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Abstract

Retraction dynamics of viscous drops and sheets depend on the relative mag-

nitude of the viscous force over the capillary force. The dynamics are more

complicated in the case of viscoplastic drops/sheets because the yield stress

of the fluid also comes into play. The retraction of slender viscoplastic drops

and sheets depends on the relative magnitude of the yield stress over the

capillary stress. Depending on its relative magnitude, the yield stress can

completely resist the retraction. In this study, the retraction of viscoplas-

tic drops and sheets has been investigated theoretically neglecting the effect

of the surrounding medium. Using long-wave theory we derive the retrac-

tion criteria of slender drops (axisymmetric) and sheets (two-dimensional)

for yield stress fluids. Direct numerical simulations are also performed by

solving the complete momentum conservation equations. A good agreement

is found between the numerical results and the proposed retraction criteria.
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1. Introduction

Retraction of Newtonian liquid drops or sheets is a classical problem

in fluid mechanics which has been studied by many researchers over two

centuries. Based on observations of soap film rupture, Dupré [1] derived a

velocity for the retracting rim using energy balance. Later on, using momen-

tum balance Taylor [2] and Culick [3] individually showed that the retraction

velocity is
√

2 times less than that predicted by Dupré’s formula. Their the-

oretical prediction was confirmed experimentally by McEntee & Mysels [4]

for sheets of thickness larger than 1 µm.

In the case of a Newtonian fluid, two dimensionless parameters govern

the problem. The initial aspect ratio of the drop/sheet and the Ohnersorge

number (Oh = µ/
√
ρσR0) which is the ratio of the viscous-capillary time

scale tv = µR0/σ and the inertia-capillary time scale tc = (ρR3
0/σ)1/2 where

µ is the viscosity of the liquid, ρ is the density of the liquid, σ is the surface

tension coefficient and R0 is the initial radius of the slender drop (in the case

of a liquid sheet it is half of the initial thickness, h0). In the low Oh number

limit, the flow is governed by a balance between inertia and capillary force

and, the drops/sheets retract at Taylor-Culick velocity with the formation

of a bulbous end. On the other hand, in the high Ohnesorge number limit

the retraction is mainly resisted by the viscous force and the drops/sheets

retract with a uniform increase in radius/thickness [5, 6]. However, inertia

might become important even in the large Oh limit for very long drops/sheets

[7, 8].

The fundamental dynamics of retraction is significantly affected in the
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case of viscoplastic fluids. The viscoplastic fluids exhibit the characteristics

of a solid if the applied/induced stress is below a critical value (called yield

stress) and behaves like a fluid above the yield stress limit. One needs to

consider one more dimensionless parameter (compared with a Newtonian

fluid) to take into account the yield stress of the material. This parameter

has a dramatic influence on the retraction dynamics of the drops/sheets

for moderate and high Ohnesorge numbers [9]. Indeed, the retraction of the

drops/sheets can be completely resisted by the yield stress of the viscoplastic

material. Therefore the natural question that arises here is what are the

criteria of retraction for slender drops and sheets in the case of a yield stress

fluid.

The stopping/flowing criteria of viscoplastic fluids for different geometric

configurations have received the attention of several researchers. For exam-

ple, the critical pressure gradient in the Poiseuille flow of viscoplastic fluids

is studied in Refs. [10] & [11]. The critical limit for the motion of a solid

sphere in a viscoplastic fluid is studied in Ref. [12] while the yield limit for

the motion of a bubble in a yield stress fluid is studied in Refs. [13] & [14].

Here, we report the critical limits for the retraction of slender drops and

sheets of yield stress fluids.

