assays in FCM and quantifications were carried
- 149 out as technological triplicates on independent cultures (biological triplicates). The parameters of the
- FCM were the following: speed 6, FSC 125, log3, SSC 200 log3, FL1 450 log4. All solutions of 150
- 151 spores were diluted to 1/40. All parameters were kept identical for all experiments.
- 152
- 153 3. Results & Discussion
- 154 3.1 Germination and storage conditions
- 155 A preliminary work was carried out to ensure that fluorescent spores from T. reesei could be obtained
- for FCM characterization. The influence of several parameters was tested on the spore germination 156
- 157 process: growth medium, oxygen availability, agitation, light and temperature, as can be seen in
- 158 Table 1.

Parameter	Tested conditions	Description
Growth medium	Water vs Potato Dextrose medium	No germination in water, nutritive medium is required
Oxygen	Aerobic vs Anaerobic	No anaerobic germination, oxygen is required
Agitation	0 vs 150 rpm	No difference
Light	Day light vs obscurity	No difference
Temperature	4 vs 12 vs 20 vs 30°C	No germination at 4°C little difference afterwards

1	59
1	60

- Table 1: Comparison of environmental conditions on spore germination 161 162 163 Storage conditions were therefore set as follows: 4°C in a nutritive medium PD (Potato Dextrose, 164 Becton, Dickinson & Co). The germination of the spores was then carried out at 25°C, in aerobic conditions, under agitation at 150 rpm, still using nutritive medium PD. A specific medium was 165 required in the case of pCBHI, an inducible promoter, which was named F45 (8.7 g of K_2 HPO₄ + 4.2 166 167 g of $(NH_4)_2SO_4 + 0.3$ g of MgSO₄ + 1.5 g of Corn Steep + 1 mL of trace elements + 11.6 g of malic 168 acid + 20 g of lactose = 1 L of F45) and adjusted to pH 6. 169 Once these optimal conditions were determined, the final step was to assess the germination kinetics 170 of the spores, to ensure they remained compatible with FCM. The germination process was thus 171 monitored over 37h and images were taken regularly and observed under light microscopy 172 (magnification x10). Representative images were chosen to illustrate the results, as can be seen in Figure 1. 173 174

Figure 1: Germination of *T. reesei* spores monitored with light microscopy at (a) 0 hours, (b) 16 hours and (c) 20 hours of culture. Magnification x10

- 179 At between 5h and 8h, swelling started with an increasing spore diameter (order of magnitude x2). At
- 180 16h, hyphae appeared (Figure 1b) and at 20h, some branches were visible (Figure 1c). Finally, at 37h,
- 181 a very dense mycelium was observed. It was concluded, therefore, that the spores must be
- 182 characterized by FCM during the first 20h of germination.

184 3.2 Evaluation of CL847 autofluorescence and accurate design of the gating

185 Once the germination conditions were properly assessed, spores were evaluated by FCM to determine

186 the level of fluorescence that could be measured, allowing the design of a specific gating for analysis

- A 1280 Green FLI-0 † 0.1 0.1 FL1 - Green Fl FSC - Size FSC - Size В ള് 920 ¢ 920 Green Flu 1280 FLI-0 † 0.1 0.1 FSC - Size 1 10 FL1 - Green Flu FSC - Size С **s** 180 £180 Green Fluor 8₃₂₀ 0.320 FLI-0+0.1 0.1 FSC - Size FL1 - Green Fluc FSC - Size
- 187 of the results (Figure 2).

Figure 2: Example of cytograms for untransformed control CL847 at t+0 (A) and t+24h (B) in PD rich medium; against transformed strain expressing EGFP at t+24h in PD rich medium.

192 Fluorescence intensity was measured on ungerminated spores of the untransformed strain and spores 193 during their germination on PD rich medium. As can be seen in 194 Figure 2, this intensity increased with spore size and can be visualized from t0 (Fig. 2A) to t+24h (Fig. 2B) for CL847 as a linear profile between Fluorescence (FL1) and Size (FSC), which will be used as 195 196 the background reference. In contrast, when EGFP is expressed, the growth is similar to CL847 while 197 there is a major difference on FL1 axis, with a 3-log shift from Fig.2B to Fig.2C. This shows that there 198 will be no problem for distinguishing between autofluorescence (background) and actual fluorescence 199 expression due to EGFP.

