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Abstract

In this paper we propose an efficient sampling strategy to solve an inversion problem subjected to
functional uncertainties. More precisely, we aim at characterizing a control variable region defined
by exceedance above a prescribed threshold of specific Quantities of Interest (QoT). This study
is motivated by an automotive industrial application consisting in the identification of the set of
values of control variables of a gas after-treatment device, in line with pollutant emission standards
of a vehicle under driving profile uncertainties. In that context, driving profile uncertainties are
modelled by a functional random variable and the constrained response in the inversion problem
is formulated as the expectation over this functional random variable only known through a set
of realizations. As often in industrial applications, this problem involves time-consuming compu-
tational models. We thus propose an approach that uses Gaussian Process meta-models built on
the joint space of control and uncertain input variables. Specifically, we define a learning criterion
based on uncertainty in the excursion of the Gaussian Process and derive tractable expressions
for variance reduction in such a framework. Applications to analytical examples, followed by the
automotive industrial test case show the accuracy and the efficiency brought by the procedure we
propose.

Keywords: Set inversion; Gaussian Process meta-models; Data reduction; Functional
uncertainties.

1. Introduction

In recent years, engineers and scientists are increasingly relying on computer models as sur-
rogate for physical experimentation generally too costly or impossible to execute ([BGL+12,
CBG+14]). In particular, practitioners using these numerical simulations are not only interested
in the response of their model for a given set of inputs (forward problem) but also in recovering the
set of input values leading to a prescribed value or range for the output of interest. The problem
of estimating such a set is called hereafter an inversion problem.

In our context, the numerical simulator modelling the system, denoted f , takes two types of
input variables: a set of control variables x ∈ X, and a set of uncertain variables v ∈ V. With-
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out considering any assumptions on the distribution of the uncertain variable v, robust inversion
consists in seeking the set of control variables x ∈ X such that supv∈V f(x,v) is smaller than a
threshold c. Then, the difficulty of solving the robust inversion problem strongly depends on the
uncertainty set V. In our setting, V is a functional space, and we consider the inversion problem un-
der uncertainty as a stochastic inversion problem, assuming that the uncertainty has a probabilistic
description. Let V denote the associated random variable, valued in V, modelling the uncertainty.
In our framework, we are interested in recovering the set Γ∗ := {x ∈ X , g(x) = EV[f(x,V)] ≤ c},
with c ∈ R, and the functional random variable V is only known from a set of realizations. The
expectation appearing in Γ∗ has to be estimated. Moreover, the simulations are time consuming
and thus the usual Monte Carlo method to estimate the expectation ought to be avoided.

Inversion problems have already been carried out in many applications, notably reliability engi-
neering (see, e.g., [BGL+12], [CBG+14]), climatology (see, e.g., [BL15], [FS+13]) and many other
fields. In the literature, one way to solve the problem is to adopt a sequential sampling strategy
based on a Gaussian Process (GP) emulator of g : x 7→ EV[f(x,V)]. The underlying idea is that
Gaussian Process emulators, which capture prior knowledge about the regularity of the unknown
function, make it possible to assess the uncertainty about Γ∗ given a set of evaluations of g. More
specifically, for the estimation of an excursion set, these sequential strategies are closely related
to the field of Bayesian global optimization (see, e.g., [CG13]). In the case of inversion problems,
Stepwise Uncertainty Reduction (SUR) strategies based on set measures were introduced in [VB09].
More recently, a parallel implementation of these strategies has been proposed in [CBG+14] and
applied to the recovery of an excursion set. Briefly, the strategy SUR gives sequentially the next
location in the control space where to run the simulator in order to minimize an uncertainty mea-
sure of the excursion set.

In the field of robust optimization where uncertainty comes from a real-valued (or vector-valued)
random input, various methods exist and aim at optimizing the expectation taken with respect
to the probability distribution of the random input (see [JLR13] or [WSN00]). These methods
are based on the modelling of f by a Gaussian Process built in the joint space of deterministic
and uncertain variables. Then a ”projected” (integrated) Gaussian Process is defined by taking
the expectation with respect to the probability distribution of the random input, leading to an
approximation of the expected response g. Finally an adaptive design of experiments (DoE) is
proposed for optimizing the objective function g.

