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Abstract. A new analytical wind turbine wake model, based on a super-Gaussian shape function, is presented.
The super-Gaussian function evolves from a nearly top-hat shape in the near wake to a Gaussian shape in the
far wake, which is consistent with observations and measurements of wind turbine wakes. Using such a shape
function allows the recovery of the mass and momentum conservation that is violated when applying a near-wake
regularization function to the expression of the maximum velocity deficit of the Gaussian wake model. After a
brief introduction of the theoretical aspects, an easy-to-implement model with a limited number of parameters
is derived. The super-Gaussian model predictions are compared to wind tunnel measurements, full-scale mea-
surements, and a large-eddy simulation (LES), showing a good agreement and an improvement compared with
predictions based on the Gaussian model.

1 Introduction

During the design phase of a wind farm, wind turbine po-
sitions must be carefully chosen in order to maximize the
power output and minimize the wake effects within a given
geographical area. Indeed, even offshore, the area can be lim-
ited by several constraints, such as sea bed type (presence of
sandbanks), national borders, fishing areas, etc. Furthermore,
at a wind farm, wind turbines may operate in the wake of
upwind turbines. Wind turbine wakes are characterized by a
reduction of the wind velocity and an increase in the turbu-
lence level. In the near wake, i.e. at a distance below four
wind turbine diameters, the decrease in wind velocity is very
strong. In the far wake, at a distance greater than four wind
turbine diameters, turbulent mixing leads to wake recovery.
Thus, short separation distances between wind turbines lead
to higher wake losses. In the end, a complex optimization
problem, implying a large number of evaluations of the wind
farm power, must be solved to maximize the wind energy
production (or minimize wake losses) on a given site with
given wind characteristics. Despite the availability of high-
fidelity methods (Churchfield et al., 2012; Joulin et al., 2019),
wind farm designs are still based on analytical wake models
because they are computationally affordable.

Several analytical models have been derived over the
years, from the well-known work of Jensen (1983) and Katic
et al. (1987) to the most recent models proposed by Frand-
sen et al. (2006) or Bastankhah and Porté-Agel (2014). These
models are designed to estimate the far-wake characteristics.
However, wind turbine separation distances in wind farms
can be small, i.e. below four wind turbine diameters (d0). A
typical example is the Lillgrund wind farm, with a minimal
separation distance of 3.3d0. Thus, analytical models should
be accurate not only in the far wake but also in the near wake.

In the work of Frandsen et al. (2006) and Bastankhah and
Porté-Agel (2014), two closely related shortcomings have to
be alleviated: firstly, due to the choice of a Gaussian shape
and from mass and momentum conservation, the maximum
velocity deficit decreases with the distance to the rotor. This
is not exact in the near wake: the velocity deficit increases,
reaches a maximum value, and then decreases due to the
turbulent mixing. Secondly, it has been observed, both nu-
merically and experimentally, that the wake velocity profiles
are not purely Gaussian, as supposed in the aforementioned
model, but evolve downstream of the wind turbine from a
top-hat shape to a Gaussian shape in the far wake (see Lis-
saman, 1979; Aubrun et al., 2013; Sørensen et al., 2015; Bartl
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and Sætran, 2017). This is due to the tip vortices that emanate
from the blade tips and break up while propagating down-
stream of the wind turbine, leading to a mixing of the wake
with the atmospheric flow and finally to the Gaussian-shaped
velocity profile. Having a correct wake shape is fundamental
since a wrong shape can lead to erroneous power estimation
for a rotor operating in full-wake or partial-wake conditions.

Recently, Qian and Ishihara (2018) proposed a modified
version of the Bastankhah and Porté-Agel model that im-
proves the velocity deficit prediction in the near wake. In this
updated model, a corrective term is added in order to predict
realistic near-wake velocities. However, by using such a cor-
rective term, mass and momentum conservation is violated.