200

Based on these results, a gating was proposed, as can be seen in Figure 3, in order to visualize any
emission of EGFP on FSC-FL1 cytograms.

203

Figure 3: Acquisition gating for kinetic monitoring of fluorescence. Left = size distribution of the particles; middle = fluorescence distribution of the particles; right = fluorescence vs size. Codes: S = ungerminated spore; F = spore expressing GFP; AF = Auto-Fluorescent spore; U = Unsustainable spore.

The AF gate was drawn based on the previous testing on CL847 (Figure 2B). Each event higher than this background linear area was considered as corresponding to fluorescent cells of interest, which were attributed to the F gate, as can be seen in Fig.2C. It can be noted that some spots appear on the left, with lower FCS signal than the ungerminated spores (S gate), and the assumption was made that these corresponded to cell debris and/or to particles from the medium (U gate). The assumption was confirmed using double labelling IP/cFDA allowing identification of the dead cells (data not shown). The S/F/AF gating thus provided a proper discrimination system between non-germinated (S),

215 fluorescent (F) and auto-fluorescent cells (AF).

216 Few studies describe the gating used for sorting cells, except for Wang et al. (2018) who focused on 217 the fluorescence activity for gating T. reesei spores or protoplasts. However, the authors did not 218 mention kinetic monitoring, which suggests that only one time point was analyzed. To the best of our 219 knowledge, studying the kinetics of the fluorescence emission of T. reesei with FCM as a function of 220 time has not previously been reported. Nevertheless, this is an important parameter to take into account to avoid confusing two types of fluorescence. On the one hand, the real fluorescence produced 221 222 by GFP expression, on the other hand, the inner or auto-fluorescence resulting from growth (the bigger 223 a spore, the higher its fluorescence). It is thus interesting to go further into details about the present 224 gating, which is adapted for kinetic monitoring.

225

226 3.3 Kinetic monitoring and quantification of autofluorescence

227 The previously defined zones were applied to CL847 in a 24h time-course experiment.

228 229 230 231

232

Figure 4: Validation of the S/F/AF gating on the control strain CL847. Fluorescent cells expressing GFP (F) in green and Auto-fluorescent cells not expressing GFP (AF) in grey. Average values were obtained from a biological triplicate (CL847-1, CL847-2 and CL847-3) and technical triplicates (each strain was analyzed 3 times).

233 The proportion of the total count of the CL847 spores was plotted against time for the two populations 234 F and AF according to the gating shown in Figure 3. The 100% value is never reached since cells 235 found in the S area and/or in U area were not taken into account: a sharp decrease in the total count 236 was found in the S area from t0 to t+24h. A biological triplicate was carried out, and for each CL847 237 (1, 2 and 3), a technical triplicate was also acquired (each of them were analyzed three times). As can 238 be seen in Figure 4, we observed i) good reproducibility for the different CL847 cultures at each time 239 point with variation coefficients of 4.8, 4.9 and 4.0% at t+24h for example; ii) the growth kinetic was 240 effectively monitored, as increasing numbers of cells can be found in AF from t0 to t+24h (up to 70 to 76% which corresponds to 63.8, 48.6 and 58.5 k spots for the 3 biological replicates respectively); iii) 241 242 very few cells were detected in the F gate (0.3 to 0.6%, which corresponds to 480, 310 and 380 spots

243 for the 3 biological replicates respectively) compared to the cells detected in the AF gate, especially at 244 increased time points. The counts of spots occurring in the different areas can be compared as concentrations of spores, since the measurements were all carried out between two electrodes 245 246 corresponding to 50 µL. Moreover, the number of cells found in the F gate remained constant from t0 247 to t+24h, suggesting that they were artefacts independent of cell growth. Considering that the artefacts 248 were due to the definition of the gate and taking into account their very low percentages, we 249 considered that this experiment allowed validation of the gating. These experiments also allowed its 250 robustness to be tested.