In the same spirit, we propose an original method to deal with a stochastic inversion problem
with the aim of reducing the number of simulations required. In this work f is approximated by a
Gaussian Process model built on the joint space X×V. For the iterative approximation of Γ∗, the
sampling strategy in the joint space is based on two steps. Firstly a SUR approach is applied to the
”projected” Gaussian Process to determine the next evaluation point xn+1 ∈ X. Secondly, in the
uncertain space, the next function vn+1 is chosen such that the standard error of the ”projected”
process evaluated at xn+1 is minimized. It is important to note that our study is driven by an
industrial test case on automotive depollution. More precisely, we study an after-treatment device
of diesel vehicles, depending on control variables, in an uncertain environment corresponding to
the uncertain driving profile. Knowledge on the driving profile is provided through a finite set of
realizations of moderate size (see Section 4.4 for more details). In the following, we thus restrict
our study to this setting: the knowledge on the uncertain functional input is limited to a finite set
of realizations. Compared to methods based on an accurate estimation of the expectation and the
construction of a surrogate of g ([EAHL+20]) our adaptive design of experiments, defined in the
joint space, leads to further reduce the number of calls to the numerical simulator.
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The article is structured as follows. Firstly, in Section 2, we recall the problem formulation
and we extend the concept of Gaussian Process modelling to the case where the inputs contain a
functional variable known only through a finite set of realizations. In Section 3, we introduce a new
adaptive sampling strategy to choose the next point in the joint space: (xn,vn), which reduces the
most the uncertainty on the desired inversion set. The whole algorithm for our robust inversion
procedure is then detailed. In Section 4, our procedure is implemented on two analytical test cases
(Sections 4.1 and 4.2), and the modelling assumptions are discussed (Section 4.3). Concerning
the uncertain space, we compare our sampling strategy, based on the standard deviation of the
”projected” process evaluated at xn+1, with a uniform sampling of the next function vn+1. We
also compare our resolution procedure of a stochastic inversion problem with the one introduced in
[EAHL+20] which combines the fitting of a Gaussian Process model on the control space X with
a quantization estimation of the expectation in the uncertain space V. Finally, our new procedure
is tested on the industrial test case of a car pollution control system (Section 4.4).

2. Problem formulation

We model the output of the industrial simulator by a function f : X×V → R with X the space
of control variables a bounded subset of Rp and V the space of the functional uncertain input. We
model the functional uncertain input by a random variable V valued in V. We are interested in
estimating the set

Γ∗ = {x ∈ X , g(x) ≤ c}, (1)

where c ∈ R is a threshold and g : X→ R such that g(x) = EV[f(x,V)]. An additional constraint
is that V is known only through a finite set of realizations. The implication of this constraint will
be specified in Section 3.3.
The proposed sequential strategy to approximate Γ∗ involves two main ingredients introduced
hereafter : functional data reduction to reduce the uncertain space to a finite dimensional space
and Gaussian Process modelling in the joint space Control × Uncertain.

2.1. Functional data reduction

Let (Ω,F ,P) be a probability space. We assume that the random process V belongs to H =
L2(Ω,F ,P;V) with

V =

v : [0, T ]→ R, ||v|| = (< v, v >)
1/2

=

(∫ T

0

v(t)2dt

)1/2

< +∞

 .

We assume that V ∈ H has zero mean and continuous covariance function C(t, s). Then

V(t) =

∞∑
i=1

Uiψi(t), t ∈ [0, T ], (2)

where {ψi}∞i=1 is an orthonormal basis of eigenfunctions of the integral operator corresponding to
C such that:

λiψi(t) =

∫ T

0

C(t, s)ψi(s)ds, (3)

and with {Ui}∞i=1 denoting a set of uncorrelated random variables with zero mean and variance
λi. Decomposition (2) is known as the Karhunen-Loève (KL) expansion of V ([LK10]). In the
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following we denote the truncated version of V

Vm(t) =

m∑
i=1

Uiψi(t), (4)

which represents, in the mean square error sense, the optimal m-term approximation of V ([LK10]).
The value of the parameter m should be chosen such that the approximation is accurate enough.
Its influence in practice is discussed in Section 4.2.

2.2. Gaussian Process modelling

We assume that f(x,v) is a realization of a Gaussian Process Z(x,u) defined on X×Rm, where

u = (< v, ψ1 >, . . . , < v, ψm >)>.
Let mZ be the mean function of Z(x,u) and kZ its covariance function,

E[Z(x,u)] = mZ(x,u),

Cov(Z(x,u), Z(x′,u′)) = kZ(x,u; x′,u′).
(5)

Let us denote Zn, the GP Z conditioned on the set of n observations (simulations) Zn =
{f(x1,v1), . . . , f(xn,vn)} of Z at Xn × Un = {(x1,u1), . . . , (xn,un)} where ui = (< vi, ψ1 >
, . . . , < vi, ψm >)>

Zn(x,u) = [Z(x,u)|ZXn×Un = Zn]. (6)

The conditional expectation is

E[Zn(x,u)] = mZ(x,u) + kZ((x,u);Xn × Un)kZ(Xn × Un;Xn × Un)−1(Z−mZ(Xn × Un)),

and the conditional covariance is

Cov(Zn(x,u), Z
n
(x′,u′)) = kZ((x,u); (x′,u′))

− kZ((x,u);Xn × Un)kZ(Xn × Un;Xn × Un)−1kZ(Xn × Un; (x′,u′)).

It is important to note that the Gaussian Process Z(x,u) is defined on the finite-dimensional
truncated space X× Rm. A discussion about this model is proposed in Section 4.3.

2.3. Integrated Gaussian Process

Recall that Γ∗ = {x ∈ X , g(x) = E[f(x,V)] ≤ c}. Therefore, to model the function g, we
introduce the integrated process

Y nx = EU[Zn(x,U)] =

∫
Rm

Zn(x,u)dρ(u), (7)

where dρ(u) is the probability distribution of U = (U1, . . . , Um)T introduced in (4). The process
Y nx is a Gaussian Process ([JLR13]) fully characterized by its mean and covariance functions which
are given by

E[Y nx ] =

∫
Rm

mZ(x,u)dρ(u)+∫
Rm

kZ((x,u);Xn × Un)kZ(Xn × Un;Xn × Un)−1(Z−mZ(Xn × Un))dρ(u),

(8)

4



and

Cov(Y nx , Y
n
x′) =

∫
Rm

∫
Rm

kZ((x,u); (x′,u′))

− kZ((x,u);Xn × Un)kZ(Xn × Un;Xn × Un)−1kZ(Xn × Un; (x′,u′))dρ(u)dρ(u′).