Another velocity deficit distribution has been proposed by
Keane et al. (2016) and Schreiber et al. (2020): their model
is derived by applying conservation of mass and momentum
in the context of actuator disk theory but assumes a distri-
bution of the double-Gaussian type for the velocity deficit
in the wake. Indeed, the authors consider that the near wake
is better approximated using a double-Gaussian distribution.
However, other experiments by Bastankhah and Porté-Agel
(2020) show an increase in the velocity deficit at the wake
centre in the very near wake (< 2d0); even so they were not
designed for measuring the very near wake. It has been de-
cided to neglect the misunderstood effect of the nacelle as
it is supposed to vanish after 2d0 and to propose a generic
formulation of the super-Gaussian type. This specific effect
could be included as a correction added to the present for-
mulation of the model. Comparisons between the proposed
model and the double-Gaussian wake model are not straight-
forward since, to our best knowledge, no “generic” formula-
tion (or calibration) of the double-Gaussian wake model has
been proposed yet (i.e. no dependence on thrust coefficient
or turbulence intensity are considered in the two aforemen-
tioned references). The double-Gaussian wake model has
therefore been excluded from the present comparisons.

In the present work, it is shown that by using a super-
Gaussian shape, the wake velocity profiles are more consis-
tent with observations, the velocity deficit has the expected
form, and mass and momentum conservation is preserved.
Indeed, the super-Gaussian function tends towards a top-hat
shape for high values of the super-Gaussian order n (near-
wake conditions), while for n= 2, the traditional Gaussian
shape is recovered (far-wake conditions). In the near wake,
the top-hat shape can be altered by the presence of the hub
and tower wakes or even by the non-uniform distribution of
the inductions on the blade (as observed during the Mexico
and New MEXICO experimental campaigns; see Boorsma
et al., 2019). These effects are neglected in the present work
since they tend to be rapidly dissipated (one to two diameters
behind the wind turbine), and the wake rapidly transitions to-
wards a smooth top-hat shape before turbulent mixing takes
place and leads to the well-known Gaussian shape in the far
wake.

The idea of using a super-Gaussian shape function has al-
ready been suggested in Shapiro et al. (2019). In the present
work, an alternative formulation is presented. Both mass
and momentum are conserved following the derivation of
the Gaussian model of Bastankhah and Porté-Agel (2014),
whereas in the work of Shapiro et al. (2019), only mass con-
servation is enforced. Furthermore, a new form of the near-
wake correction for the velocity deficit proposed by Qian and
Ishihara (2018) is presented, and an analytical expression for
the evolution of the super-Gaussian order n as a function of
the downstream distance is proposed. This expression is ob-
tained by enforcing mass and momentum conservation us-
ing the aforementioned near-wake corrected velocity deficit
model and assuming a linear evolution of the wake width
with respect to the downstream distance.

Finally, the model is calibrated on a wide range of thrust
coefficients and turbulence intensities by using measured ve-
locity profiles behind an actuator disk (Aubrun et al., 2013;
Sumner et al., 2013) and an onshore wind turbine (Doubrawa
et al., 2019). Results of a large-eddy simulation (LES) are
also used as a reference for the wind turbine case. Compar-
ison with experimental velocity profiles highlights the im-
provement brought by the super-Gaussian model over the
Gaussian model.

2 The super-Gaussian wake model

2.1 Model derivation

The derivation of the super-Gaussian wake model closely
follows the one proposed by Bastankhah and Porté-Agel
(2014). The non-dimensional velocity deficit in the wake is
expressed as the product of the maximum velocity deficit
C(x̃) and a shape function f (r̃), with x̃, σ̃ , and r̃ the ax-
ial distance from the turbine, the characteristic wake width
(which is the standard deviation when n= 2), and the radial
distance from the wake centre, respectively, all three normal-
ized by the wind turbine diameter, d0:

U∞−Uw

U∞
= C(x̃)f (r̃)= C(x̃)e−r̃

n/(2σ̃ 2), (1)

with U∞ the wind velocity at infinity and Uw the velocity in
the wake. In the rest of the document, the tilde symbol de-
notes a normalization by the wind turbine diameter, d0. Fur-
thermore, the dependence on x̃ for σ̃ (x̃) and ñ(x̃) is omitted
to simplify the notations σ̃ = σ̃ (x̃) and ñ= ñ(x̃). The shape
function, f (r̃), takes a form similar to a super-Gaussian func-
tion, with a squared characteristic wake width σ̃ . The char-
acteristic wake width is directly linked to the wake width.
The super-Gaussian function is a convenient choice for rep-
resenting wakes since for high values of the super-Gaussian
order n, the function is close to a top hat, as observed in the
near wake, while for lower values of n, the function smoothly
evolves towards the well-known Gaussian shape, as observed
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Figure 1. Super-Gaussian profiles of orders n= 2 to n= 8 for three different characteristic wake width values.

in the far wake. For n= 2, the super-Gaussian is actually a
Gaussian function.