251

252 3.4 Screening promoters controlling EGFP expression in *T. reesei*

Nine promoters were screened in order to evaluate their strength and early expression using the EGFP fluorescence signal. The choice of the promoters was carried out based on RNAseq data available from *T. reesei* experiments in the lab (data not shown), providing the highest levels of fluorescence over the first 24h. The evolution of the fluorescence vs FSC signal of the detected cells was plotted over time (Figure 7, supplementary data).

258

259 CL847 and pPTP cytograms show a similar trend: cells moved from the S area to the AF area, without entering the F area which corresponds to growing spores without EGFP emission, or at least not a 260 261 strong or early-stage emission. This suggests no or weak expression from the promoter. The same 262 behavior was also observed for pCBH1, pTBP and pHYD (see supplementary data Fig.7). The result 263 with pCBH1 may be surprising, as most of the literature dealing with T. reesei and FCM is based on pCBH1 controlling the expression of fluorescence. However, in these studies (Gao et al., 2018; Quin 264 et al., 2018; Throndset et al. 2010), pCBH1 is induced by several days of growth in minimal media 265 266 supplemented with lactose + sophorose, glucose + sophorose or lactose only. Here, we not only used a 267 different inducer (F45 medium), but also used a very short induction time, explaining the apparent 268 discrepancies. For four other promoters, as exemplified in Figure 5 by pPKI and pTEF, the cell population moved from the S area towards the F area in 18h, with 50% and 70.3% of the total count 269 found in the F area respectively. Even if a small sub-population of cells could be found in the AF area, 270 271 strong and early-stage fluorescence was observed and demonstrated good potential for compatibility 272 with FCM analysis. This trend was typical for pPKI and pTEF and to a lesser extent for pGPD and 273 pPDC. The latter were intermediates, as the cell population for these two promoters was equally 274 dispersed between the F and AF areas, suggesting weaker expression. These results are in good accordance with Wang et al. (2018) who also found a strong expression of GFP in T. reesei spores 275 276 using FCM for the following promoters: pTEF slightly > pPKI >> pPDC. To the best of our knowledge, the latter was the only study in the literature that tried several promoters for better 277 expressing fluorescence in order to be compatible with FCM requirements for screening early 278 279 transformants. Based on the present results, a ranking of the promoters could be determined as follows, 280 based on observation of the cytograms: pTEF > pPKI > pGPD > pPDC > pPTP, pHYD, pTBP, pHFB, 281 pCBH1.

282 However, it should be noted that pTEF and to a lesser extent pPDC, displayed atypical behavior, in 283 that the cells were already located in the F area at t0, showing that some fluorescence must have been 284 encapsulated during sporulation. Indeed, after transformation, the strains were selected on a rich medium (with antibiotic), which allowed them to produce some EGFP during their growth. pPTEF and 285 pPDC were probably induced during or before sporulation. This was checked under confocal laser 286 scanning microscopy where mycelium was indeed fluorescent before sporulation occurred (data not 287 288 shown). Two considerations drove the next step of the study, focusing on the fluorescence intensities: i) 289 the encapsulation of fluorescence mentioned above; and ii) the artefact of fluorescence mentioned in 3.1, which required comparison of the intensities to determine if the chosen promoter provided higher 290 291 fluorescence. This objective was reached by isolating the F and AF cells and plotting the evolution 292 over time of the proportion of total count in both areas, as can be seen in Figure 5.

Figure 5: Evolution over time of the proportion of total count in S (green) and AF (grey) areas for the nine screened promoters and the control CL847. Averaged values from triplicates.

