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Abstract

In this paper we deal with the estimation of a feasible set defined by an inequality constraint on
the output of a time-consuming black-box simulator. We focus on the setting where the black-box
simulator takes as inputs both a set of scalar controlled variables and a functional uncontrolled
variable. We then place ourselves in a probabilistic framework, modelling the functional uncon-
trolled variable by a random process. The inequality constraint is formulated as the expectation
of the output of the simulator conditional on the values taken by the set of controlled variables.
We propose an original method to solve the above feasibility problem with a reduced number of
evaluations of the costly simulator. A Gaussian Process model of the simulator is learned in the
joint space of controlled and uncontrolled input variables, on the basis of a set of simulations which
is enriched through a sequential procedure. This procedure aims to reduce the estimation error of
the feasible set by evaluating the simulator on new points chosen sequentially in the joint input
space according to specific enrichment criteria. It involves as a preliminary step the reduction of
the dimension of the uncontrolled input space. A variation of this strategy is also proposed, which
increases adaptively the dimension of the reduced space, leading to an improvement in terms of
number of calls to the simulator. The procedure we propose is compared with other sampling
procedures and another modelling approach on analytical examples. Finally our methodology is
implemented on an automotive industrial application. For this application, the feasible set to be
recovered is the set of values of controlled variables of a gas after-treatment device leading to the
respect of pollutant emission standards of a vehicle under driving profile uncertainties.

Keywords: feasible set estimation; Gaussian Process model; dimension reduction; functional
uncertainty.

1. Introduction1

In recent years, engineers and scientists are increasingly relying on computer models as sur-2

rogates for physical experimentation generally too costly or impossible to execute ([1, 2]). In3

particular, practitioners using these numerical simulations are not only interested in the response4

of their model for a given set of inputs (forward problem) but also in recovering the set of input5
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values leading to a prescribed value or range for the output of interest. The problem of estimating6

such a set is called hereafter feasible set estimation.7

In our context, the numerical simulator, denoted f , takes two types of input variables: a set8

of controlled variables x ∈ X, and a set of uncontrolled variables v ∈ V. Without considering9

any assumptions on the set of uncontrolled variables v, robust feasible set estimation consists in10

seeking the set of controlled variables x ∈ X such that supv∈V f(x,v) is smaller than a threshold11

c. Then, the difficulty of solving this estimation problem strongly depends on the set V.12

In our setting, the simulator f takes as inputs a set of scalar controlled variables and a functional13

uncontrolled variable. Therefore we place ourselves in a probabilistic framework, modelling the14

functional uncontrolled variable by a random process V. We are interested in the estimation of15

the feasible set defined as Γ∗ := {x ∈ X , g(x) = EV[f(x,V)] ≤ c}, with c ∈ R. It is important to16

note here that our study is driven by an industrial application on automotive depollution. More17

precisely, we study an after-treatment device of diesel vehicles, depending on controlled variables,18

in an uncertain environment corresponding to the uncontrolled driving profile. Knowledge on the19

driving profile is provided through a finite set of realizations of moderate size (see Section 4.4 for20

more details). In order to fit this setting, we make the assumption that the process V is only21

known through a finite set, denoted Ξ, of its realizations. Note that to estimate the expectation22

EV[f(x,V)] appearing in the definition of Γ∗, a brute force Monte Carlo is out of reach as each23

evaluation of the simulator is time consuming. Therefore we propose in the following a more24

elaborate sampling strategy.25

Feasible set estimation has already been carried out in many applications, notably reliability26

engineering (see, e.g., [1], [2]), climatology (see, e.g., [3], [4]) and many other fields. One way to27

tackle the problem is to adopt an active learning strategy based on a surrogate model of the simu-28

lator output. Active learning strategies based on surrogates are quite common in the framework of29

uncertainty quantification, to estimate a targeted quantity of interest built on the model output,30

such as a probability of exceedance, a quantile, an optimum... Then two potentially complementary31

learning strategies are possible: seek for precise surrogate prediction on the overall input space or32

focus on sub-spaces important to the targeted quantity of interest. When possible, a compromise33

between both strategies is often preferred. In the context of Gaussian process modelling, numerous34

active learning methods have been developed tailored to different post processing of the surrogate35

such as: meta-modelling [5, 6, 7, 8], optimization [9, 10, 11, 12], excursion/feasible set estimation36

[2, 13, 14, 15], failure probability estimation [16, 17, 18], expectation estimation [19, 20, 21, 22],37

each with dedicated criteria to enrich the Design of Experiments (DoE) and to stop the algorithm.38

As a general rule, all criteria offer a compromise between exploration of the input space and ex-39

ploitation of learned information important for the quantity of interest. A comparison of several40

criteria is given in the recent review [23]. We can also notice that active learning is not restricted41

to GP based surrogates [24] and has also been a hot topic in the broad field of machine learning42

[25].43

In the feasible set estimation problem of concern, one option is to implement an active DoE44

learning strategy based on a Gaussian Process (GP) model for g : x 7→ EV[f(x,V)]. The under-45

lying idea is that Gaussian Process models, which capture prior knowledge about the regularity46

of the unknown function, make it possible to assess the estimation error of Γ∗ given a set of eval-47

uations of g. More specifically, for the estimation of a feasible set, these sequential strategies are48

closely related to the field of Bayesian global optimization (see, e.g., [26]). In the case of feasible49

set estimation, specific Stepwise Uncertainty Reduction (SUR) strategies were introduced in [27].50

More recently, a parallel implementation of these strategies has been proposed in [2] and applied51

to the recovery of a feasible set. Briefly, the strategy SUR gives sequentially the next location in52

the controlled space where to run the simulator in order to minimize a function (called uncertainty53

function hereafter) measuring the estimation error of the feasible set.54

In the field of robust optimization where uncertainty comes from a real-valued (or vector-valued)55
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random input, various methods exist and aim at optimizing the expectation taken with respect to56

the probability distribution of the random input (see [28] or [29]). These methods are based on57

the modelling of f by a Gaussian Process built in the joint space of controlled and uncontrolled58

variables. Then a ”projected” (integrated) Gaussian Process is defined by taking the expectation59

with respect to the probability distribution of the random input, leading to an approximation of60

the expected response g. Finally a sequential design of experiments is proposed for optimizing the61

objective function g. In the same spirit, we propose an original method to solve a probabilistic62

feasible set estimation problem with the aim of reducing at most the number of evaluations of the63

simulator required. In this work f is approximated by a Gaussian Process model built on X×Rm,64