(9)

3. Data driven infill strategy for stochastic inversion

In this section we propose a two-step infill strategy in the joint space. The first step consists
in choosing a point in the control space while the second one aims at enriching the design with a
new point in the uncertain space.

3.1. Minimization of the Vorob’ev deviation: choice of next x

The objective of the first step is to wisely choose the points in the control space X in order to
accurately estimate the set Γ∗ = {x ∈ X , g(x) = EV[f(x,V)] ≤ c}. For this purpose, we consider
the statistical model of the non-observable function g given by Y nx introduced in Section 2.3. Due
to the stochastic nature of (Y nx )x∈X, the associated excursion set,

Γ = {x ∈ X , Y nx ≤ c} (10)

is a well defined random closed set if (Y nx )x∈X has continuous sample paths ([Mol06] p.4, 23).
Therefore, from now on, the considered random processes will be supposed separable ([Doo53],
p.57), the mean mZ to be continuous and the covariance function kZ to be Matérn (5/2 or 3/2).
Indeed, under these assumptions, we know that (Z(x,u))(x,u)∈X×Rm has continuous sample paths
([Pac03] p.44 table 2.1) and we can prove that the path continuity property remains valid for the
integrated conditioned process (Y nx )x∈X by using the necessary criterion introduced in [Adl81] p.60
and presented in [Pac03] p.38 Eq.(2.9).

From the assumption that g is a realization of Y nx , the true unknown set Γ∗ can be seen as a
realization of the random closed set Γ. The book of [Mol06] gives many possible definitions for the
variance of a random closed set. In the present work we adapt the Stepwise Uncertainty Reduction
(SUR) strategy introduced in [CG13] which aims at decreasing an uncertainty function defined as
the Vorob’ev deviation ([Vor84, VL13]) of the random set.
More precisely the uncertainty function at step n is defined as

Huncert
n = E[µ(Γ4Qn,α∗n) | ZXn×Un = Zn],

where µ is the Lebesgue measure on X, ∆ the symmetric difference operator between two sets, the
Vorob’ev quantiles are given by Qn,α = {x ∈ X , P(Y nx ≤ c) ≥ α}, and the Vorob’ev expectation
Qn,α∗n can be determined by tuning α to a level α∗ such that µ(Qn,α∗n) = E[µ(Γ) | ZXn×Un = Zn].
Let

Huncert
n+1 (x) = E[µ(Γ4Qn+1,α∗n+1

) | ZXn×Un = Zn, Y
n
x ].

The objective of the SUR strategy is thus to enrich the current design with a new point xn+1

satisfying

xn+1 ∈ argminx∈X En,x[Huncert
n+1 (x)]

:= argminx∈X Jn(x),
(11)
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where En,x denotes the expectation with respect to Y nx (for detailed formula and estimation of
Jn(.) see [CG13]).
The enrichment of the DoE consists in selecting a couple (xn+1,un+1) in the joint space X×Rm.
xn+1 has just been defined by (11), it remains now to choose a new point un+1 in the uncertain
space.

3.2. Minimization of the variance: choice of next u

The process Y n approximates the expectation EV[f(·,V)]. It can be seen as a projection of Zn

from the joint space onto the control space. We propose to sample the point un+1 in the uncertain
space in order to reduce at most the one-step-ahead variance at point xn+1, VAR(Y n+1

xn+1
), whose

expression is obtained from Eq.(9). More precisely,

un+1 = argminũ∈RmVAR(Y n+1
xn+1

), (12)

with

VAR(Y n+1
xn+1

) = ϑ(ũ)

=

∫
Rm

∫
Rm

kZ((xn+1,u); (xn+1,u
′))dρ(u)dρ(u′)

−
∫
Rm

∫
Rm

kZ((xn+1,u);Xn+1 × Un+1)

kZ(Xn+1 × Un+1;Xn+1 × Un+1)−1kZ(Xn+1 × Un+1; (xn+1,u
′))dρ(u)dρ(u′),

(13)

where Xn+1 × Un+1 = Xn × Un ∪ {(xn+1, ũ)}.

3.3. Implementation

The setting of our procedure is driven by our industrial application where the probability
distribution of the uncertain variable V is known only through a finite set of realizations
Ξ = {v̆1, . . . , v̆N}.

Computational method for functional PCA. We consider the empirical version of C(s, t) defined

as CN (s, t) =
1

N

N∑
i=1

v̆i(s)v̆i(t). The eigenvalue problem defined by Eq. (3) is then solved by

discretizing the trajectories {v̆i}i=1,...,N on [0, T ] and replacing C by CN .

Denoting by ψ̂i, i = 1, . . . ,m, the m first estimated eigenfunctions, we define

Gm = {ŭ1, . . . ŭN} (14)

with ŭi = (< v̆i, ψ̂1 >, . . . , < v̆i, ψ̂m >)T .

Minimization of the one-step-ahead variance. Since V is known through a finite set Ξ, Eq. (12)
is solved on the finite set Gm.