Typical super-Gaussian profiles are shown in Fig. 1. De-
pending on the characteristic wake width σ̃ , the wake width
at the base can be slightly larger or thinner compared with
the Gaussian counterpart (n= 2). The highest value of char-
acteristic wake width (σ̃ = 0.6), for which the wake base is
thinner with the super-Gaussian model, is typical of far-wake
and high-turbulence conditions. This case is not likely to oc-
cur since a Gaussian shape is expected in the far wake.

The model is derived by enforcing mass and momen-
tum conservation. Only the main results are given here. De-
tailed calculations can be found in Appendix A. According
to Frandsen et al. (2006), applying mass and momentum con-
servation leads to the following equation:

2πρ

∞∫
0

Uw (U∞−Uw)rdr = T , (2)

where ρ is the air density, and T is the thrust force applied by
the wind turbine to the flow. This force is related to the thrust
coefficient CT , which is manufacturer data supposed to be
known and a function of the infinite wind velocity. With A0
the rotor swept area, the thrust writes

T =
1
2
ρCTA0U

2
∞. (3)

As shown by Eqs. (2) and (3), the thrust coefficient is a non-
dimensional variable that represents the loss of kinetic en-
ergy of the flow due to the presence of the wind turbine. It
scales the intensity of the velocity deficit in the wake. After
inserting Eq. (1) into Eq. (2), the following relation is ob-
tained, with 0 the Gamma function:

C(x̃)2
− 22/nC(x̃)+ n

CT

160(2/n)σ̃ 4/n = 0. (4)

From Eq. (4), it is possible to derive an expression for the
maximum velocity deficit:

C(x̃)= 22/n−1
−

√
24/n−2−

nCT

160(2/n)σ̃ 4/n . (5)

The original form of C(x̃) proposed by Bastankhah and
Porté-Agel is recovered (with 0(1)= 1) when setting the
super-Gaussian order to n= 2:

C(x̃)= 1−

√
1−

CT

8σ̃ 2 . (6)

2.2 Model implementation

2.2.1 Root-finding approach

In the Gaussian model, there are only two unknown vari-
ables: the normalized characteristic wake width σ̃ and the
maximum velocity deficit C(x̃). The maximum velocity
deficit can be obtained by using a linear evolution of the char-
acteristic wake width with respect to the distance to the rotor
(see Eq. 9). The linear assumption is based on the analysis of
experimental and numerical data. In the super-Gaussian for-
mulation, another variable is introduced: the super-Gaussian
order n. A first idea is to keep the linear assumption for the
wake characteristic width, set the super-Gaussian order n to
get the desired wake shape, and calculate the maximum ve-
locity deficit. Using such a method, an expression for n needs
to be found.

Here, a different approach is used. A linear evolution of
the characteristic wake width is considered. Then, the max-
imum velocity deficit is calculated using the model of Bas-
tankhah and Porté-Agel (2014), augmented with a near-wake
correction similar to the one introduced by Qian and Ishihara
(2018). As already mentioned, by using a Gaussian wake
model, the introduction of this near-wake correction vio-
lates the mass and momentum conservation. Once the super-
Gaussian shape function is introduced, mass and momentum
conservation can be preserved by choosing n accordingly
(i.e. using Eq. 4). Finally, the velocity in the wake can be
computed using Eq. (1).