a finite-dimensional approximation of X × V. The choice of the truncation argument m will be65

discussed further. For the iterative approximation of Γ∗, the sampling strategy in the joint space66

is based on two steps. Firstly a SUR approach is applied to the ”projected” Gaussian Process67

to determine the next evaluation point xn+1 ∈ X. Secondly, in the uncontrolled space, the next68

realization vn+1 of the random process V is chosen such that the standard error of the ”projected”69

process evaluated at xn+1 is minimized.70

As already mentioned, our procedure relies on a preliminary step which aims, for a truncation71

argument m, at estimating the m-truncated Karhunen-Loève (KL) decomposition of the random72

process V from the finite set Ξ of realizations of V. Building the sampling strategy on a GP model73

built on the finite-dimensional space X × Rm certainly involves a loss of information. However,74

we propose to mitigate this loss of information in the following manner: once the next point is75

selected in X×Rm, we evaluate the simulator on its closest neighbor in X×Ξ, where we recall that76

Ξ is the available finite sample of realizations of V (for more details, see the description of step 877

after the statement of Algorithm 1). With this latter process, we recover partial knowledge of the78

full variability of the untruncated process V, leading to a procedure which is robust with respect79

to the truncation argument m. Also, we propose in Algorithm 2 a variation of our procedure, by80

increasing adaptively the truncation argument m over the iterates.81

Another procedure for solving the feasible set estimation problem described in this introduction82

was proposed in [13]. The main difference with our work is that the sequential enrichment strategy83

is defined on X, the space of controlled variables and not on the joint space of controlled and84

uncontrolled variables. Then, at each iteration, once the new point xn+1 is selected, an accurate85

approximation of EV[f(xn+1,V)] is computed via quantization. The procedure we propose in the86

present work outperforms the one in [13] by allowing to reduce even more the number of evaluations87

of the costly simulator (see Figure 7 Section 4.2).88

The article is structured as follows. In Section 2, we recall the problem formulation and we89

extend the concept of Gaussian Process modelling to the case where one of the inputs is a random90

process known only through a finite set of realizations. In Section 3, we introduce a new sequential91

sampling strategy targeted for robust feasible set estimation to choose the next point in the joint92

space: (xn+1,vn+1) (Sections 3.1 and 3.2). In Section 3.3, together with numerical implementation93

details, we summarize our strategy to tackle robust feasible set estimation in two algorithms: with94

fixed KL parameter m (Algorithm 1) and its adaptive counterpart (Algorithm 2). The results of95

these algorithms on two analytical test cases are presented in Section 4.1 to 4.3. In particular,96

concerning the sampling enrichment in uncertain space, we compare our sampling strategy, based97

on the standard deviation of the ”projected” process evaluated at xn+1, with a uniform sampling98

of vn+1 among the finite set of available realizations of the random process V. We also compare99

our procedure with the one introduced in [13] which combines the fitting of a Gaussian Process100

model on the controlled space X with a quantization estimation of the expectation of the output101

conditional on the values taken by the controlled variables. In Section 4.4, our new procedure is102

tested on the industrial application of a car pollution control system. Finally further discussion103

on the modelling assumptions is postponed to Appendix A.104
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2. Problem formulation105

We model the output of the industrial simulator by a function f : X×V → R with X a bounded106

subset of Rp being the controlled variable space and V the functional space in which the random107

process V, modelling uncertainties, takes its values. We are interested in estimating the feasible108

set109

Γ∗ = {x ∈ X , g(x) ≤ c}, (1)

where c ∈ R is a threshold and g : X→ R such that g(x) = EV[f(x,V)]. An additional constraint110

is that the random process V is known only through a finite set of realizations, denoted by Ξ. The111

implication of this constraint will be specified in Section 3.3. The proposed sequential strategy to112

estimate Γ∗ involves three main ingredients introduced hereafter: dimension reduction to reduce113

the random process V to a m-dimensional random vector, Gaussian Process modelling in the joint114

space X× Rm and a wise selection of next point (xn+1,un+1) ∈ X× Rm at which to evaluate the115

simulator. Although the Gaussian Process model is defined on the finite-dimensional truncated116

space X × Rm, robustness with respect to truncation level m is mitigated through the sequential117

enrichment procedure of the design of experiments as for each selected point, the simulator is118

evaluated at point (xn+1,vn+1) where vn+1 is the realization in Ξ corresponding to the truncated119

vector un+1 in a sense to be precised in the following subsections.120

2.1. Random process finite dimensional representation121

Let (Ω,F ,P) be a probability space. We assume that the random process V belongs to H =
L2(Ω,F ,P;V) with

V =

v : [0, T ]→ R, ||v|| = (< v, v >)
1/2

=

(∫ T

0

v(t)2dt

)1/2

< +∞

 .

We assume that V ∈ H has zero mean and continuous covariance function C(t, s). Then122

∀t ∈ [0, T ], V(t) =

∞∑
i=1

Uiψi(t), (2)

where {ψi}∞i=1 is an orthonormal basis of eigenfunctions of the integral operator corresponding to123

C such that:124

λiψi(t) =

∫ T

0

C(t, s)ψi(s)ds, (3)

and with {Ui}∞i=1 denoting a set of uncorrelated random variables with zero mean and variance λi.125

Decomposition (2) is known as the Karhunen-Loève (KL) expansion of V ([30]). In the following126

we denote the truncated version of V as Vm:127

∀t ∈ [0, T ], Vm(t) =

m∑
i=1

Uiψi(t), (4)

which represents, in the mean square error sense, the optimal m-term approximation of V ([30]).128

The value of the parameter m should be chosen such that the approximation is accurate enough.129

Its influence in practice is discussed in Section 4.2.130
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2.2. Gaussian Process modelling131

We assume that f is a smooth function. In the following, we model f as a realization of a132

Gaussian Process Z(x,u) defined on X× Rm, where u = (< v, ψ1 >, . . . , < v, ψm >)⊤. Let mZ be133

the mean function of Z(x,u) and kZ its covariance function,134

E[Z(x,u)] = mZ(x,u),

Cov(Z(x,u), Z(x′,u′)) = kZ((x,u); (x
′,u′)).

