SUPPORTING INFORMATION

"Facile ambient pressure propylene carbonate solution synthesis of highly divided CoMoS solids."

Santiago Palencia-Ruiz^a, Dorothée Laurenti^a, Denis Uzio^b, Christelle Legens^b, Pavel Afanasiev^{*a}

^a Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France.

^bIFP Energies Nouvelles, Rond-point de l'échangeur de Solaize, BP 3, F-69360 Solaize, France.

Table S1 Properties of CoMoS-x solids, initial (after solution reaction and drying) and
activated at different conditions.

Material	Treatment conditions	Composition, EDS ^a	S BET; m^2/g
CoMoS-1	Initial dried	MoCo _{0.53} S _{3.84}	Nd ^b
CoMoS-1	400 °C H ₂ S/H ₂ , 1h	MoCo _{0.58} S _{2.32}	132
CoMoS-1	400 °C H ₂ , 1h	MoCo _{0.55} S _{2.29}	140
CoMoS-1	400 °C N ₂ , 1h	$MoCo_{0.52}S_{2.44}$	105
CoMoS-2	Initial dried	$MoCo_{0.51}S_{3.99}$	Nd
CoMoS-2	$400 \ ^{\circ}C \ H_2S/H_2$, 1h	$MoCo_{0.50}S_{2.48}$	127
CoMoS-3	Initial dried	$MoCo_{0.55}S_{5.84}^{c}$	Nd
CoMoS-3	400 °C H ₂ S/H ₂ , 1h	MoCo _{0.53} S _{2.57}	44

^a accuracy of EDS chemical composition analysis in our case was not high, about 15 %, because of overlap between Mo L and S K signals; ^b BET surface area of the initial dried samples could not be measured because outgassing in vacuum under increased temperature was impossible; ^c anomalously high sulfur content for this sample is probably due to residual elemental sulfur remained because of incomplete washing.

Elément	Pic	Surface	k	Abs	%Masse	%Masse	%Atomique
	Surface	Sigma	facteur	Correct.		Sigma	
S K	37041	1012	0.552	1.000	30.54	0.62	51.39
Co K	13041	204	0.728	0.995	14.11	0.24	12.92
Cu K	13349	204	0.803	0.995	15.92	0.27	13.51
Mo K	15096	254	1.761	0.994	39.44	0.54	22.18
Totaux					100.00		

Fig S1 EDS spectrum of CoMoS-1 activated in H2S/H2 flow at 400 °C and the elemental analysis report. Cu is present because of Cu grid sample holder.

Fig. S2 (a) TEM image of CoS2 obtained from sole Co precursor reaction in PEC at 240 $^{\circ}$ C; (b) Dark field TEM image of CoMoS-3 sample taken at the (200) diffraction spot of CoS₂ phase. It can be concluded that Co seed as depicted in the image (a) is covered with several nm layer of MoS_x.