We now detail the implementation of our methodology. Let us first state the global algorithm
and then comment some of its steps.
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Algorithm 1 Stochastic inversion via joint space modelling

Require: The truncation argument m, the DoE of n0 points Xn0 ×Un0 in X×Gm and a maximal
simulation budget

1: Set n = n0.
2: Calculate Z the simulator responses at the design points Xn × Un
3: while n ≤ budget do
4: Fit the GP model Zn

5: Induce the integrated GP Y nx
6: xn+1 ← sampling criterion Jn
7: un+1 ← argminũ∈GmVAR(Y n+1

xn+1
)

8: Simulation at (xn+1,vn+1), where vn+1 ∈ Ξ is the curve corresponding to un+1

9: Update DoE : Xn+1 × Un+1 = Xn × Un ∪ {(xn+1,vn+1)}
10: Update Z = Z ∪ {f(xn+1,vn+1)}
11: Set n = n+ 1
12: end while
13: Fit the final GP model Zn

14: Approximate Γ∗ by the Vorob’ev expectation

step 1 Let U be the smallest m-rectangle containing Gm, U =
∏m

i=1 [min(< Ξ, ψ̂i >),max(< Ξ, ψ̂i >)]).
For the initial DoE, we first build a Random Latin Hypercube Design of n points Xn × Ūn in the
joint space (X,U). Then the set of points Un is determined such that for i = 1, ..., n, ui ∈ Gm is the
closest point from ūi ∈ Ūn (with respect to the euclidean norm in Rm).

step 4 The covariance kernel of the GP is chosen as a Matèrn-5/2 covariance and we add a noise modelled
with a constant variance term. The homoscedastic modelling of the noise is discussed in Section 4.3.
The mean function of the GP is modelled by a constant function. All types of parameters (mean,
correlation lengths, variance and noise) are estimated by maximum likelihood [RGD12].

step 5 In the framework where the uncertain vector U is Gaussian as well as the covariance kernel, closed
form solutions of the integrals in (8) and (9) are given in [JLR13]. In our framework, the integrals
in (8) and (9) are approximated by Monte Carlo.

step 6 xn+1 is obtained by solving (11) with a continuous global optimization algorithm: GENetic Opti-
mization Using Derivatives (GENOUD) [JS11].

step 7 Once more the integrals in (13) are approximated by Monte Carlo. More details on the estimation
of (13) can be found in [JLR13]. Here the minimization problem is solved by an exhaustive search
on the finite set Gm defined in (14).

step 8 The simulator is evaluated at point (xn+1,vn+1) where vn+1 is the curve of the initial set of curves
Ξ corresponding to the truncated vector of coefficients un+1. Note that evaluating the simulator at
a curve in the initial set of realizations whose coordinate in the uncertain space is un+1 and not a
projected curve on the basis composed with first eigenfunctions brings robustness with respect to
the truncation argument.

4. Numerical experiments

4.1. Two analytical examples - set-up

To illustrate the behaviour of the proposed algorithm 1, we consider two analytical examples.
We suppose that a sample Ξ ofN = 200 realizations of the functional random variable V is available
and its probability distribution is unknown. To highlight the robustness of our method regarding
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the random distribution of the uncertainties, we consider two types of functional random variables:
Brownian motion and max-stable process. As Algorithm 1 depends on the truncation argument
m, different values are tested (see Table.4.1) to better understand the effect of the uncertain space
dimension.

m 2 4 8
V : Brownian motion 90.1 % 95.2 % 97.6%

V : Max-stable process 58.8 % 63.3 % 70%

Table 1: The explained variance of the functional data by the reduced variables in function of m for two types of
uncertainties.

For the next two analytical examples, we consider a Gaussian Process prior Z(x,u) with
constant mean and Matèrn covariance kernel with ν = 5/2. Random Latin Hypercube Designs
(RLHD) are used as initial DoEs in all the experiments . The number of points of the initial DoE
is 20 for the first analytical example and 30 for the second one. RLHD induce variability in the
behaviour of the algorithms. To account for this variability, the performance of each method is
averaged over 30 (respectively 10) independent runs for Brownian motion (respectively max-stable
process).

Analytical example 1. We consider an additive function, sum of the two-dimensional Bo-
hachevsky function and a random term, defined as

f : (x,V) 7→
(
x21 + 2x22 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7

)
+

∫ T

0

eVtdt,

where x ∈ X = [−100, 100]2. The objective is to approximate the set Γ∗ = {x ∈ X , g(x) =
EV[f(x,V)] ≤ 3500} for the two different types of distribution of the random functional variable
(Brownian motion and max-stable process).

Analytical example 2. For the second example we define a function that is not separable
with respect to the control variables and uncertainties. The function involves the maximum and
the minimum of (Vt)t≥0, so catching the whole variability of V becomes important. The function
f is given by

f : (x,V) 7→ max
t

Vt|0.1 cos(x1 max
t

Vt) sin(x2)(x1 + x2 min
t

Vt)
2|
∫ T

0

(30 + Vt)
x1x2
20 dt,

where the control variables lie in X = [1.5, 5] × [3.5, 5]. The objective is to approximate the set
Γ∗ = {x ∈ X , g(x) = EV[f(x,V)] ≤ c}, when c = 1.2 and c = 0.9 for the Brownian motion and
the max-stable Process respectively.