(5)

Let us denote Zn, the GP Z conditioned on the set of n observations Zn =135

{f(x1,v1), . . . , f(xn,vn)} of Z at (Xn,Un) = {(x1,u1), . . . , (xn,un)} where ui = (< vi, ψ1 >136

, . . . , < vi, ψm >)⊤137

Zn
(x,u) = [Z(x,u)|Z(Xn,Un) = Zn]. (6)

The mean and covariance of Zn are given by

E[Zn
(x,u)] = mZ(x,u) + kZ((x,u); (Xn,Un))Σ−1

Z,n(Z−mZ(Xn,Un)),

Cov(Zn
(x,u), Z

n
(x′,u′)) = kZ((x,u); (x

′,u′))− kZ((x,u); (Xn,Un))Σ−1
Z,nkZ((Xn,Un); (x′,u′)).

where ΣZ,n = kZ((Xn,Un); (Xn,Un)). The Gaussian Process Z(x,u) is defined on the finite-138

dimensional truncated space X × Rm. However, it is worth underlying that we recollect partial139

knowledge of the full variability of the untruncated process V, despite the truncation of the KL140

expansion, by evaluating the simulator on design points in X× Ξ. A discussion about this model141

is proposed in Appendix A.142

2.3. Integrated Gaussian Process143

Recall that Γ∗ = {x ∈ X , g(x) = E[f(x,V)] ≤ c}. Therefore, to model the function g, we144

introduce the integrated process145

Y n
x = EU[Zn

(x,U)] =

∫
Rm

Zn
(x,u)dρ(u), (7)

where ρ is the probability distribution of U = (U1, . . . , Um)⊤ introduced in (4). The process Y n
x is146

a Gaussian Process ([28]) fully characterized by its mean and covariance functions which are given147

by148

E[Y n
x ] =

∫
Rm

mZ(x,u) + kZ((x,u); (Xn,Un))Σ−1
Z,n(Z−mZ(Xn,Un))dρ(u), (8)

and149

Cov(Y n
x , Y

n
x′) =

∫∫
Rm

kZ((x,u); (x
′,u′))−kZ((x,u); (Xn,Un))Σ−1

Z,nkZ((Xn,Un); (x′,u′))dρ(u)dρ(u′).

(9)

3. Data driven infill strategy for robust feasible set estimation150

In this section we propose a two-step infill strategy in the joint space. The first step consists151

in choosing a point in the controlled space while the second one aims at enriching the design with152

a new point in the uncertain space.153
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3.1. Minimization of the Vorob’ev deviation: choice of next x154

The objective of the first step is to wisely choose the points in the controlled space X in order155

to accurately estimate the set Γ∗ = {x ∈ X , g(x) = EV[f(x,V)] ≤ c}. For this purpose, we156

consider the statistical model of the non-observable function g given by Y n
x introduced in Section157

2.3. In the following, we assume that the Gaussian Process (Z(x,u))(x,u)∈X×Rm is separable with158

continuous mean function mZ and Matérn (5/2 or 3/2) covariance function kZ . Then the feasible159

set defined as Γ = {x ∈ X , Y n
x ≤ c} is a random closed set (see, e.g., [31] p.4, 23).160

From the assumption that g is a realization of Y n
x , the true unknown set Γ∗ can be seen as a

realization of the random closed set Γ. The book of [31] gives many possible definitions for the
variance of a random closed set. In the present work we focus on the Vorob’ev deviation ([32, 33])
and we adapt the Stepwise Uncertainty Reduction (SUR) strategy introduced in [26] which aims
at decreasing an uncertainty function defined as the Vorob’ev deviation ([32, 33]) of the random
set. More precisely the uncertainty function at step n is defined as

Huncert
n = E[µ(Γ△Qn,α∗

n
) | Z(Xn,Un) = Zn],

where µ is the Lebesgue measure on X, ∆ the symmetric difference operator between two sets, the
Vorob’ev quantiles are given by Qn,α = {x ∈ X , P(Y n

x ≤ c) ≥ α}, and the Vorob’ev expectation
Qn,α∗

n
can be determined by tuning α to a level α∗ such that µ(Qn,α∗

n
) = E[µ(Γ) | Z(Xn,Un) = Zn].

Let
Huncert

n+1 (x) = E[µ(Γ△Qn+1,α∗
n+1

) | Z(Xn,Un) = Zn, Y
n
x ].

The objective of the SUR strategy is thus to enrich the current design with a new point xn+1161

satisfying162

xn+1 ∈ argminx∈X En,x[Huncert
n+1 (x)]

:= argminx∈X Jn(x),
(10)

where En,x denotes the expectation with respect to Y n
x . For the computation of Jn(x), we use163

the formula given in [34, Eq. (4.43) in Section 4.2] (see also [26, Section 3.1]). In this work, we164

add a single point at each iteration. In other words, we are seeking the point xn+1 that minimizes165

Jn(x). However, it is worth noting that there exists a batch-mode sampling version, which can be166

beneficial when computations can be parallelized. Nevertheless, it should be acknowledged that167

the optimization process of Jn(x) becomes computationally expensive unless a greedy approach168

is implemented [35].169

170

The enrichment of the DoE consists in selecting a couple (xn+1,un+1) in the joint space X×Rm.171

xn+1 has just been defined by (10), it remains now to choose a new point un+1 in the uncertain172

space.173

3.2. Minimization of the variance: choice of next u174

The process Y n approximates the expectation EV[f(·,V)]. It can be seen as a projection of175

Zn from the joint space onto the controlled space. We propose to sample the point un+1 in the176

uncertain space in order to reduce at most the one-step-ahead variance at point xn+1, VAR(Y n+1
xn+1

),177

whose expression is obtained from Eq. (9). More precisely,178

un+1 = argminũ∈RmVAR(Y n+1
xn+1

), (11)
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with179

VAR(Y n+1
xn+1

) = ϑ(ũ),

=

∫∫
Rm

kZ((xn+1,u); (xn+1,u
′))dρ(u)dρ(u′)

−
∫∫

Rm

kZ((xn+1,u); (Xn+1,Un+1))Σ
−1
Z,n+1kZ((Xn+1,Un+1); (xn+1,u

′))dρ(u)dρ(u′),

(12)

where ΣZ,n+1 = kZ((Xn+1,Un+1); (Xn+1,Un+1)) and (Xn+1,Un+1) = (Xn,Un) ∪ {(xn+1, ũ)}.180

3.3. Implementation181

We present in this section two algorithms. Algorithm 1 is the global algorithm summarizing182

the strategy we propose for robust feasible set estimation. The truncation argument is fixed once183

for all in the algorithm. Algorithm 2 is a variation of Algorithm 1 with a data driven procedure184

for increasing the truncation argument m over the iterations. This last algorithm allows to further185

reduce the number of calls to the simulator.186

The setting of our procedure is driven by our industrial application where the random process187