Explicit forms of the near-wake correction, characteristic
wake width, and maximum velocity deficit need to be de-
fined. The near-wake correction, denoted κ(x̃), takes the fol-
lowing form:

κ(x̃)= cNW(1+ x̃)pNW , (7)

https://doi.org/10.5194/wes-5-1225-2020 Wind Energ. Sci., 5, 1225–1236, 2020



1228 F. Blondel and M. Cathelain: A super-Gaussian wind turbine wake model

with cNW and pNW two parameters of the correction. Intro-
ducing Eq. (7) in the expression of the velocity deficit pro-
posed by Bastankhah and Porté-Agel (2014) leads to

C(x̃)= 1−

√
1−

CT

8(σ̃ + κ(x̃))2 . (8)

To close the system, an expression of the characteristic wake
width is needed. The following linear form is considered:

σ̃ = (asTi+ bs) x̃+ cs
√
β, (9)

with Ti the turbulence intensity; as , bs , cs parameters of the
model; and

β =
1
2

1+
√

1−CT
√

1−CT
. (10)

Regarding the near-wake correction, Qian and Ishihara
originally proposed a fitted form for cNW and pNW. Here,
a new boundary condition is introduced to determine cNW,
while pNW remains a parameter. Such a procedure reduces
the number of constants to be calibrated. According to the ac-
tuator disk theory, the velocity at the rotor plane (x/d0 = 0)
isUd = U∞(1−a), with a the axial induction factor (see Bur-
ton et al., 2011). The axial induction factor itself is a function
of the thrust coefficient:

a =
1
2

(
1−

√
1−CT

)
. (11)

Using such a boundary condition leads to the following
form:

cNW =

√
CT

8
(
1− (1− a)2) − cs√β. (12)

Due to the introduction of the near-wake correction, κ(x̃),
Eq. (8) does not respect the mass and momentum conser-
vation (Eq. 4). This error is compensated by enlarging the
wake: the super-Gaussian order n is chosen to recover the
mass and momentum conservation. Since no convenient an-
alytical expression has been found for n a priori, this is done
numerically. The roots of Eq. (4) are computed, choosing n
as the unknown variable and for given C(x̃), σ̃ , and CT . Fi-
nally, the velocity in the wake is obtained using Eq. (1).

To sum up, the root-finding version of the super-Gaussian
model is based on the following steps.

– Step 1: compute the normalized characteristic wake
width using Eq. (9).

– Step 2: compute the near-wake corrected maximum ve-
locity deficit using Eq. (8).

– Step 3: compute the super-Gaussian order n using a
root-finding algorithm, applied to Eq. (4).

– Step 4: compute the wake velocity using Eq. (1), and
rescale using the infinite wind velocity.

2.2.2 Analytical approach

Numerically minimizing the mass and momentum conser-
vation (Eq. 4) to obtain a value for n, with C(x̃) given by
Eq. (8), would lead to a strong increase in computational
time. This is a major issue when dealing with wind farm de-
sign and optimization. An analytical expression for n is pro-
posed here. This expression is based on curve fitting: from
the results obtained using the root-finding algorithm, it has
been noticed that the evolution of n against the downwind
distance closely resembles an exponential curve. The follow-
ing expression is used:

n≈ af e
bf x̃ + cf . (13)

In this work, the three parameters af , bf , and cf are sup-
posed to be constants. This is a rough approximation of the
super-Gaussian order n. It is possible to get a more precise
approximation by defining the three parameters as functions
of the thrust coefficient and turbulence intensity. However,
this implies a larger number of parameters to be identified.
The choice is made here to keep a simple form of the model
and to use a limited number of parameters. The three param-
eters are identified based on root-finding results of Eq. (4):
for a given velocity deficit (Eq. 8), a Newton-type algorithm
is used to find the value for n that is a solution of Eq. (4) up
to a certain tolerance. Since the root-finding problem is not
so time-consuming, a large number of thrust coefficients and
turbulence intensities can be considered to identify the three
parameters.

The resulting analytical model is straightforward to use.
Given a downstream position x̃ = x/d0 and a radial position
r̃ = r/d0, a thrust coefficient CT , and a turbulence intensity
Ti, the following steps have to be followed.

– Step 1: compute the normalized characteristic wake
width using Eq. (9).

– Step 2: compute the super-Gaussian order n using
Eq. (13).

– Step 3: compute the maximum velocity deficit using
Eq. (5).

– Step 4: compute the wake velocity using Eq. (1), and
rescale using the infinite wind velocity.