To compare the performance of both algorithms, we use the ratio of the volume of the
symmetric difference between the true set Γ∗ and the estimated set Qn,α∗ : µ(Γ∗4Qn,α∗n)/µ(Γ∗)
to which we will refer by the quality-ratio.

4.2. Two analytical examples - results

In Figures 1 and 2, we show the evolution of the averaged quality-ratio with respect to the
number of simulations involved in the Algorithm 1 on the two analytical examples with the two
types of functional uncertainties (Brownian and max-stable process). The average is taken over
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Figure 1: Analytical example 1 with Brownian motion (top) and with max-stable process (bottom). Convergence
of Algorithm 1 for m = {2, 4, 8}. Left: mean of the symmetric differences vs. number of simulator calls in log scale.
The mean is taken over the independent runs of initial RLHD. Right: symmetric differences associated with the
random initial DoEs at the maximal simulation budget.

the repeated runs of the complete approach corresponding to the 30 random initial designs (10 for
the max-table process), and for 3 values of the truncation argument m.

For the first analytical example, the smaller values of m, the faster is the convergence. This
observation can be explained by the fact that, in higher dimensional joined space (due to larger
values of m), much more evaluation points are necessary to learn an accurate GP model (more
hyper-parameters to determine). It is worth noting that even for 90% (for Brownian motion) or
58.8% (for max-stable process) of explained variance with m = 2 the proposed algorithm provides
an efficient estimate of the true set Γ∗. Indeed, on stage 8 in Algorithm 1 the full curve vn+1 ∈ Ξ
associated to un+1 is recovered, such that the information lost after the dimension reduction is
reduced, thereby further robustifying the method.

For the second analytical example, the output depends on local behaviours of the stochastic
process. The truncation argument m = 2 is too small to catch these dependencies, the function is
sensitive to higher KL order. For the Brownian motion, more than 95% of variance is explained with
m = 4. It seems sufficient to obtain an accurate approximation of Γ∗. The improvement between
m = 2 and m = 4 is noticeable. The improvement is not as important when the uncertainties
are driven by a max-stable process since the percentage of explained variance increases slowly.
Better results should be observed with m = 8. It is not the case because a higher dimension
leads to difficulties in the estimation of the GP except by increasing consequently the number of
observation points.

In Figure 3 we can see the evolution of the feasible domain estimation with respect to the
iterations of Algorithm 1 for the second analytic case and the Brownian motion, and for different
truncation levels. From left to right we observe the increase of additional sampling points near the
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Figure 2: Analytical example 2 with Brownian motion (top) and with max-stable process (bottom). Convergence
of Algorithm 1 for m = {2, 4, 8}. Left: mean of the symmetric differences vs. number of simulator calls in log scale.
The mean is taken over the independent runs of initial RLHD. Right: symmetric differences associated with the
random initial DoEs at the maximal simulation budget.

boundary with the iteration number.
As shown in Figure 4, the larger the dimension of the problem is, the larger the computational

cost is. Moreover, the computational time needed to provide the next evaluation point increases
with the number of simulator calls, and thus with the number of iterations, because of the cost of
Kriging approximation directly linked with the learning sample size. For example in the case of
m = 8 (resp. m = 2), iteration 80 requires 203 (resp. 126) seconds to provide the next evaluation
point whereas iteration 150 requires 275 (resp. 164) seconds.

In this section, we also compare the sampling criterion in the uncertain space, based on (11),
with a uniform sampling. Among the experiments we conducted, we show the results obtained for
the analytical case 1 and the Brownian motion. The points selected with the criterion based on
(11) seems to concentrate on interest zones, in comparison to the points selected uniformly (see
Figures 5 and 6).

It is also interesting to compare the evolution of the estimation error, defined as the relative
symmetric difference volume. We see on Figures 7 and 8 that the criterion based on (11) leads to a
faster decrease of the relative symmetric difference volume and to a much smaller error variability,
in comparison to a uniform sampling in the uncertain space.

To conclude the analysis of stochastic inversion on both analytical cases, we compare the method
proposed in this paper, based on joint metamodelling, with the approach introduced in [EAHL+20]
which combines metamodelling in the control space with quantization for the estimation of the
expectation in the uncertain space. Even without compatibilizing the costs induced by the initial
designs (RLHD of size 9), the current approach based on joint metamodelling performs better
regardless of the truncation argument m (Figure 9). Adding the costs induced by the quantization
on the initial sample points would disadvantage even more the approach introduced in [EAHL+20]
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Figure 3: Feasible domain estimation for function 2 with Brownian motion in green and its boundary in red for 3
different iterations (30, 70 and 150 from left to right) and for the 3 values of m = 2, 4 and 8 (from top to bottom).
The black dots are the x coordinates of the points in the initial design of experiments, the red crosses are the
additional points chosen by the algorithm.
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Figure 4: The computational time (sec.) needed to provide the next evaluation point as a function of iterations
for the second analytic example with Brownian motion. The values are averaged computational times for 5 runs of
each strategy: m = 2, 4, 8.

as the averaged size of the quantizer is around 20 for each of the points (in the control space)
of the initial design. It means that for each point of the initial design (RLHD with 9 points in
the control space), the expectation is estimated by evaluating the model on the quantizer (in the
uncertain space), that is by evaluating the model on 20 points (in the joint space) if the quantizer
is of size 20.