V is known only through a finite set of realizations Ξ = {v̆1, . . . , v̆N}. In this framework, points188

a) and b) below detail the computation of KL decomposition and the minimization of the one-189

step-ahead variance.190

a) Computational method for functional PCA. We consider the empirical version of C(s, t) defined191

as CN (s, t) =
1

N

N∑
i=1

v̆i(s)v̆i(t). The eigenvalue problem defined by Eq. (3) is then solved by192

discretizing the trajectories {v̆i}i=1,...,N on [0, T ] and replacing C by CN . Denoting by ψ̂i, i =193

1, . . . ,m, the m first estimated eigenfunctions, we define194

Gm = {ŭ1, . . . ŭN} (13)

where ŭi = (< v̆i, ψ̂1 >, . . . , < v̆i, ψ̂m >)⊤.195

b) Minimization of the one-step-ahead variance. Since V is known through a finite set Ξ, Eq. (11)196

is solved on the finite set Gm.197

We now state the global algorithm we propose for robust feasible set estimation (Algorithm 1)198

and its variation with a data driven increase of the truncation argument (Algorithm 2).199

200

3.3.1. A first algorithm for robust feasible set estimation201

In this section we provide a global algorithm for the implementation of our methodology. Then202

we comment some of its steps.203
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Algorithm 1 Robust feasible set estimation via joint space modelling

Require: The truncation argument m, the initial DoE of n0 points (Xn,Un) in X × Gm, and a
maximal simulation budget

1: Set n = n0.
2: Calculate Z the simulator responses at the design points (Xn,Un)
3: while n ≤ budget do
4: Fit the GP model Zn

5: Induce the integrated GP Y n
x

6: xn+1 ← sampling criterion Jn
7: un+1 ← argminũ∈Gm

VAR(Y n+1
xn+1

)
8: Simulation at (xn+1,vn+1), where vn+1 ∈ Ξ is the curve corresponding to un+1

9: Update DoE : (Xn+1,Un+1) = (Xn,Un) ∪ {(xn+1,un+1)}
10: Update Z = Z ∪ {f(xn+1,vn+1)}
11: Set n = n+ 1
12: end while
13: Fit the final GP model Zn

14: Approximate Γ∗ by the Vorob’ev expectation

step 1 Let U be the smallest m-rectangle containing Gm, U =
∏m

i=1 [min(< Ξ, ψ̂i >),max(< Ξ, ψ̂i >)]).204

For the initial DoE, we first build a Random Latin Hypercube Design of n points (Xn, Ūn) in the205

joint space (X,U). Then the set of points Un is determined such that for i = 1, ..., n, ui ∈ Gm is the206

closest point from ūi ∈ Ūn (with respect to the euclidean norm in Rm).207

step 3 The algorithm stops when a maximal budget, in terms of number of model evaluations, is reached.208

step 4 The covariance kernel of the GP is chosen as a Matèrn-5/2 covariance and we add a noise modelled209

with a constant variance term. The homoscedastic modelling of the noise is discussed in Appendix A.210

The mean function of the GP is modelled by a constant function. All types of parameters (mean,211

correlation lengths, variance and noise) are estimated by maximum likelihood [36] at each iteration.212

step 5 In the framework where the uncertain vector U is Gaussian as well as the covariance kernel, closed213

form solutions of the integrals in (8) and (9) are given in [28]. In our framework, the integrals in (8)214

and (9) are approximated by Monte Carlo using the sample Gm.215

step 6 xn+1 is obtained by solving (10) with a continuous global optimization algorithm: GENetic Opti-216

mization Using Derivatives (GENOUD) [37].217

step 7 Once more the integrals in (12) are approximated by Monte Carlo. More details on the estimation218

of (12) can be found in [28]. Here the minimization problem is solved by an exhaustive search on219

the finite set Gm defined in (13).220

step 8 The simulator is evaluated at point (xn+1,vn+1) where vn+1 is the curve of the initial set of curves221

Ξ corresponding to the truncated vector of coefficients un+1. Note that evaluating the simulator at222

a curve in the initial set of realizations whose coordinate in the uncertain space is un+1 and not a223

projected curve on the basis composed with first eigenfunctions brings robustness with respect to224

the truncation argument.225

3.3.2. A variant of the proposed algorithm with a varying size of the reduced uncertain space226

One limitation of our methodology is the prior choice of the truncation argument m. A nat-227

ural choice is to fix this argument to a value m0 guaranteeing that the m0 first components in228

the Karhunen-Loève decomposition explain a high prescribed percentage of the variability of the229

random process V . But, depending on the complexity of the random process V , m0 may be large230

(more than 60 for the industrial application if we want to explain 95% of the random process231
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variability). If m0 is large, the dimension of the GP space is also large. A potentially high num-232

ber of design points is then needed to produce an accurate response surface, which can lead to a233

prohibitive computational cost in terms of number of model evaluations. To overcome this issue,234

we introduce below an adaptive variant of our strategy. It consists in augmenting the uncertain235

space sequentially when needed. More precisely, a first Gaussian Process is defined in the p +m236

dimensional space, with m chosen small. Once the enrichment strategy (given by Algorithm 1)237

no longer provides information - associated to a stagnation in uncertainty reduction improvement238

and a potential rough or biased approximation of the feasible set - the dimension of the uncertain239

space is increased and the GP is updated in the p + m + 1 dimensional space. This alternative240

strategy is summarized by Algorithm 2:241

Algorithm 2 Robust feasible set estimation via sequential joint space modelling

Require: The initial truncation argument m and the DoE of n points (Xn,Un) in X× Gm
1: Set n = n0.
2: Calculate Z the simulator responses at the design points (Xn,Un)
3: while n ≤ budget do
4: m← Update.Dimension()
5: Fit the GP model Zn

6: Induce the integrated GP Y n
x

7: xn+1 ← sampling criterion Jn
8: un+1 ← arg min

ũ∈Gm

VAR(Y n+1
xn+1

)

9: Simulator response at (xn+1,vn+1), where vn+1 ∈ Ξ is the curve corresponding to un+1

10: Update DoE : (Xn+1,Un+1) = (Xn,Un) ∪ {(xn+1,un+1)}
11: Update Z = Z ∪ {f(xn+1,vn+1)}
12: Set n = n+ 1
13: end while
14: Fit the GP model Zn