297 To the best of our knowledge, this is the first time that quantification of FCM signals has been 298 assessed this way, for T. reesei or any other filamentous fungus. Indeed, our understanding of 299 literature was that the studies aimed for the determination of the viability of spores and metabolic 300 activity (Peng et al., 2014; Ehgartner et al., 2016; Vanhauteghem et al., 2017). In the present study, we 301 succeeded in decorrelating the fluorescence coming from the expressed protein (EGFP) from the inner 302 fluorescence coming from the growth (the bigger a spore, the higher its volume and autofluorescence). 303 Firstly, fluorescence production (F area) could be quantified for pTEF, pPDC, pPKI and pGPD, as 304 expected. A very low amount of fluorescence was detected as F for pHFB, but it remained at baseline 305 level over time. Secondly, the fluorescence production profiles were very different between pTEF, 306 pPDC, pPKI and pGPD. One common pattern for pTEF and pPDC was that some fluorescence was 307 already detected at t0. It was a high fluorescence intensity, since 38% and 57% of the cells were 308 already located in the F area for pPDC and pTEF respectively. Conversely, pPKI and pGPD displayed 309 very low EGFP levels at t0, but they both led to high EGFP expression at t+22h and t+24h, with 310 respectively 63% and 58% of the total cell count located in the F area at these final stages. Finally, it 311 should be noted that pPDC is atypical in terms of fluorescence emission over time, as it seems to 312 decrease from t+16h to t+24h. This could be a negative aspect of using this promoter, since the growth 313 of the spores could happen faster than EGFP production, leading to a "dilution" of the fluorescence 314 signal. As a consequence, the final step for truly discriminating promoters and choosing the best 315 candidate(s) will be to find the right balance between the kinetics of EGFP production and spore 316 growth.

317

318 3.5 Deconvolution of growth and GFP expression

This final objective is important in order to avoid choosing the wrong promoter based only on fluorescence intensity. In the best-case scenario, fluorescence production and growth should be clearly discriminated. Looking deeper into each population will avoid relying only on the gating (compulsory for cell sorting), by also providing quantified data that can be retrieved, compared and submitted to a significance test.

From this perspective, the proportion of counts in the F and AF areas were no longer sufficient. It was necessary to isolate the fluorescence from the growth, which is why the evolution of the geometric

326 average value of size (GMn-X) was plotted against time, as was the geometric average value of

327 fluorescence (GMn-Y), as can be seen in Figure 6. Both signals were quantified from the cells located

328 in the F area, in order to access the fluorescence intensity reached in F only.

333 Figure 6 shows that pHYD and pTBP were no different from CL847. A small proportion of cells was located in the F area for these three strains (see Figure 5), and these cells were obviously neither 334 growing nor emitting any fluorescence. Then pPTP and pHFB displayed similar behavior, also close to 335 336 the control CL847. However, since some more cells (1% and 2.6% respectively) were detected in the 337 F area for pPTP and pHFB, growth was faster than for the previous two strains and the control. 338 However, here again, no fluorescence emission could be found over time. This example was the 339 perfect illustration of how Figure 5 and Figure 6 are complementary and should be compared. Indeed, 340 on the one hand, Figure 5 represents the proportions of spores found in F and AF areas. It gives a first 341 comparison of the promoters, however at this stage it is almost binary: either a promoter is interesting 342 or not. On the other hand, Figure 6 focuses on F area, giving the geometric average values of 343 fluorescence, thus the intensities. Only here we can properly rank the promoters which seemed 344 promising from Figure 5. This was the case for the four promoters pGPD, pPKI, pPDC and pTEF, 345 which were strongly different from the control. Another interesting example is the comparison 346 between pPKI and pTEF. When looking at the size, the growth appeared very similar. However, the fluorescence intensity was ten times higher for pTEF than pPKI at t+24h. Here again, Fig.6 is essential 347 348 since looking at the counts in the different gates does not give the same information. Indeed, on Fig.5, 349 it seems that pPKI and pTEF are of comparable interest at t+24h, while it was just shown thanks to 350 Fig.6 than pTEF is the most promising one. 351 As a consequence, pTEF is the promoter that stood out the most: it not only expressed the highest levels of EGFP from t0 to t+24h, but the kinetic of EGFP production was also the fastest and strongest. 352 353 All graphs being at the same scale, it is clear from Figure 6 that pTEF is the only promoter for which

the EGFP production was higher than the growth of the spores over time. It should be specified that at

this stage we did not take into account the insertion sites or the number of copies, which is ongoing

356 work in order to assess a clone effect. The most relevant information at this stage was thus the timing

357 of the fluorescence emission.