In order to answer this problem, we use a combination of direct numer-

ical simulations and long-wave models of drops and sheets. The long-wave

models are convenient tools to study the retraction of slender sheets and

drops. Earlier, several researchers have used this theory to study drop/sheet

retraction for the Newtonian fluid [5, 6, 15]. However, there are very limited

studies for the yield stress fluids. The long-wave model equations for the
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yield stress fluids were first developed by Balmforth et al. [16] for an ax-

isymmetric configuration to study the Rayleigh instability and the pinch-off

of a cylindrical jet in extensional flow. Here, we have used those long-wave

equations to study the retraction of slender drops. We also present the long-

wave model equations in the two-dimensional coordinate system to study the

retraction of slender liquid sheets. Direct numerical simulations are also per-

formed by solving the complete momentum conservation equations to study

the retraction of drops and sheets. An open-source volume-of-fluid method

based two-phase flow solver called Basilisk [17, 18, 19, 20] is used to perform

the numerical simulations. The retraction dynamics of a two-dimensional

viscoplastic sheet has already been discussed Ref. [9]. We have observed

similar retraction dynamics for axisymmetric drops, which are not repeated

here. Here, we are interested only in the boundary between the retraction

and no-retraction regimes. Numerical simulations corroborate that the re-

traction criteria derived here using the long-wave model are more accurate

that the criterion presented in Ref. [9] using simple scaling arguments. The

rest of the paper is arranged as follows: first, we present an analysis to find

the retraction criteria using the long-wave theory for axisymmetric drops

and two-dimensional sheets. Next, we compare the theoretical analysis with

the direct numerical simulations. Finally, we wind up with a discussion and

concluding remarks.

2. Retraction criteria based on long-wave model

Here, we derive the retraction criteria for the axisymmetric drops and

two-dimensional sheets using the long-wave theory. We neglect the effect

of the surrounding medium. The rheology of the viscoplastic material is
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modeled using the Bingham model [21] where the constitutive relation for

the deviatoric stress tensor τ is given asτ =
(
µp + τy

γ̇

)
γ̇, if τ > τy and

γ̇ = 0, otherwise.

(1)

Here, γ̇ is the strain-rate tensor; µp is the plastic viscosity of the viscoplastic

material; τy is the yield stress of the viscoplastic material; τ =
√

(1/2)τ : τ

and γ̇ =
√

(1/2)γ : γ are the second invariants.

Using the initial drop radius R0 (h0 for sheets) as the characteristic length

scale and inertia-capillary time tc =
√
ρR3

0/σ (tc =
√
ρh3

0/σ for sheets) as the

characteristic time scale, we find that two dimensionless parameters govern

the problem of interest: the Ohnesorge number (Oh = µc/
√
ρσR0) and the

plastic number (Pl = τy/(µcγ̇c)) which represents the plastic nature (related

to yield stress) of the fluid [22, 9]. Here, γ̇c is the characteristic strain rate

and is estimated as γ̇c = 1/tc, and, µc = µp + τy/γ̇c is the characteristic

viscosity (see Ref. [9] for more details). We determine the retraction criteria

in terms of these dimensionless parameters. By choosing the initial drop

radius R0 (h0 for sheets) as the characteristic length scales in both radial

and axial direction, we have implicitly assumed that the initial aspect ratio

of the drop does not play a significant role in the retraction process. This

assumption will be discussed at the end of Sec. 3.

2.1. Axisymmetric drop

The representative diagram of the geometry is shown in Fig. 1. We

consider a cylindrical coordinate system (r, z) to model the flow where the

axis of symmetry lies in the z-direction. The major axis of the slender drop is
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aligned to the axis of symmetry. For a slender drop of radius R, the long-wave

equations are given as [16]

∂R2

∂t
+
∂ (uzR

2)

∂z
=0, (2)

∂uz
∂t

+ uz
∂uz
∂z

=− 2σ

ρ

∂κ

∂z
+

3

2

1

ρR2

∂

∂z

(
R2τzz

)
. (3)

Here, uz is the axial velocity inside the drop and κ corresponds to the mean

curvature given as

κ =
1

2

(
1/R(

1 + (∂R/∂z)2)1/2
− ∂2R/∂z2(

1 + (∂R/∂z)2)3/2

)
, (4)

and τzz is the deviatoric stress tensor component. These leading-order equa-

tions are derived on the asymptotic limit R0/L0 = ε � 1 i.e. the charac-

teristic radius of the slender drop R0 is much smaller than the axial length

scale L0. Such an assumption leads to a derivative imbalance ∂/∂z ∼ ε∂/∂r.