15: Approximate Γ∗ by the Vorob’ev expectation

In step 4 of Algorithm 2, the uncertain space dimension is updated based on a stagnation242

criterion of the Vorob’ev Deviation. More precisely, the dimension is updated from m to m+ 1 if243

the following stopping criterion is verified244

∀ 0 ≤ j < nSUR
0 , eSUR

n−j ≤ ϵSUR, (14)

where eSUR
n = | Huncert

n − Huncert
n−1 | is the absolute error between Vorob’ev deviations estimated245

for two successive iterations. The condition in Eq. (14) tests if the variation of the Vorob’ev246

deviation is smaller than a tolerance ϵSUR on nSUR
0 consecutive steps, with nSUR

0 to be tuned by247

the practitioner. For the tuning of parameters (ϵSUR, nSUR
0 ), we refer to the discussion in [13,248

Section 5]. Remark that the algorithm stops either when a maximal budget, in terms of number249

of model evaluations, or a maximal value for the truncation argument m is reached.250

4. Numerical experiments251

In the following, we first introduce in Section 4.1 two analytical examples on which we will252

test our strategy. Then in Section 4.2 we present the results obtained by implementing Algorithm253

1. In Section 4.3 we present the improvements we get by increasing adaptively the truncation254

argument in the KL decomposition over iterations (Algorithm 2). Finally Section 4.4 is devoted255

to the implementation of our strategy on an industrial application of automotive depollution.256
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4.1. Two analytical examples - set-up257

To illustrate the behaviour of the proposed method, we consider two analytical examples. We258

suppose that a sample Ξ of size N = 200 realizations of the random process V is available and259

its probability distribution is unknown. To highlight the robustness of our method regarding the260

random distribution of the uncertainties, we consider two types of random processes: max-stable261

process and the well-known brownian motion. Regarding the max-stable process, we consider the262

Schlather model with powered exponential correlation function, i.e., ℓ(h) = exp{−(h/λ)κ}, where263

κ = 1 and λ = 10. This process is also known as the extremal Gaussian process [38]. The function264

rmaxstab from the R-package SpatialExtremes is used to generate a sample of realizations. As265

Algorithm 1 depends on the truncation argument m, different values are tested (see Table 1) to266

better understand the effect of the uncertain space dimension.267

m = 2 m = 4 m = 8
V: brownian motion 90.1% 95.2% 97.6%

V: max-stable process 58.8% 63.3% 70%

Table 1: Variance explained by the truncated KL decomposition according to m for two different random processes.

For all analytical examples, we consider a Gaussian Process prior Z(x,u) with constant mean268

and Matèrn covariance kernel with ν = 5/2. Random Latin Hypercube Designs (RLHD) are used269

as initial DoEs in all the experiments. The number of points of the initial DoE is 20 for the first270

analytical example and 30 for the second one. RLHD induce variability in the behaviour of the271

algorithms. To account for this variability, the performance is averaged over 30 (respectively 10)272

independent runs for brownian motion (respectively max-stable process).273

Analytical example 1. We consider an additive function, sum of the two-dimensional Bo-
hachevsky function and a random term, defined as

f : (x,V) 7→
(
x21 + 2x22 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7

)
+

∫ T

0

eVtdt,

where x ∈ X = [−100, 100]2. The objective is to approximate the set Γ∗ = {x ∈ X , g(x) =274

EV[f(x,V)] ≤ 3500} for the two different types of random processes (brownian motion and max-275

stable process).276

Analytical example 2. For the second example we define a function that is not separable
with respect to the controlled variables x and the random process V. The function involves the
maximum and the minimum of (Vt)t≥0, so catching the whole variability of V becomes important.
The function f is given by

f : (x,V) 7→ max
t

Vt|0.1 cos(x1 max
t

Vt) sin(x2)(x1 + x2 min
t

Vt)
2|
∫ T

0

(30 +Vt)
x1x2
20 dt,

where the controlled variables lie in X = [1.5, 5]× [3.5, 5]. The objective is to approximate the set277

Γ∗ = {x ∈ X , g(x) = EV[f(x,V)] ≤ c}, when c = 1.2 for the brownian motion and c = 0.9 for278

the max-stable process.279

Note that for both examples the reference solution Γ∗ is obtained from a 30×30 grid experiment,280

where at each grid point the expectation is empirically approximated using the whole sample Ξ. In281

the following, we measure the performance of the different strategies with the ratio of the volume of282

the symmetric difference between the reference set Γ∗ and the estimated one Qn,α∗ to the volume283

of the reference set: µ(Γ∗△Qn,α∗
n
)/µ(Γ∗) to which we will refer as the quality-ratio.284
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4.2. Two analytical examples - results285

Figure 1: Analytical example 1 with brownian motion (top) and with max-stable process (bottom). Convergence of
Algorithm 1 for m = {2, 4, 8}. Left: quality-ratio mean as function of the number of simulator calls in log scale. The
mean is taken over the 30 independent runs of initial RLHD for brownian motion (respectively 10 for max-stable
process). Right: quality-ratios associated with the random initial DoEs of 20 simulations, at the maximal budget
of 170 simulations.

Figure 2: Zoom of Figure 1 : error variability for maximal simulation budget for m = 2 and m = 4.
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Figure 3: Analytical example 2 with brownian motion (top) and with max-stable process (bottom). Convergence of
Algorithm 1 for m = {2, 4, 8}. Left: quality-ratio mean as function of the number of simulator calls in log scale. The
mean is taken over the 30 independent runs of initial RLHD for brownian motion (respectively 10 for max-stable
process). Right: quality-ratios associated with the random initial DoEs of 30 simulations, at the maximal budget
of 180 simulations for brownian motion (respectively 430 for max-stable process).