4.3. Discussion on the GP model on the finite-dimensional truncated space

We discuss here the assumption stated in Section 2.2 that f(x,v) is a realization of a Gaussian
Process Z(x,u) defined on the truncated space X×Rm. It is worth underlying here that our aim was
to reduce the simulation cost by considering a m-truncation of the KL expansion while accounting
for our partial knowledge on the distribution of V through only a finite sample of realizations.
Let us consider two truncation arguments m and L > m, with L large enough to ensure that the
part of variance explained by the KL terms indexed by i > L is negligible.
For a given realization v of V, let us introduce the notation (u, ũ) ∈ Rm ×RL−m where u = (<

v, ψ̂1 >, . . . , < v, ψ̂m >)> and ũ = (< v, ψ̂m+1 >, . . . , < v, ψ̂L >)>.
In that setting f(x,V) can be expressed as

f(x,V) = f(x, V̂L) + εT = f
(
x, (U, Ũ)Φ̂L

)
+ εT

where V̂L is the empirical version (estimated from CN ) of the KL approximation of V given by

(4) (replacing m by L), Φ̂L = (ψ̂1, ..., ψ̂L)T and εT is the error associated to the KL truncation
and empirical approximation, supposed small by construction.

Then, the best L2-approximation of f
(
x, (U, Ũ)Φ̂L

)
by a measurable function of U only is the

conditional expectation EŨ

[
f
(
x, (U, Ũ)Φ̂L

)
|U
]
. We thus write:

f(x,V) = EŨ

[
f
(
x, (U, Ũ)Φ̂L

)
|U
]

+ εP + εT

with εP the L2-projection error. We can further approximate the conditional expectation by

f
(
x, (U, ũ(U))Φ̂L

)
+ εE
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Figure 5: Analytical case 1 with the uncertainty modelled by a Brownian motion. (right) Black triangles correspond
to the coefficients of the initial RLHD plotted in the uncertain truncated space. Red points are added points
uniformly sampled up to 50 simulations. (left) The corresponding selected curves among the whole set of realizations
(displayed at top).

where ũ(U) is one realization of Ũ|U and εE accounts for the expectation approximation. The
latter approximation is motivated by the fact that, since V is only known through a finite sample,
we only have access to one ũ(u) realization for each u corresponding to v in the initial finite set
Ξ. Thus we can write:

f(x,V) = f
(
x, (U, ũ(U))Φ̂L

)
+ ε (15)
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Figure 6: Analytical case 1 with the uncertainty modelled by a Brownian motion. (right) Black triangles correspond
to the coefficients of the initial RLHD plotted in the uncertain truncated space. Red points are selected with our
criterion up to 50 simulations. (left) The corresponding selected curves among the whole set of realizations (displayed
at top).

with ε = εT + εP + εE . According to this last equation, the modelling assumption in Section 2.2
should include a noise term. However, the estimation of this heteroscedastic noise comes with
an extra estimation cost and as it can be seen in Figure 10, no significant model improvement is
observed. Indeed in Figure 10, for m = 2, we present the evolution of the symmetric difference
for the noisy GP model Z(x,u) introduced from equation (15) when the noise ε is Gaussian and
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Figure 7: Decrease of the relative symmetric difference volume (left) and boxplots for the errors (right) for the first
analytical case (top) and the second one (bottom) for the Brownian motion, comparing criterion based on (11) with
the uniform sampling in the uncertain space.

heteroscedastic with a variance function of (x,u):

τ2(x,u) = V arŨ
[
f
(
x,
(
u, Ũ(u)

)
Φ̂L

)∣∣U = u
]
.

Moreover, supposing V Gaussian or ”nearly Gaussian”, that is assuming that Ũ can be con-
sidered in first approximation as independent of U, then τ2(x,u) can be estimated by

τ̂2(x,u) =

l∑
k=1

wk
[
f
(
x,VQuant

k

)
−

l∑
j=1

wjf
(
x,VQuant

j

)]2
where l = 5 and the VQuant

k are greedy functional quantizers and wk associated weights (see

[EAHL+20] for more details). These quantizers are built from a set of N curves {
(
u, ũk

)
Φ̂L, k =

1, ..., N} where ũk are independent samples of Ũ which in practice are uniformly sampled in the

finite set Ḡm,L = {ū1, ..., ūN} where ūi = (< v̆i, ψ̂m+1 >, ..., < v̆i, ψ̂L >). Numerically we select 20
(x,u)-points from the initial DoE set of size n = 30 and estimate the corresponding τ̂2. To avoid
further estimation of τ2 at new locations (the remaining DoE points and during the infill strategy),
we build a second GP model of log(τ̂2) based on the 20 initial estimations. Finally the noisy GP

model Z is built using as noise variance exp
(

ˆlog(τ̂2)
)
. Overall we need additional l × 20 = 100

costly evaluations of f to estimate the heteroscedastic noise.
In Figure 10 we notice that compared to the homoscedastic model with m = 2, the model with

heteroscedastic noise achieves a faster symmetric difference volume reduction but the overcost, for
the variance estimation, makes this approach interesting only for a large simulation budget: at
least 130 simulations. For the Brownian case, on function 2, the homoscedastic models with higher
m still perform better for a budget up to 150 than the heteroscedastic one. A model with a small
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Figure 8: Decrease of the relative symmetric difference volume (left) and boxplots for the errors (right) for the first
analytical case (top) and the second one (bottom) for the Max Stable process, comparing criterion based on (11)
with the uniform sampling in the uncertain space.