Inserting those scalings in the mass conservation equation implies that the

radial velocity is much smaller than the axial velocity. Those estimates are

used in deriving the long-wave model equations. However, the scaling for the

shear rate requires more care since to leading order the longitudinal velocity

is independent of the radial coordinate [23]. Hence the shear rate scales as

ε2Uz/R0, where Uz is the axial velocity scale. Due to this scaling, the shear

stress is O(ε) smaller than the normal stresses; see Ref. [16] for a more elab-

orate discussion. By using the normal and tangential stress balance at the

column interface, the long-wave equations can be obtained. They are similar

to the case of Newtonian fluids; the only difference appears via the Bingham

constitutive relation given in Eq. (1). The long-wave scaling reduces the
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Figure 1. A representative diagram of the geometry of a slender drop.

Bingham constitutive relation toτzz = 2
(
µp + τy√

3|∂uz/∂z|

)
∂uz
∂z

if
√

3|τzz |
2

> τy and

∂uz
∂z

= 0 otherwise,

(5)

where the yield criterion is
√

3|τzz|
2

> τy. (6)

Now, we use those equations to find the retraction criterion of a slender

viscoplastic drop. We assume that the Ohnesorge number is sufficiently large

such that the retraction process is resisted by viscous effect only [7]. There-

fore, considering the flow as Stokes flow and hence neglecting the inertial

terms, Eq. (3) can be written as

0 =− 2σ

ρ

∂κ

∂z
+

3

2

1

ρR2

∂

∂z

(
R2τzz

)
. (7)

Using Eq. (4) for the mean curvature, Eq. (7) can be rewritten as

2σ

3

∂

∂z

[
R(

1 + (∂R/∂z)2)1/2
+

R2∂2R/∂z2(
1 + (∂R/∂z)2)3/2

]
+

∂

∂z

(
R2τzz

)
= 0. (8)
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Now we integrate the above equation from a point away from the tip (written

as z) to the tip of the drop (z = L0). The slender drop is assumed to

be cylindrical with hemispherical ends. Therefore, we have the following

boundary conditions to evaluate the integral: at the end of the drop i.e. at

z = L0, R = 0, ∂R/∂z = ∞. At any other location (z) away from the tip of

the drop we have R = R0, ∂R/∂z = 0 and ∂2R/∂z2 = 0. Applying these

boundary conditions to evaluate the integral leads to the following simplified

equation
2

3
σR0 +R2

0τzz = 0. (9)

Now, using the value of τzz from Eq. (9) in the yielding criterion given

in Eq. (6) we get

√
3|τzz|
2

=

√
3

2

2σ

3R0

> τy

or
τyR0

σ
<

1√
3

(10)

In terms of the dimensionless parameters it can be represented as

Oh× Pl < 1√
3

(11)

Equation (11) gives the retraction criterion of a slender viscoplastic drop

in terms of the dimensionless parameters considered here. The quantity

τyR0/σ(≡ Oh × Pl) is also called Bingham-capillary number [24, 25] which

represents the relative magnitude of the yield stress over the capillary stress.

2.2. Two-dimensional sheet

A representative diagram of the geometry is shown in Fig. 2. We consider

a two-dimensional Cartesian coordinate system (x, y) where the slender sheet
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Figure 2. A representative diagram of the geometry of a two-dimensional slender liquid sheet.

is aligned to the x−axis. We present the long-wave equation for a slender

two-dimensional sheet in the asymptotic limit h0/L0 � 1, where h0 and L0

are the characteristic length scales along (x-direction) and perpendicular (y-

direction) to the slender sheet respectively. We follow the same procedure

and scaling as proposed by Erneux & Davis [26], but we explicitly keep

the non-negligible part of the viscous stress tensor as done by Balmforth

et al. [16] while deriving the long-wave equations for a slender drop. The

viscoplastic long-wave equations in a two-dimensional coordinate system can

be written as
∂h

∂t
+

∂

∂x
(hu) = 0 (12)

and
∂u

∂t
+ u

∂u

∂x
= −σ

ρ

∂κ

∂x
+

2

ρh

∂

∂x
(τxxh) . (13)

Here, h(x, t) is half of the sheet thickness, u is the velocity along the x−axis,