In Figures 1 and 3, we show the evolution of the averaged quality-ratio with respect to the286

number of simulations involved in the Algorithm 1 on the two analytical examples with the two287

types of functional uncertainties (brownian and max-stable processes). The average is taken over288

the repeated runs of the complete approach corresponding to the 30 random initial designs (10 for289

the max-table process), and for 3 values of the truncation argument m.290

For the first analytical example, the smaller values of m, the faster is the convergence. This291

observation can be explained by the fact that, in higher dimensional joined space (due to larger292

values of m), much more evaluation points are necessary to learn an accurate GP model (more293

hyper-parameters to determine). It is worth noting that even for 90% (for brownian motion) or294

58.8% (for max-stable process) of explained variance with m = 2 the proposed algorithm provides295

an efficient estimate of the true set Γ∗. Indeed, on stage 8 in Algorithm 1 the full curve vn+1 ∈ Ξ296

associated to un+1 is recovered, such that the information lost after the dimension reduction is297

reduced, thereby further robustifying the method.298

Regarding the second analytical example, the output depends on local behaviours of the stochas-299

tic process. The truncation argument m = 2 is too small to catch these dependencies, the function300

is sensitive to higher KL order. For the brownian motion, more than 95% of variance is explained301

with m = 4. It seems sufficient to obtain an accurate approximation of Γ∗. The improvement302

between m = 2 and m = 4 is noticeable. The improvement is not as important when the uncer-303

tainties are driven by a max-stable process since the percentage of explained variance increases304

slowly. Better results should be observed with m = 8. It is not the case because a higher dimension305

leads to difficulties in the estimation of the GP except by increasing consequently the number of306

observation points. Figure A.15 in Appendix shows the evolution of the feasible domain estimation307
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with respect to the iterations of Algorithm 1 for the second analytic case and the brownian motion,308

and for different truncation levels.309

As shown in Figure 4, the higher the dimension of the GP space is, the longer the internal310

computations last. Moreover, the computational time needed to provide the next evaluation point311

increases with the number of simulator calls, and thus with the number of iterations, the cost of312

kriging being directly linked to the learning sample size. For example in the case of m = 8 (resp.313

m = 2), iteration 80 requires 203 (resp. 126) seconds to provide the next evaluation point whereas314

iteration 150 requires 275 (resp. 164) seconds.315

Figure 4: The computational time (sec.) needed to provide the next evaluation point as a function of iterations for
the second analytic example with brownian motion. The values are averaged computational times for 5 runs of each
strategy: m = 2, 4, 8.

To highlight the interest of the sampling criterion (11), we compared our approach to the316

one where un+1 is chosen accordingly to a uniform distribution. The results obtained for both317

analytical cases with the brownian motion are shown on Figure 5. We note that our criterion leads318

to a faster decrease of the quality-ratio and to a much smaller error variability, in comparison to319

a uniform sampling in the uncertain space. As shown in Figure 6, the points selected with the320

criterion based on (11) seem to concentrate in interest areas, in comparison to the points selected321

uniformly. Thus, the guided sampling in the uncertain space, that reduces the variance of the322

expectation estimation, leads to a faster convergence towards the feasible domain.323
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Figure 5: Analytical examples with the uncertainty modelled by a brownian motion. Decrease of the mean quality-
ratio as function of the number of simulator calls (left) and boxplots for quality-ratios associated with the different
random initial DoEs at the maximal simulation budget (right) for the first analytical case (top) and the second one
(bottom), comparing criterion based on (11) with the uniform sampling in the uncertain space.

Figure 6: Analytical example 1 with the uncertainty modelled by a brownian motion. Black triangles correspond
to the coefficients of the initial RLHD plotted in the uncertain truncated space (m = 2). Red points are the added
points based on our criterion (left) and uniformly sampled (right) up to 50 simulations.

Finally we compare our joint modelling based method with the approach introduced in [13]324

which combines GP modelling in the controlled space with quantization to estimate the expectation325

in the uncontrolled space. Even without taking into account the costs induced by the initial designs326

in the controlled space (RLHD of size 9), the current approach based on joint GP modelling327

performs better regardless of the truncation argument m (Figure 7). Adding the costs induced328
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by the quantization on the initial sample points would disadvantage even more the approach329

introduced in [13] as the size of the quantizer is around 20 for each of the 9 points of the initial330

design, i.e. 180 simulator calls in average.331

Figure 7: Comparison between the current approach based on joint GP modelling and the approach introduced in
[13] combining GP modelling in the controlled space with quantization in the uncertain space. The costs induced
by the initial designs (RLHD of size 9) are not counted. The uncertainty is modelled by a brownian motion.

4.3. Evaluation of the adaptive strategy of Algorithm 2332

We now evaluate the adaptive strategy presented in Algorithm 2. We focus on the second333

analytical function of Section 4.1 which is the most complex one. A small initial value of m is334

chosen, m = 2, and it is then increased when the variation of the Vorob’ev deviation remains335

smaller than a given threshold ϵ = 0.005 during n0 = 4 consecutive iterations (see Eq. (14) in336

Section 3.3). It allows to increase the dimension of the KL reduced space only when it is necessary337

to obtain a better accuracy. As illustrated on Figure 8 it allows to save simulations and reduce338

computational time. The accuracy reached with this strategy is similar to the one obtained with339

the strategy with fixed m = 8 but with a gain of ≈ 12% in terms of computational time (Figure340

9). We notice that the first iterations are performed with m = 2 and only the last iterations with341

m = 8.342
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Figure 8: Analytical example 2 with brownian motion (top) and with max-stable process (bottom). Convergence
of Algorithm 1 for m = {2, 4, 8} and for adaptive choice of m value (Algorithm 2). Left: mean quality-ratio as
function of the number of iterations in log scale. The dashed grey curve is the mean of m values in the case of an
adaptive choice of its value. The mean is taken over the independent runs of initial RLHD. Right: boxplots for the
quality-ratios associated with the different random initial DoEs at the maximal simulation budget.
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Figure 9: The computational time (sec.) needed to provide the next evaluation point as a function of iterations for
the second analytic example with brownian motion. The values are averaged computational times for 5 runs of each
strategy: m = 2, 4, 8 and adaptive choice of m value.

4.4. Application to a pollution control system SCR343

In this section we test the proposed method on an automotive test case from IFPEN. The344

problem concerns an after-treatment device of diesel vehicles, called Selective Catalytic Reduction345

(SCR). This latter consists of a basic process of chemical reduction of nitrogen oxides (NOx) to346

diatomic nitrogen (N2) and water (H2O) by the reaction of NOx and ammonia NH3. The reaction347

itself occurs in the SCR catalyst. Ammonia is provided by a liquid-reductant agent injected348

upstream of the SCR catalyst. The amount of ammonia introduced into the reactor is a critical349

quantity: overdosing causes undesirable ammonia slip (unreacted ammonia) downstream of the350

catalyst, whereas under-dosing causes insufficient NOx reduction. In practice, ammonia slip is351

restricted to a prescribed threshold. We use an emission-oriented simulator developed by IFPEN,352

which models the vehicle, its engine and the exhaust after-treatment system. This latter takes353

as input the vehicle driving cycle profile and provides the time-series of corresponding exhaust354

emissions as output. A realistic SCR control law is used in this simulator (see [39] for more355

details). In this study, the two controlled variables are parameters of the SCR control law and lie356

in X = [0, 0.6]2. The random process describes the evolution of vehicle speed on I = [0, 5400s] and357

is known through an available sample of 100 real driving cycles. A few samples are represented in358

Figure 10.359
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Figure 10: Seven real-driving cycles extracted from the available sample of size 100.