3 Calibration and validation

3.1 Model calibration

The model has been calibrated using data from two experi-
mental campaigns, thus covering a large range of turbulence
intensities and thrust coefficients. The first set of data is based
on particle image velocimetry measurements performed in
the wake of porous disks under homogeneous isotropic tur-
bulence in a wind tunnel (see Aubrun et al., 2013, and Sum-
ner et al., 2013). Four cases are available and are referred to
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Table 1. Thrust coefficients and turbulent intensities for the consid-
ered validation cases.

Case AD-1 AD-2 AD-3 AD-4 WT-S WT-N

CT 0.43 0.61 0.56 0.73 0.75 0.75

Ti 5 % 5 % 12 % 12 % 3.4 % 10.7 %

Table 2. Fitted parameters: wake expansion and near-wake correc-
tion.

as bs cs pNW

0.17 0.005 0.20 −1

as AD-X, X being the index of the test case. Porous disks
used in these experiments are almost uniformly loaded (the
disks are made of a regular metallic mesh with a larger spac-
ing at the centre): they are in accordance with the actuator
disk theory used to derive the model. The second set of data is
based on lidar measurements performed in the wake of a full-
scale wind turbine. This second dataset has been used during
the Scaled Wind Farm Technology (SWiFT) benchmark (see
Doubrawa et al., 2019). Details regarding this measurement
campaign can be found in Herges et al. (2017). Two cases are
considered, corresponding to a stable and a nearly neutral at-
mosphere, and are referred to as WT-S and WT-N, S and N
corresponding to the stratification (stable or nearly neutral).
A SOWFA (Simulator fOr Wind Farm Applications; Church-
field et al., 2012) simulation using the LES framework has
been performed for the nearly neutral case. The thrust coef-
ficients and turbulence intensities for the six cases are sum-
marized in Table 1.

Based on the aforementioned six cases, the coefficients re-
lated to the wake characteristic width and the near-wake cor-
rection have been obtained, considering only the maximum
of the velocity deficit at each available axial location down-
stream of the wind turbine. The characteristic wake width is
not taken into account in this first fit. The resulting set of
coefficients is given in Table 2.

The obtained parameters are different from the one pro-
posed by other authors, such as Niayifar and Porté-Agel
(2015). This may be due to the introduction of the near-wake
correction in the model. Additional cases should be consid-
ered to obtain a more robust model. It is worth noting that
the parameters given in Niayifar and Porté-Agel (2015) have
been obtained based on three large-eddy simulations, all of
them based on the same thrust coefficient (CT = 0.8) with a
wide range of turbulence intensities (6.9% up to 13.4% ac-
cording to the presented data and the simulations described
in Bastankhah and Porté-Agel, 2014). The emphasis was put
on the turbulence intensity effect but not on the thrust coeffi-
cient effect, which may also explain the differences observed
in the parameters.

Table 3. Fitted parameters: super-Gaussian order n.

af bf cf

3.11 −0.68 2.41

Based on these new coefficients, another calibration pro-
cedure is applied to determine the coefficients required to
obtain a value for n at any given downstream location x/d0
without solving the minimization problem. To get these val-
ues, a range of thrust coefficients from 0.10 to 0.90 and a
range of turbulence intensities from 3% to 20% are chosen.
The obtained coefficients are given in Table 3.

A comparison between the proposed fit and the root-
finding approach is proposed in Fig. 2. Two thrust coeffi-
cients (CT = 0.4 and CT = 0.8) and two turbulence inten-
sities (Ti = 5% and Ti = 12%) are considered. Despite the
simplicity of the proposed expression, a reasonable agree-
ment is observed between the proposed analytical fit and the
root-finding results. The largest deviations are found in the
very near wake, at downstream distances below x̃ = 2: the
maximum ñ value at x̃ is largely underestimated.

The quality of the fit obtained using these parameters is
detailed in the following subsection based on each case used
for the calibration.

3.2 Comparison with measured data and high-fidelity
simulation

The first cases considered are the actuator disk cases. Com-
parisons between wake models and measurements under low
turbulence conditions are given in Fig. 3. Results based
on root-finding for n (Eq. 4, labelled “super-Gaussian”)
and results based on the approximation of n (Eq. 13, la-
belled “super-Gaussian analytical”) are given. Comparisons
with the Gaussian model (labelled “Gaussian”) are also per-
formed.