κ is the curvature which can be written as

κ = − ∂2h/∂x2(
1 + (∂h/∂x)2)3/2

, (14)
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and τxx is the deviatoric stress tensor component. The Bingham constitutive

relation (1) under such a condition reduces toτxx = 2
(
µp + τy

2|∂u/∂x|

)
∂u
∂x

if |τxx| > τy,

∂u
∂x

= 0 otherwise,

(15)

where the yielding criterion is

|τxx| > τy. (16)

Similar to the previous section, we aim to find the criterion of retraction for

a slender sheet. Therefore, following the same assumptions mentioned in the

previous section and replacing the curvature κ using Eq. (14), we rewrite

Eq. (13) as

2
∂

∂x
(τxxh)− σ ∂

∂x

(
− h (∂2h/∂x2)(

1 + (∂h/∂x)2)3/2
− 1

(1 + ∂h/∂x)1/2

)
= 0. (17)

Now, we integrate Eq. (17) from any location away from the tip (x) to

the tip of the liquid sheet (x = L0). To evaluate the integral we have similar

boundary conditions as that of an axisymmetric drop: at end-tip of the liquid

sheet i.e. at x = L0, we have h = 0, ∂h/∂x =∞. At any location away from

the tip, the liquid sheet is assumed to be flat and we have h = h0, ∂h/∂x = 0

and ∂2h/∂x2 = 0. The integration of Eq. (17) with the above boundary

conditions leads to the following simplified equation

2τxxh0 + σ = 0. (18)

Using the value of τxx from Eq. (18) in the yielding criterion (16) we have

τ = |τxx| =
σ

2h0

> τy

or
τyh0

σ
<

1

2
. (19)
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In terms of the dimensionless parameters it can be represented as

Oh× Pl < 1

2
. (20)

Therefore, in the case of a two-dimensional sheet, the product Oh×Pl should

be less than 1/2 for the start of retraction. According to the long-wave theory,

the critical limit is lower in this case compared with an axisymmetric drop

where the critical limit is found to be 1/
√

3.

3. Numerical simulations

In order to validate the theory, we have performed direct numerical sim-

ulations using the Basilisk solver. The numerical simulations are performed

using a regularized version of the model [27]. The complete detail of the nu-

merical methodology is available in Ref. [9]. The range of the dimensionless

parameters considered in the simulations are: Oh = 0.1− 10, Pl = 0.1− 0.9

and except at the end of the present section, all the simulations are initialized

with a constant aspect ratio L0/R0 (or L0/h0) = 10. The simulations are per-

formed with a Newtonian surrounding fluid having density ratio (density of

the surrounding medium divided by the density of the viscoplastic material)

of 0.001 and viscosity ratio (viscosity of the surrounding medium divided

by the viscosity of the viscoplastic material) lesser than 0.001 (maximum

viscosity ratio when the value of τy is zero; see Ref. [9] for more details).

To determine the retraction of the drops/sheets we plot the yielded and

the unyielded regions within the drop/sheet at different time instants. If the

drop/sheet undergoes retraction we see yielded regions within it. On the

other hand, if there is no yielded region within the drop/sheet, we affirm

that the drop/sheet does not undergo retraction. This is a better criterion to
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(a) (b)
t/tc = 0 t/tc = 0

t/tc = 20 t/tc = 20

t/tc = 40 t/tc = 40

Figure 3. The yielded (blue) and unyielded (red) regions within the viscoplastic liquid sheet for Oh = 2.0
and two different values of plastic number: (a) Pl = 0.2 and (b) Pl = 0.3. The plots are shown at a
dimensionless time interval of ∆t/tc = 20. The interface profile at different time instants is shown by the
black line.

separate the retracting and non-retracting regimes than the velocity based

criteria used in Ref. [9]. This is because we have used a regularized Bingham

model to perform the numerical simulations where the infinite viscosity of

the Bingham material is replaced by a high viscosity. Although we have rig-

orously tested this parameter before fixing its value such that the numerical

results do not depend on this parameter (see Ref. [9]), still the regularized

model gives rise to a small velocity in each grid cell even in the unyielded

state. It is difficult to separate out whether the velocity is induced due to

the regularized model or due to the actual retraction of the drop/sheet at the

limiting condition because the drop/sheet retracts very slowly near the criti-

cal limit. Because of that, small uncertainties in the results were observed in

Ref. [9] near the critical limit. The plotting of the yielded/unyielded regions
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(a) (b)