In short, the ammonia emissions peak during a driving cycle is modelled as a function360

f :

{
X× V → R
(x,V) 7→ f(x,V) = max

t∈I
NH3(t)

(15)

We are interested in recovering the set Γ∗ = {x ∈ X, g(x) = EV[f(x,V)] ≤ c}, with c = 30ppm.361

Conducting this study on a full grid would consists in covering the space [0, 0.6]2 with a fine mesh362

and evaluating the code 100 times at each point. Knowing that each simulation takes about two363

minutes, such study would require many hours of computational time, and thus using meta-models364

allows to tackle this computational issue.365

Truncation argument m = 15 m = 17 m = 19 m = 21 m = 23 m = 25 m = 64
Explained variance 63.11% 66.64% 69.64% 72.45% 74.86% 76.87% 95.32%

Table 2: SCR pollution control system. The Variance explained by the KL decomposition according to m for the
random cycle process V.

In this industrial case, the explained variance grows very slowly as shown in the Table 2.366

Therefore, to represent at best the driving cycleV one should consider a high-dimensional threshold367

(m = 64). In order to avoid the curse of dimensionality involved by a large value of m, we adopt368

the adaptive strategy introduced in section 3.3.2 and tested in subsection 4.3 on a toy problem.369

More precisely, we start modelling the numerical simulator in a reduced uncertain space by taking370

m = 15. We increase the dimension of the uncertain space as soon as the condition in Eq. (14)371

is satisfied. We set the condition parameters at ϵSUR = 5 × 10−3 and nSUR
0 = 4. The maximal372

budget is fixed to 1000 iterations of the algorithm while the maximal truncation argument is fixed373

tom0 = 64. We consider a Gaussian Process prior Z(x,u), with constant mean function and Matérn374

covariance kernel with ν = 5/2. The initial DoE consists of a n = 60 points LHS design optimized375

with respect to the maximin criterion. The covariance kernel hyper-parameters are re-estimated376

by maximizing the likelihood at each iteration. Figure 11 shows the so-called excursion probability377

function defined by x 7→ P(Y n
x ≤ c), with Y n

x the integrated Gaussian Process Yx conditionally378

to the n available observations. The initial estimate of Γ∗ is given by the green set with blue379

boundary. In the following and as for the analytical examples, we proceed to add one point at380

each iteration of the SUR strategy.381
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Figure 11: SCR pollution control system. The initial DoE (black triangles) and the initial estimate set (green).
The contour plot in grey represents the excursion probability: darker corresponding to higher probability for the
integrated process to be under the threshold.

Figure 12 shows the evolution of Vorobev deviation and of the dimension during the itera-382

tions of the algorithm. Initially, we reduce the Vorobev deviation based on GP modelling in a383

17-dimensional joint space. At iteration 754, as the algorithm detects a stagnation of Vorobev384

deviation in the current space, the dimension m is increased to m + 1. We namely interpret a385

stagnation of Vorobev deviation in the current space as a convergence to a biased estimation of the386

feasible set of interest. Each time such a stagnation (measured with parameters ϵSUR and nSUR
0 )387

is observed, the current dimension is increased. For this application, the algorithm stops when388

the maximal budget of 1000 iterations is reached. The truncation argument has then reached the389

value m = 24, corresponding to approximately 75% of the variability of the driving cycle explained390

(see Table 2). The estimated set at different iterations is given in Figure A.16 in Appendix. From391

Figure 13, we note that the SUR algorithm heavily visits the boundary region of Γ∗ and explore392

also other potentially interesting regions. Actually, after 1000 iterations the whole domain X has393

an excursion probability close to either 0 or 1.394
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Figure 12: SCR pollution control system. The Vorob’ev deviation and the uncertain space dimension in function of
the number of simulations.

Figure 13: SCR pollution control system. The coverage probability function, the last proposed point by the
algorithm (red point) and the estimate set (green set) after 1000 added points (black points). The contour plot in
grey represents the excursion probability.

5. Conclusion395

The aim of this paper is to propose a new feasible set estimation procedure for an automative396

control system in presence of functional uncontrolled variables modelled by a random process. Our397

procedure outperforms the one recently introduced in [13], as it requires less evaluations of the398

high-fidelity and expensive-to-evaluate model used to simulate the behaviour of the automative399

control system to achieve a similar accuracy.400
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Our procedure is based on a new enrichment strategy whose main ingredient is to fit a Gaussian401

Process model to the initial expensive-to-evaluate code in the joint input soace of controlled and402

uncontrolled variables. In our framework, the uncontrolled variable is modelled by a random403

process V to which a preliminary step of dimension reduction is applied. Moreover our knowledge404

of V is limited to a finite set of realizations Ξ. Note that our approach guarantees robustness with405

respect to the order of reduction. Indeed, partial knowledge of the full variability of V is recovered406

by evaluating the simulator on design points in X×Ξ. More precisely, at each step of the enrichment407

procedure, the simulator is evaluated in the point in X × Ξ whose projection corresponds to the408

point obtained by optimizing the criterion in the truncated joint input space. The enrichment409

procedure guides the sampling toward informative regions for the feasible set, allowing by the way410

an accurate estimation with less evaluations of the expensive-to-evaluate code. We also propose411

a variation of our strategy, in which the order of reduction of V is increased adaptively. This412

approach consists in increasing the order of reduction sequentially, only when necessary, leading413

to even more computational savings.414

Two bi-dimensional analytical examples are considered for which a reference solution can be415

computed. Then our procedure is validated by computing the quality-ratio defined as the ratio416

of the volume of the symmetric difference between the reference set and the estimated one to the417

volume of the true set. On these analytical examples, our procedure outperforms the one in [13] by418

achieving similar accuracy with much less evaluations of the expensive-to-evaluate code. Finally,419

we apply our procedure to an industrial problem related to the pollution control system of an420

automotive. A feasible set solution is found within a reasonable number of simulations.421