For both thrust coefficients, the maximum velocity deficit
is slightly overestimated, but the same trends are observed.
Close to the rotor (x/d0 = 2 and x/d0 = 4), the velocity gra-
dients at the edges of the wake are very strong: the wake ve-
locity profiles tend towards a top-hat shape. In the near wake,
the experimental trends are well followed, although the ve-
locity gradients predicted by the model are not as sharp as in
the measurements. At x/d0 = 6, the experimental wake pro-
file still exhibits a plateau near the centre of the wake. The
super-Gaussian model predicts a wider wake compared with
the Gaussian model, which is consistent with the measure-
ments.

Further downstream, at x/d0 = 8, the velocity gradients
are smoother, and the wake tends towards a Gaussian shape.
The wake is not fully developed since a plateau is still ob-
served, especially for the lowest thrust coefficient. The super-
Gaussian model reproduces this trend quite well.
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Figure 2. Comparison of the proposed fit for the super-Gaussian order with the root-finding approach for two thrust coefficients and two
turbulence intensities.

Figure 3. Normalized velocity deficit at four axial distances behind the actuator disk. Low-turbulence case.

At the lower thrust coefficient, the experimental data in-
dicate a velocity decrease at the centre of the wake for all
downstream positions. This is most probably due to the lower
mesh density used at the centre of the disk during the design
of the physical model (see Aubrun et al., 2013). Differences
between the analytical super-Gaussian model and the root-
finding model are almost negligible.

The impact of a higher inflow turbulence, leading to a
faster wake recovery, is observed in the next cases (Fig. 4).

Due to the higher turbulent level, mixing with the free flow
is increased, and the plateau that was observed previously is
not present, except at x/d0 = 2, very close to the rotor. In the
near wake, at x/d0 = 2, the super-Gaussian model predicts

the wake shape very well, while the Gaussian model strongly
underestimates the wake width. Downstream, at x/d0 = 4, 6,
and 8, the wake width is slightly overestimated by the super-
Gaussian model. The Gaussian model is more in agreement
with the measurements, but differences are small. Again, dif-
ferences between the analytical model and the root-finding
counterpart are very small, even negligible.

Last, comparisons are made between the wake models
and the SWiFT measurements. A stable, low-turbulence case
and a nearly neutral, higher-turbulence case are presented in
Fig. 5, at the top and bottom, respectively. For the nearly
neutral case, results from an LES simulation, based on the
SOWFA library (Churchfield et al., 2012), are also included.

Wind Energ. Sci., 5, 1225–1236, 2020 https://doi.org/10.5194/wes-5-1225-2020
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Figure 4. Normalized velocity deficit at four axial distances behind the actuator disk. High-turbulence case.

A slight offset has been imposed in the y/d0 direction for
all simulations, including the LES, to compensate for the
wake deflection observed in the measurements. Measure-
ments also reveal a slight asymmetry in the wake velocity
profile, that is not accounted for in the analytical models.
In terms of maximum velocity deficit, the agreement be-
tween the wake models and measurements is good, despite
a slight underestimation of the velocity deficit at x/d0 = 2
and a slight overestimation at x/d0 = 5 for both stable and
nearly neutral cases. The LES results also slightly under-
estimate the velocity deficit at x/d0 = 2. In terms of wake
shapes, the super-Gaussian model predicts wider wakes than
the Gaussian model, as expected, and is more in line with
the measurements. A good agreement is observed between
the super-Gaussian model and the LES simulations, despite
some differences at x/d0 = 5. The LES predicts a slightly
thinner wake compared with the measurements. The super-
Gaussian model clearly improves the wake shape predic-
tion. Some differences appear between the analytical super-
Gaussian model and the root-finding version, the root-finding
version being closer to the experiment. The maximum veloc-
ity deficit at x/d0 = 3, 4, and 5 is slightly overestimated for
the stable case.

For a more quantitative comparison, the normalized L2 er-
ror between each model and the experimental velocity deficit
are provided in Fig. 6.