Figure 4. A regime map showing the retraction and no-retraction points in the Oh− Pl plane for (a)
axisymmetric drops and (b) two-dimensional sheets. The red squares represent the points where the
drop retraction is resisted by the yield stress of the viscoplastic material and the green squares represent
the points where the viscoplastic drops/sheets retract overcoming the yield stress of the material. Initial
aspect ratio is 10 in all the numerical simulations considered here.

improves the accuracy and the interpretation of the numerical results.

Bingham model suggests that the material undergoes yield when the sec-

ond invariant of the deviatoric stress tensor exceeds the yield stress of the

material. Few sample plots of the yielded/unyielded regions at different time

instants for Oh = 2 and two different plastic numbers: (a) Pl = 0.2 and (b)

Pl = 0.3 are shown in Fig. 3. In Fig. 3 (a) the capillary force is able to

overcome the yield stress of the material which results in the yielding of the

material and retraction of the sheet. On the other hand, it is evident in Fig.

3 (b) that the sheet remains completely unyielded. Here, the capillary stress

is not able to overcome the yield stress of the material and the liquid sheet

does not undergo retraction.

The data obtained from numerical simulations are presented in Fig. 4 in

the Oh−Pl maps. Figure 4 (a) shows the numerical results for axisymmetric
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drops while Fig. 4 (b) shows the data for the two-dimensional liquid sheets.

For each configuration, we have performed approximately 250 simulations.

The green squares represent the points where the drop/sheet undergoes re-

traction and the red squares represent the points where the retraction of

the drop/sheet is resisted by the yield stress of the viscoplastic material. A

very good match is obtained between the numerical results and the theoret-

ical predictions (Eqs. (11) and (20)) for both geometries. Even though the

retraction criteria are developed under the assumption of negligible inertia

effect or large Oh, it is evident that these criteria work well even for small

Oh, for example, Oh as small as 0.5 in the case of two-dimensional sheets.

For this Oh value, the retraction criterion gives Pl ≈ 1. The yield stress is

thus sufficiently large to resist the appearance of momentum in the slender

sheet (or drop) at the start of retraction and as a consequence, the inertia

remains negligible.

Figure 5. Numerical results showing the retraction and no-retraction regimes of an axisymmetric drop as
a function of the initial aspect ratio L0/R0. The red squares represent the points where the drop
retraction is resisted by the yield stress and the green squares represent the points where the viscoplastic
drops undergo retraction. The dotted line is the theoretical prediction (11).
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The retraction starts when the capillary pressure difference near the tip

region exceeds the yield stress which is independent of the initial aspect

ratio. However, the long-wave models are derived under the assumption of

slender shape. Therefore, it is important to check the validity of the proposed

model as a function of the initial aspect ratio. We run a series of simulations

by sequentially increasing the aspect ratio from 1 to 10. The numerical

results showing the critical bound for two different values of Oh (1.0 and

2.0) are presented in Fig. 5. The results are in good agreement with the

theoretical prediction for L0/R0 ≥ 2.5. This lower bound is because of the

aforementioned limitations of the long-wave models, i.e. L0/R0 � 1, which

are not valid anymore for small aspect ratios. For aspect ratio smaller than

2.5, the critical limit decreases gradually (later sharply) as the aspect ratio

decreases. The retraction is resisted by a lower value of plasticity at small

aspect ratios as compared with large aspect ratios. In other words, retraction

is more difficult at a small aspect ratio. Finally, since the spherical shape

is an equilibrium position for the drop, there is no motion for L0/R0 = 1

irrespective of the value of Oh× Pl.