Figure 9: Comparison between the current approach based on joint metamodelling and the approach introduced
in [EAHL+20] combining metamodelling in the control space with quantization in the uncertain space. The costs
induced by the initial designs (RLHD of size 9) are not compatibilized. The uncertainty is modelled by a Brownian
motion.

m, that is to say with a rough truncation error, involves a larger bias. Nevertheless, refining the
heteroscedastic noise estimation should bring the method to a similar level but much further on
the axis corresponding to the number of simulations.
But on function 2 with a Max-stable process, the heteroscedastic model slightly outperforms the
homoscedastic models (m = 2, 4, 8) when approaching the 150 simulations (Figure 10). We can
understand this improvement by the fact that even with higher m a homoscedastic model does not
make up for a wider truncation error which is better approximated by a heteroscedastic model.
Note that it is possible to relax the ”nearly Gaussian” hypothesis on V. In that case the same kind
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Figure 10: Function 2 with Brownian (top) and max-stable processes (bottom) with a comparison with the
heteroscedastic GP model. Convergence of Algorithm 1 for m = {2, 4, 8}. Left: mean of the symmetric difference
vs. number of simulator calls. The mean is taken over the independent runs of initial RLHD. The additional curve
(cyan) corresponds to m = 2 with the heteroscedastic model, it is translated to take into account the extra-cost of
100 simulations for the noise estimation. Right: symmetric differences associated with the random initial DoEs at
the maximal simulation budget.
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of heteroscedastic variance estimator could be used but would require an empirical estimation of
the conditional distribution of Ũ|U which seems difficult in the context of our partial knowledge
of V imposing on us to work on finite predefined sets G and Ḡm,L.

4.4. Application to a pollution control system SCR

In this section we test the proposed method on an automotive test case from IFPEN. The
problem concerns an after-treatment device of diesel vehicles, called Selective Catalytic Reduction
(SCR). This latter consists of a basic process of chemical reduction of nitrogen oxides (NOx) to
diatomic nitrogen (N2) and water (H2O) by the reaction of NOx and ammonia NH3. The reaction
itself occurs in the SCR catalyst. Ammonia is provided by a liquid-reductant agent injected
upstream of the SCR catalyst. The amount of ammonia introduced into the reactor is a critical
quantity: overdosing causes undesirable ammonia slip downstream of the catalyst, whereas under-
dosing causes insufficient NOx reduction. In practice, ammonia slip is restricted to a prescribed
threshold. We use an emission-oriented simulator developed by IFPEN, which models the vehicle,
its engine and the exhaust after-treatment system. This latter takes as input the vehicle driving
cycle profile and provides the time-series of corresponding exhaust emissions as output. A realistic
SCR control law is used in this simulator. See [BCLP12] for an example of such a control law. In
this study, the inputs are two control variables and a functional one considered as random. The
control variables are parameters of the SCR control law. They set the targeted level of NH3 storage
in the catalyst and then are indirectly related to the NH3 injected. They lie in X = [0, 0.6]2. The
functional random variable describes the evolution of vehicle speed on I = [0, 5400s] and is known
through an available sample of 100 real driving cycles. A few samples are represented in Figure
11. In short, the ammonia emissions peak during a driving cycle is modelled as a function

Figure 11: Seven real-driving cycles extracted from the available sample of 100 cycles.

f :

{
X× V → R
(x,V) 7→ f(x,V) = max

t∈I
NHslip

3 (t)
(16)

We are interested in recovering the set Γ∗ = {x ∈ X, g(x) = EV[f(x,V)] ≤ c}, with c = 30ppm.
Conducting this study on a full grid would consists in covering the space [0, 0.6]2 with a fine
mesh and evaluating the code 100 times at each point. Knowing that each simulation takes
about two minutes, such study would require many hours of computational time, and thus using
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meta-models allows to tackle this computational issue.

As discussed in the previous subsection, we start by reducing the space dimension of the
uncertain variable as described in Section 2.1 and fix the truncation argument to m = 20 in order
to explain 80% of the variance. Thereafter, we consider a Gaussian Process prior Z(x,u), with
constant mean function and Matérn covariance kernel with ν = 5/2. The initial DoE consists of
a n = 5 × (2 + 20) = 110 points LHS design optimized with respect to the maximin criterion.
The covariance kernel hyper-parameters are estimated by maximizing the likelihood. As for the
analytical example, we proceed to add one point at each iteration of the SUR strategy.

Figure 12: SCR pollution control system. The initial DoE (black triangles) and the initial estimate set (green). The
contour plot in grey represents the excursion probability.

Figure 12 shows the coverage probability function defined by the integrated Gaussian Process Yx
conditionally to the n available observations. The initial estimate of Γ∗ is given by the green set of
blue boundary. From Figure 13, we note that, for each additional point, the new observed response
affects the estimation of the excursion set and its uncertainty. Thus, the Vorob’ev deviation
generally decreases in function of the iterations. SUR algorithm heavily visits the boundary region
of Γ∗ and explore also other potentially interesting regions. Actually, after 400 iterations (510
evaluations) the whole domain X has an excursion probability close to either 0 or 1.