358 The discrimination of growth and fluorescence signals allowed for finer and more rigorous ranking of 359 the promoters: pTEF > pPKI > pGPD > pPDC. Indeed, for a maximum level of EGFP, pTEF is the 360 best candidate. Since some fluorescence encapsulation obviously occurred with pTEF, this selection is

361 based on the kinetic of EGFP production (highest slope of the experimental green curve for pTEF in362 Figure 6).

363

364

4. Conclusion

365 Methodologically speaking, this study allowed determination of good conditions for germination and storage of spores, the correct parameters for application of FCM to filamentous fungi such as T. reesei 366 367 and gating design for the identification of the fluorescent population separately from the baseline and 368 native autofluorescence of the spores. Thanks to this combination of good practices, it was shown that 369 FCM represents a valuable tool for screening promoters based on fluorescence detection, under 370 conditions coupling of early stages of growth with a strong level of EGFP expression. Moreover, this 371 work allowed i) ranking of the best candidate(s) for strong and early-stage EFGP production among 372 nine promoters, ii) discussion of relevant indicators in order to discriminate both production of the 373 protein of interest (here, EGFP) and the growth of the strain (biomass). The total number of spores, the 374 number of germinated spores and the number of spores expressing EGFP could all be quantified using 375 our method. On the other hand, a promising indicator can still be investigated based on the 376 complementarity of fluorescence and size determinations in order to find the best compromise 377 between production and growth. It would be an interesting way to directly estimate the specific 378 productivity of fluorescence (or any kind of protein) over biomass production. It can most certainly be 379 optimized even further based on a reference size, a given time of interest, etc. Modeling the 380 relationship between the protein of interest/total protein and protein of interest/biomass, by following a 381 batch over fermentation using FCM, would allow prediction of the productivity of a given strain for a 382 given process without going through the tedious screening of clones. This work thus points towards 383 interesting leads to exploit the full potential of FCM, going further than only viability indicators or 384 raw fluorescence monitoring, which are the parameters most studied today.

385

386 Acknowledgements

The authors thank Véronique Ruffier Meray and Frédéric Monot from IFP Energies Nouvelles and
French National Research Agency, for making this collaboration possible, and Sarrah Ghorbal, for her

- 389 help with the flow cytometer. They also thank Hélène Velly and Frédérique Bidard Michelot from IFP
- 390 Energies Nouvelles for the interesting discussions about cytometry and the present results.

392 **References**

- 393 Allman, R. (1992). Characterisation of fungal spores using flow cytometry. Mycologial Research,
- 394 96(12), 1016-1018.
- 395 Bleichrodt, Robert-Jan; Read, Nick D. (2018) Flow cytometry and FACS applied to filamentous fungi.
- In : Fungal Biology Reviews. DOI: 10.1016/j.fbr.2018.06.001.
- 397 Bouws, H.; Wattenberg, A. & Zorn, H. (2008). Fungal secretomes--nature's toolbox for white
- 398 biotechnology. Applied Microbiology and Biotechnology, Vol.80, No. 3, pp. 381-388, ISSN
- 399 14320614
- 400 Bradner, J.R., & Nevalainen, K.M. (2003). Metabolic activity in filamentous fungi can be analysed by
- 401 flow cytometry. Journal of Microbiological Methods, 54(2), 193-201.
- 402 Crosland-Taylor, P.J., (1953). A device for counting small particles suspended in a fluid through a
 403 tube. Nature, 171, 37-38.
- 404 Durand, H., Clanet, M., & Tiraby G. (1988). Genetic improvement of Trichoderma reesei for large
- 405 scale cellulase production. Enzyme and Microbial Technology, 10(6): 341-346.
- 406 Ehgartner, D., Herwig, C. & Neutsch, L. (2016). At-line determination of spore inoculum quality in
- 407 Penicillium chrysogenum bioprocesses. *Applied Microbiology and Biotechnology*, 100, 5363-5373.
- 408 Gao, Fei, Hao, Zhenzhen, Sun, Xianhua, Qin, Lina, Zhao, Tong, Liu, Weiquan et al. (2018) A versatile
- 409 system for fast screening and isolation of Trichoderma reesei cellulase hyperproducers based on
- 410 DsRed and fluorescence-assisted cell sorting. In : Biotechnology for biofuels, vol. 11, p. 261. DOI:
- 411 10.1186/s13068-018-1264-z.
- 412 Harman, G.E. & Kubicek, C.P. (1998). Trichoderma and Gliocladium. Enzymes, biological control
- 413 and commercial applications, 2, Taylor & Francis Ltd, ISBN 0748408061, London, Great Britain
- 414 Kullman, B. (2000). Application of flow cytometry for measurement of nuclear DNA content in fungi.
- 415 Folia Cryptogamica Estonica, 36, 31-46.