4. Discussion and concluding remarks

In Sec. 2 we have derived the criteria (Eqs. (10) and (19)) for the start of

retraction. However, it has been observed in the numerical simulations that

in many cases the retraction starts and undergoes for some initial period, and

then it stops. In other words, the difference of capillary pressure overcomes

the yield stress at the start initiating the retraction. However, after an

initial period, the capillary stress is not able to overcome the yield stress of

the material and the plastic nature of the material resumes. The analysis of
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Sec. 2 can be straightforwardly generalized to this configuration where the

retraction starts and then it stops. The boundary conditions and assumptions

are similar to those mentioned in Sec. 2.1 and 2.2 except that we perform

the integration at any arbitrary time instant t when the drop radius is R

(or half-sheet thickness is h) and half-length is L which were R0 (or h0) and

L0 at t = 0. After integration and some algebra, we get similar criteria for

retraction but in a general form valid at any time instant t


τyR

σ
< 1√

3
for drops,

τyh

σ
< 1

2
for sheets,

(21)

or, in terms of the dimensionless numbers(Oh× Pl)×
(
R
R0

)
< 1√

3
for drops,

(Oh× Pl)×
(
h
h0

)
< 1

2
for sheets.

(22)

At the start of retraction R = R0 and h = h0, and therefore the criteria

are given by Eqs. (11) and (20). The liquid drop/sheet retracts initially when

this condition is satisfied. The drop radius R (or sheet thickness h) increases

with time as the drop (or sheet) retracts, and at some instant, the quantity

(Oh× Pl)R/R0 (or (Oh× Pl)h/h0) becomes larger than 1/
√

3 (or 1/2) and

does not satisfy the criteria given in Eq. (22) to continue the retraction .

Figure 6 shows the interface profiles and yielded/unyielded regions within

a drop at different instants of time for two different configuration of dimen-

sionless parameters. It is evident in Fig. 6 (a) and (b) that the drop retracts

for a initial period (see at t/tc = 10) and stops later. The dimensionless

parameters considered in Fig. 6 (a) and (b) are Oh = 2.0, P l = 0.25 and
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(a) (b)
t/tc = 0 t/tc = 0

t/tc = 10 t/tc = 10

t/tc = 60 t/tc = 90

Figure 6. The yielded (blue) and unyielded (red) regions within the viscoplastic slender drops for (a)
Oh = 2.0, Pl = 0.25 and (b) Oh = 3.0, Pl = 0.15 at different time instants. The interface profile at each
time instant is shown by the black line.

Oh = 3.0, P l = 0.15, which should undergo retraction according to Eq. (11).

As the drop undergoes retraction, the drop radius increases in a uniform

way because of higher Oh [8]. The prediction of Eq. (22) suggests that the

retraction should stop as the value R/R0 exceeds 1.155 in (a) and 1.283 in

(b) which is evident in Fig. 6 (a) and (b) at t/tc = 60 and t/tc = 90, respec-

tively. The radius of the drop is found to be approximately 1.172 in (a) and

1.288 in (b) in the final rigid states which are in good agreement with the

aforementioned criteria.

The next question that comes in mind is how inertia contributes to the

final rigid shape of the drop/sheet. To get a qualitative idea of the inertia

effect on the final shape we plot the ratio of the final radius of the drop to its
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Figure 7. The ratio between the radius of the drop in the final rigid state and its initial radius (Rf/R0)
is plotted as a function of Oh× Pl. The axisymmetric simulations are performed for four values of Pl
(0.1, 0.25, 0.5, and 0.9), and for each Pl the value of Oh× Pl is changed by changing the Oh. The black
line shows the theoretical prediction (22) for an axisymmetric drop. The blue dashed line is the
retraction criterion (11). The initial aspect ratio in all the simulations is 10 and the green dashed line
represents the final radius of a sphere having same volume as that of the slender drops.

initial radius (Rf/R0) as a function of Oh×Pl for fixed values of Pl and by

sequentially increasing the inertial effect (decreasing the Oh). Such a plot is

presented in Fig. 7 which shows the comparison of the numerical data with

the prediction of Eq. (22) (shown by the black solid line) for four different

values of Pl, viz. Pl = 0.1, 0.25, 0.5, and 0.9. According to Eq. (11),

the critical Oh value for undergoing retraction decreases as the plasticity

increases. The maximum limit of Oh is approximately 5.77, 2.31, 1.14 and

0.64 for the corresponding Pl values 0.1, 0.25, 0.5 and 0.9 respectively. It

is evident in Fig 7 that for Pl = 0.1 and 0.25, the agreement between the

theoretical prediction and the numerical results is good for Oh × Pl > 0.3;

the deviation increases below this value. For Pl = 0.5, a noticeable deviation

is observed from the theoretical criterion. This is because the corresponding
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(a) (b)
t/tc = 5 t/tc = 3

t/tc = 10 t/tc = 6

t/tc = 20 t/tc = 20

Figure 8. The yielded (blue) and unyielded (red) regions within the viscoplastic slender drops for (a)
Oh = 0.4, Pl = 0.9 and (b) Oh = 0.1, Pl = 0.9 at different time instants. The interface profile at each
time instant is shown by the black line.