The paper focuses on a formulation of the excursion set involving a unique constraint and where422

the uncertainty is summarized via its expectation. Nevertheless, as perspective, other reliability423

measures may also be of great interest. For example, one may be interested in ensuring a certain424

level of reliability with high probability or in considering multiple constraints, e.g., on the mean425

and the variance.426
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Appendix A. Discussion on the GP model on the finite-dimensional truncated space546

We discuss here the assumption stated in Section 2.2 that f(x,v) is a realization of a Gaussian
Process Z(x,u) defined on the truncated space X×Rm. Considering a m-truncation of the random
process KL expansion, we reduce the hyperspace on which the GP is defined. Let us consider
two truncation arguments m and L > m, with L large enough to ensure that the part of variance
explained by the KL terms indexed by i > L is negligible. For a given realization v of V, let
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us introduce the notation (u, ũ) ∈ Rm × RL−m where u = (< v, ψ̂1 >, . . . , < v, ψ̂m >)⊤ and

ũ = (< v, ψ̂m+1 >, . . . , < v, ψ̂L >)
⊤. In that setting f(x,V) can be expressed as

f(x,V) = f(x, V̂L) + ϵT = f
(
x, (U, Ũ)Φ̂L

)
+ ϵT

where V̂L is the empirical version (estimated from CN ) of the KL approximation of V given by547

(4) (replacing m by L), Φ̂L = (ψ̂1, ..., ψ̂L)
⊤ and ϵT is the error associated to the KL truncation548

and empirical approximation, supposed small by construction.549

Then, the best L2-approximation of f
(
x, (U, Ũ)Φ̂L

)
by a measurable function of U only is the

conditional expectation EŨ

[
f
(
x, (U, Ũ)Φ̂L

)
|U
]
. We thus write:

f(x,V) = EŨ

[
f
(
x, (U, Ũ)Φ̂L

)
|U
]
+ ϵP + ϵT

with ϵP the L2-projection error. We can further approximate the conditional expectation by

f
(
x, (U, ũ(U))Φ̂L

)
+ ϵE

where ũ(U) is one realization of Ũ|U and ϵE accounts for the expectation approximation. The550

latter approximation is motivated by the fact that, since V is only known through a finite sample,551

we only have access to one ũ(u) realization for each u corresponding to v in the initial finite set552

Ξ. Thus we can write:553

f(x,V) = f
(
x, (U, ũ(U))Φ̂L

)
+ ϵ (A.1)

with ϵ = ϵT + ϵP + ϵE . According to this last equation, the modelling assumption in Section 2.2
should include a noise term. However, the estimation of this heteroscedastic noise comes with an
extra estimation cost and as it can be seen in Figure A.14, no significant model improvement is
observed. Indeed in Figure A.14, for m = 2, we present the evolution of the symmetric difference
for the noisy GP model Z(x,u) introduced from equation (A.1) when the noise ϵ is Gaussian and
heteroscedastic with a variance function of (x,u):

τ2(x,u) = V arŨ
[
f
(
x,
(
u, Ũ(u)

)
Φ̂L

)∣∣U = u
]
.

Moreover, supposing V Gaussian or ”nearly Gaussian”, that is assuming that Ũ can be con-
sidered in first approximation as independent of U, then τ2(x,u) can be estimated by

τ̂2(x,u) =

l∑
k=1

wk

[
f
(
x,VQuant

k

)
−

l∑
j=1

wjf
(
x,VQuant

j

)]2
where l = 5 and the VQuant

k are greedy functional quantizers and wk associated weights (see [13]554

for more details). These quantizers are built from a set of N curves {
(
u, ũk

)
Φ̂L, k = 1, ..., N}555

where ũk are independent samples of Ũ which in practice are uniformly sampled in the finite set556

Ḡm,L = {ū1, ..., ūN} where ūi = (< v̆i, ψ̂m+1 >, ..., < v̆i, ψ̂L >). Numerically we select 20 (x,u)-557

points from the initial DoE set of size n = 30 and estimate the corresponding τ̂2. To avoid further558

estimation of τ2 at new locations (the remaining DoE points and during the infill strategy), we559

build a second GP model of log(τ̂2) based on the 20 initial estimations. Finally the noisy GP560

model Z is built using as noise variance exp
(
ˆlog(τ̂2)

)
. Overall we need additional l × 20 = 100561

costly evaluations of f to estimate the heteroscedastic noise.562

25



Figure A.14: Function 2 with brownian (top) and max-stable processes (bottom) with a comparison with the
heteroscedastic GP model. Convergence of Algorithm 1 for m = {2, 4, 8}. Left: mean of the symmetric difference
vs. number of simulator calls. The mean is taken over the independent runs of initial RLHD. The additional curve
(cyan) corresponds to m = 2 with the heteroscedastic model, it is translated to take into account the extra-cost of
100 simulations for the noise estimation. Right: symmetric differences associated with the random initial DoEs at
the maximal simulation budget.

In Figure A.14 we notice that compared to the homoscedastic model with m = 2, the model563

with heteroscedastic noise achieves a faster symmetric difference volume reduction but the overcost,564

for the variance estimation, makes this approach interesting only for a large simulation budget:565

at least 130 simulations. For the brownian case, on function 2, the homoscedastic models with566

higher m still perform better for a budget up to 150 than the heteroscedastic one. A model with a567

small m, that is to say with a rough truncation error, involves a larger bias. Nevertheless, refining568

the heteroscedastic noise estimation should bring the method to a similar level but much further569

on the axis corresponding to the number of simulations. But on function 2 with a max-stable570

process, the heteroscedastic model slightly outperforms the homoscedastic models (m = 2, 4, 8)571

when approaching the 150 simulations (Figure A.14). We can understand this improvement by572

the fact that even with higher m a homoscedastic model does not make up for a wider truncation573

error which is better approximated by a heteroscedastic model. Note that it is possible to relax574

the ”nearly Gaussian” hypothesis on V. In that case the same kind of heteroscedastic variance575

estimator could be used but would require an empirical estimation of the conditional distribution576

of Ũ|U which seems difficult in the context of our partial knowledge of V imposing on us to work577

on finite predefined sets G and Ḡm,L.578
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Figure A.15: Feasible domain estimation for analytical example 2 with brownian motion in green and its boundary
in red for 3 different iterations (30, 70 and 150 from left to right) and for the 3 values of m = 2, 4 and 8 (from top
to bottom). The black dots are the x coordinates of the points in the initial design of experiments, the red crosses
are the additional points chosen by the algorithm.
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Figure A.16: SCR pollution control system. The estimated feasible domain at 6 different iterations.
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