- 416 Kumar, R.; Singh, S. & Singh, O.V. (2008). Bioconversion of lignocellulosic biomass: biochemical
- 417 and molecular perspectives. Journal of Indian Microbiology and Biotechnology, Vol.35, No. 5, pp.
- 418 377-391, ISSN 1367-5435
- 419 Moldavan, A. (1934). Photo-electic techniques for the counting of microscopical cells, in Scientifc
- 420 Apparatus and Laboratory Methods, Science, 188-189.
- 421 Peng, Y., Lee-Pullen, T.F., Hell, K., Millar, A.H., Baer, B. (2014). Quantifying Spore Viability of the
- 422 Honey Bee Pathogen Nosema apis Using Flow Cytometry. Cytometry Part A, 85A: 45-462,
- 423 Penttila M, Nevalainen H, Ratto M, Salminen E, Knowles J. A versatile transformation system for the
- 424 cellulolytic filamentous fungus Trichoderma reesei. Gene 1987;61:155–64.
- 425 Qin, Lina; Jiang, Xianzhang; Dong, Zhiyang; Huang, Jianzhong; Chen, Xiuzhen (2018) Identification
- 426 of two integration sites in favor of transgene expression in Trichoderma reesei. In : Biotechnology for
- 427 biofuels, vol. 11, p. 142. DOI: 10.1186/s13068-018-1139-3.
- 428 Serna, L., & Stadler, D. (1978). Nuclear division cycle in germinating conidia of Neurospora crassa.
- 429 Journal of Bacteriology, 136(1), 341-351.
- 430 Throndset, W., Kim, S., Bower, B., Lantz, S., Kelemen, B., Pepsin, M., Chow, N., Mitchinson, C., &
- 431 Ward, M. (2010). Flow cytometric sorting of the filamentous fungus Trichoderma reesei for improved
- 432 strains. Enzyme and Microbial Technology, 47(7), 335-341.
- 433 Van Dilla, M.A., Trujillo, T.T., Mullaney, P.F., & Coulter, J.R. (1969). Cell microfluorometry: a
- 434 method for rapid fluorescence measurement, Science, 163, 1213-1214.
- 435 Vanhauteghem, D., Demeure, K., Callaert, N., Boelaert, A., Haesaert, G., Audenaert, K., Meyer, E.
- 436 (2017). Flow Cytometry Is a Powerful Tool for Assessment of the Viability of Fungal Conidia in
- 437 Metalworking Fluids. Applied and Environmental Microbiology, 83(16).
- 438 Wang, Guokun; Jia, Wendi; Chen, Na; Zhang, Ke; Wang, Lixian; Lv, Pin et al. (2018) A EGFP-fusion
- 439 coupling FACS platform for advancing the metabolic engineering of filamentous fungi.
- 440 In : Biotechnology for biofuels, vol. 11, p. 232. DOI: 10.1186/s13068-018-1223-8.
- 441 Wen, G., Cao, R., Wan, Q., Tan, L., Xu, X., Wang, J., Huang, T. (2020). Development of fungal spore
- 442 staining methods for flow cytometric quantification and their application in chlorine-based
- 443 disinfection. Chemosphere, 243.
- 444 Wenisch, C., Linnau, K.F., Parschalk, B., Zedtwitz-Liebenstein, K., & Georgopoulos, A. (1997).

- 445 Rapid susceptibility testing of fungi by flow cytometry using vital staining. Journal of Clinical
- 446 Microbiology, 35(1), 5-10.

Figure 7: Evolution of the profiles giving fluorescence (FL1) = f(size, FSC) for control CL847, pPTP-EGFP, pPKI-EGFP, pTEF-EGFP at t0, t+18h and t+24h.