Oh value is lower in this case (maximum Oh ≈ 1.15) for same value of Oh×Pl

as compared with Pl =0.1 or 0.25. The deviations is even more significant

for Pl = 0.9 (maximum Oh ≈ 0.641).

Why non-negligible inertia effects, i.e. small Ohnesorge numbers, lead to

significant deviation from the theoretical prediction? The first explanation

is related to the assumptions used to derive Eq. (11). We assumed that

the Ohnesorge number is sufficiently large to neglect the inertial term in the

momentum equation. For a lower value of the Ohnesorge number, the in-

ertial term becomes non-negligible and as a result, a significant deviation is

observed with the theory. Non-negligible inertia may also lead to the sig-

nificant deformation of drop/sheet in contrast to our assumption of uniform

cylindrical shape. This is evident in Fig. 8 which shows the shape of the
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drop at different time instants along with the yielded/unyielded region for

Pl = 0.9 and two different values of Oh. For Oh = 0.4 we see a bulbous

region close to the tip and the region far away from the tip remains undis-

turbed (see at t/tc = 5 in Fig. 8 (a)). Finally, the drop retracts to an ellipse

like shape. With further increase in inertia, the liquid of the retracting por-

tion of the drop accumulates in the form of a blob at the tip. This is evident

in Fig. 8 (b) which shows the simulation results for Oh = 0.1 and Pl = 0.9.

The inertial contribution causes more retraction than that predicted by

the present theory. As a result, the final radius of the drop is higher on

such cases than the prediction by Eq. (22). This is evident in Fig. 7 for

Pl = 0.5 and 0.9. On the other hand, we observe that the final radius of the

drop is lower than that predicted by Eq. (22) for Pl = 0.1 and 0.25. This

is because the length of the drop becomes comparable to its radius towards

the later stage of retraction and as a result the slender approximation is

no longer valid. This deviation is similar to that discussed in Sec. 3 (see

Fig. 5). It is worth noting here that the conservation of mass brings a

limitation to the theoretical prediction beyond the point where the drop

reaches the spherical shape. In Fig. 7, the green dashed line represents the

radius of a spherical drop having the same volume as that of a slender drop

of initial aspect ratio L0/R0 =10, which is the initial aspect ratio in all the

numerical simulations considered here. The theoretical prediction of Eq. (22)

is irrelevant below the point where the black line intersects this green dashed

line (Oh× Pl ≈ 0.237) as the drop reaches the spherical equilibrium shape.

The retraction is expected to stop when a drop reaches this equilibrium

stage. However, if inertia is significant the retraction does not stop even
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when the drop reaches a spherical shape; the drop may undergo a prolate-

oblate oscillation depending on the value of Oh and the final shape of the

drop is quite unpredictable on such a situation [9].

The present model is based on the assumption that the effect of inertia

is negligible and that the drop/sheet is slender. The former assumption is

always valid at the start of retraction because the yield stress is sufficiently

large to resist the appearance of momentum in the blob. The model gives a

good prediction for the start of retraction provided that the aspect ratio of

the drop is larger than 2.5. The model also gives a good prediction of the

final shape of the drop at large Oh (negligible inertia). If the inertia effect

becomes important which also leads to significant deformation of the drop,

the final shape of the drops/sheets may deviate from that predicted by the

present model.

Acknowledgements

The authors acknowledge the anonymous referees for their constructive

criticism. Hiranya Deka also acknowledges Neil J Balmforth for the valuable

discussions and suggestions. Financial support of IFP Energies Nouvelles is

gratefully acknowledged.
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