Results for the lower inflow turbulence are at the top and
higher-inflow-turbulence cases at the bottom of the figure.
For the wind turbine case (left plots), results are very sat-
isfactory since the error is lowered at all downstream po-

sitions. The improvement is more pronounced in the near
wake: the difference between the super-Gaussian and the
Gaussian models, in terms of error, tends to diminish with
the distance to the rotor. This is the case for both low-inflow-
turbulence and high-inflow-turbulence cases. The Gaussian
and the super-Gaussian model being based on the same max-
imum velocity deficit models, the improvement is due to
the enlarged wake that is obtained using the super-Gaussian
model. The wake model predictions are improved with the
super-Gaussian model up to five diameters behind the wind
turbine for the WT-S and WT-N cases, which is a separa-
tion distance that is commonly observed in offshore or on-
shore wind farm layouts. This highlights the usefulness of
the super-Gaussian model for wind farm design purposes.

If the super-Gaussian model clearly improves the results
for the wind turbine cases, results are less satisfactory for the
actuator disk cases under high inflow turbulence. A clear im-
provement is observed for the low-ambient-turbulence con-
ditions: for normalized distance to the rotor plane of two to
six disk diameters, the normalized L2 error is lower with
the super-Gaussian model compared to the Gaussian model.
Again, the impact is more pronounced in the near wake
and tends to diminish in the far wake, which is expected
since the super-Gaussian shape function tends to the Gaus-
sian shape in the far wake. In the far wake, the Gaussian
model has a lower error than the super-Gaussian model at
x/d0 = 8 for the higher-CT case. Looking at the wake ve-
locity profiles (Fig. 3), the higher error observed with the
super-Gaussian model can be attributed to an overestima-
tion of the wake width. At this location, the value of the
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Figure 5. Normalized velocity deficit at four axial distances behind the wind turbine. Stable case (WT-S; top) and nearly neutral case (WT-N;
bottom).

super-Gaussian order, n, is not equal to 2, and the Gaussian
model better predicts the wake shape. This is also observed
for the high-inflow-turbulence case. For both thrust coeffi-
cients, the super-Gaussian model lowers the error in the near
wake (x/d0 = 2) but increases the error at the other positions
(i.e. in the far wake). In order to recover the accuracy of
the Gaussian model, the super-Gaussian order n should be
equal to 2 for these cases. A practical way to improve the
super-Gaussian model is to find a better calibration for the
near-wake correction, Eq. (7), and/or the characteristic wake
width, Eq. (9): since the near-wake power coefficient, pNW,
has a rather low value in the proposed calibration, the near-
wake correction has an impact in the far wake that might be
overestimated, leading to super-Gaussian order values that
are above 2. This highlights the difficulty in properly cali-
brating analytical wake models and the need for more mea-
surements and high-fidelity simulations. Nevertheless, no ex-
planation has been found to justify the differences observed
between the wind turbine case WT-N and the actuator disk
case AD-4: operating conditions are similar in terms of thrust
coefficient and turbulence intensities, but a larger wake is
observed in the wind turbine case, which leads to different
conclusions in terms of super-Gaussian model performance
compared with the Gaussian model. For all the considered
cases, the normalizedL2 errors for the super-Gaussian model
based on the root-finding algorithm and the analytical one are
very similar. No noticeable differences are observed, except

for the AD-2 case at x/d0 = 4, for which a slight overestima-
tion of the maximum velocity deficit was observed in Fig. 3.

4 Conclusions

A super-Gaussian model for wind turbine wakes has been in-
troduced. The model transitions from a nearly top-hat shape
in the near wake to the well-known Gaussian shape in the
far wake. The super-Gaussian order, n, which determines
the shape of the wake, is deduced by finding the root of
the mass and momentum conservation equation. To avoid
the numerical evaluation of the root-finding problem and
save computational time, a simple analytical expression for
the super-Gaussian order n has been proposed. Comparisons
with wind tunnel and particle image velocimetry measure-
ments behind a porous disk and lidar measurements in the
wake of a full-scale wind turbine show a good agreement
between the model and the measured data. While the com-
parisons show an improvement compared with the Gaussian
model, there are still large differences between the model
predictions and measurements or LES simulations, highlight-
ing the need for a more extensive calibration of the model. In
the near wake, the model also compares well with an LES
simulation. The model improves the Gaussian model by pre-
dicting an enlarged wake, consistent with observations, even
at distances down to six diameters behind the wind turbine.
Future work should include an extensive calibration and val-
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Figure 6. NormalizedL2 error between the wake models and measured velocity deficit for the six considered cases. Lower-inflow-turbulence
cases on the top line, higher-inflow-turbulence cases on the bottom line.