5. Conclusion and extension

The aim of this paper is to propose an excursion set inversion procedure for control system in
an uncertain environment. Furthermore, control systems whose behaviour is simulated by high-
fidelity and expensive-to-evaluate models are considered. Gaussian Process modelling approaches
are therefore introduced as computationally costless approximations of the outputs of the simulator.
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Figure 13: SCR pollution control system. The Vorob’ev deviation in function of the number of simulations (left).
The coverage probability function, the initial DoE (black triangles) and the estimate set (green set) after 400 added
points (red). The contour plot in grey represents the excursion probability.

The proposed strategy minimizes the uncertainties on the excursion set of the simulator output
by, first, creating a Gaussian Process model in the joint space of deterministic and uncertain input
variables. The vector-valued random variables result from a dimension reduction of the functional
input variable. Then another ”projected” Gaussian Process is built to represent the mean of the
quantity of interest (output of the simulator). Enrichment of the design of experiments is performed
in the joint space. This allows us to guide the experimental design points toward regions of the
space that decrease significantly the uncertainties on the excursion set while limiting the number
of simulations.

Two bi-dimensional examples based on analytic expressions are considered to validate the
proposed procedure. This allows us to validate the proposed method with comparison with exact
solutions. The application of the proposed procedure shows increased efficiency as the number
of calls to the complex simulator is reduced. Finally, we apply the methodology to an industrial
problem related to the pollution control system of an automotive. An excursion set solution is
found within a reasonable number of simulations.

The paper focuses on the expectation while other reliability measures may also be of great
importance. For example, one may be interested in ensuring a certain level of reliability with a
high probability or satisfying multiple constraints, e.g., on the mean and the variance.

One limitation of our methodology is the prior choice of the truncation argument m. It can
be based on a sufficient level of explained variance. But, depending on the stochastic process
involved, this parameter can be high (8 for the Max-stable process on analytical function 2, 20
for the industrial application). Increasing m implies increasing the dimension of the GP space. A
high number of design points is then needed to produce an accurate response surface, which is very
costly in simulation calls. To overcome this, another variant of our strategy can be studied. The
approach consists in augmenting the uncertain space sequentially when needed. More precisely, a
first Gaussian Process is defined in the p + m dimensional space, with m chosen small. Once the
enrichment strategy (given by Algorithm 1) no longer provides information - a rough approximation
of the excursion set is achieved - the dimension of the uncertain space is increased and the GP is
updated in the p+m+ 1 dimensional space. It is important to underline that this approach does
not require additional calls to the numerical simulator. This alternative strategy is summarized
by Algorithm 2:
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Algorithm 2 Stochastic inversion via sequential joint space modelling

Require: The initial truncation argument m = 2 and the DoE of n points Xn × Un in (X,Gm)
1: Set n = n0.
2: Calculate Z the simulator responses at the design points Xn × Un
3: while n ≤ budget do
4: m← Update.Dimension()
5: Fit the GP model Zn

6: Induce the integrated GP Y nx
7: xn+1 ← sampling criterion Jn
8: un+1 ← argmin

ũ∈G
VAR(Y n+1

xn+1
)

9: Simulator response at (xn+1,vn+1), where vn+1 ∈ Ξ is the curve corresponding to un+1

10: Update DoE : Xn+1 × Un+1 = Xn × Un ∪ {(xn+1,vn+1)}
11: Update Z = Z ∪ {f(xn+1,vn+1)}
12: Set n = n+ 1
13: end while
14: Fit the GP model Zn

15: Approximate Γ∗ by the Vorob’ev expectation

In step 4 of Algorithm 2, the uncertain space dimension is updated based on a stagnation
criterion of the Vorob’ev Deviation (see Eq.(26) in [EAHL+20]). If the criterion is verified then
one dimension is added and thus m = m+ 1.

This strategy, based on an adaptive choice of m presented in Algorithm 2, has been evaluated
on the second analytical function of Section 4.1. A small initial value of m is chosen, m = 2, and
it is then increased when the variation of the Vorob’ev deviation remains smaller than a given
threshold ε (0.005) during l0 consecutive iterations (l0 = 4) (see Eq. (26) in [EAHL+20]). It allows
to increase the dimension of the KL reduced space only when it is necessary to obtain a better
accuracy. As illustrated on Figure 14 it allows to save simulations and reduce computational time.
The accuracy reached with this strategy is similar to the one obtained with the strategy with fixed
m = 8 but with a gain of ≈ 12% in terms of computational time (Figure 15). The first iterations
are performed with m = 2, only the last iterations are performed with m = 8.
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Figure 14: Analytical example 2 with Brownian motion (top) and with max-stable process (bottom). Convergence
of Algorithm 1 for m = {2, 4, 8} and for adaptive choice of m value. Left: mean of the symmetric differences vs.
number of simulator calls in log scale. The dashed grey curve is the mean of m values in the case of an adaptive
choice of its value. The mean is taken over the independent runs of initial RLHD. Right: symmetric differences
associated with the random initial DoEs at the maximal simulation budget.

Figure 15: The computational time (sec.) needed to provide the next evaluation point as a function of iterations
for the second analytic example with Brownian motion. The values are averaged computational times for 5 runs of
each strategy: m = 2, 4, 8 and adaptive choice of m value.
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