idation of the model, considering additional turbulence in-
tensities and thrust coefficients. A model for the hub wake
could also be integrated in the model. Comparisons at the
wind farm scale are also planned for the near future. This
implies the use of a wake-added turbulence model. In the
super-Gaussian model, n can be considered as an implicit
representation of the shear layer that expands downstream of
the wind turbine, starting near the tip of the blades (Sanderse,
2009). There is most probably a link to consider between the
super-Gaussian model and wake-added turbulence models.
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Appendix A: Detailed derivation of the
super-Gaussian model

According to Frandsen et al. (2006), the application of mass
and momentum conservation leads to the following expres-
sion:

ρ

∞∫
0

Uw(U∞−Uw)dA= T . (A1)

From Eq. (3), Eq. (A1) writes

∞∫
0

Uw(U∞−Uw)rdr =
CTU

2
∞d

2
0

16
. (A2)

Introducing the normalized radius, r̃ = r/d0, Eq. (A2) be-
comes

∞∫
0

Uw(U∞−Uw)r̃dr̃ =
CTU

2
∞

16
. (A3)

Inserting the super-Gaussian shape function and using
C(x̃), the maximum velocity deficit (Eq. 1) leads to

∞∫
0

Uw(U∞−Uw)dÃ

=

∞∫
0

(
U∞C(x̃)e−

r̃n

2σ̃2 ×U∞

(
1−C(x̃)e−

r̃n

2σ̃2

))
r̃dr̃

= U2
∞C(x̃)

∞∫
0

(
e
−

r̃n

2σ̃2 −C(x̃)e−
r̃n

σ̃2

)
r̃dr̃.

(A4)

A known form for the primitive of xecx
n

exists:∫
xecx

n

dx =−
0i(2/n,−cxn)x2

n(−cxn)2/n , (A5)

0i(n,x) being the upper incomplete Gamma function. Fortu-
nately, this form has finite limits at both infinity and positive
zero. These limits write

lim
x→∞

(
−
0(2/n,−cxn),x2

n(−cxn)2/n

)
= 0,

lim
x→0+

(
−
0(2/n,−cxn)x2

n(−cxn)2/n

)
=−

0(2/n)
n(−c)2/n , (A6)

with 0(x) the Gamma function. Inserting Eq. (A6) into
Eq. (A4) and choosing the correct form for c leads to the

following form:

∞∫
0

Uw(U∞−Uw)dÃ=

−U2
∞C(x̃)0(2/n)

(
C(x̃)
n
σ̃ 4/n
−

22/n

n
σ̃ 4/n

)
. (A7)

Inserting Eq. (A7) into Eq. (A3) leads to

σ̃ 4/nC(x̃)2
− 22/nσ̃ 4/nC(x̃)+ n

CT

160(2/n)
= 0. (A8)

Considering C(x̃) as the variable to solve for, Eq. (A8) is a
quadratic expression of the second degree for which solu-
tions are well known. The discriminant is given by

1=
(

22/nσ̃ 4/n
)2
−
nσ̃ 4/nCT

40(2/n)
. (A9)

Finally, the roots of the polynomial expression are obtained:

C(x̃)=
22/nσ̃ 4/n

±
√
1

2σ̃ 4/n

= 22/n−1
±

√
24/n−2−

nCT

160(2/n)σ̃ 4/n . (A10)

As for the Gaussian model, only solutions based on the
minus sign lead to physical solutions for the velocity deficit.
The final form of the maximum velocity deficit is

C(x̃)= 22/n−1
−

√
24/n−2−

nCT

160(2/n)σ̃ 4/n . (A11)
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Code and data availability. A python implementation of the
analytical super-Gaussian model as well as numerical results
can be made available upon request from the correspond-
ing author. An implementation of this super-Gaussian model
has been undertaken by the NREL in the FLORIS solver
(https://doi.org/10.5281/zenodo.3906713, Mudafort et al., 2020).
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