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Abstract. Operation and maintenance cost of wind turbine is intimately related to fatigue
damage. However, considering fatigue directly in an optimization needs to be carefully done
because its faithful model does not fit standard forms. Recent results have shown that the fatigue
damage of a signal estimated using fatigue theory is non-linearly related to its corresponding
variance. Therefore, this relationship is used to design a convex cost function approximating
fatigue. In this paper, the sensitivity of open-loop optimizations using this fatigue-oriented non-
quadratic cost function to the time horizon considered is studied, in terms of both fatigue and
computational cost. Moreover, in order to alleviate the undesirable effects of the computational
cost, an efficient fixed-point iteration-based way to optimize this fatigue-oriented cost function
is presented. Results show that the fatigue-oriented cost function allows to obtain sensitive
fatigue reduction compared to optimizations using a family of classical quadratic cost functions,
especially for long optimization horizons. It is eventually, shown that the prediction horizon
length required for the non-quadratic criterion to be efficient in an MPC makes its use
prohibitive in such framework. However, prospects of reaping the benefits of the fatigue-oriented
optimization using imitation learning are given.

1. Introduction
The economic profit that an Horizontal Axis Wind Turbine (HAWT) owner makes is mainly
driven by the difference between gains, e.g. energy sold, and losses, e.g. Operation and Main-
tenance (O&M) cost [1]. O&M cost can be approximated as a weighted sum of the prices of
replacement and mechanical fatigue damage of given HAWT components [2], as fatigue damage
is equal to 1 when a component is broken. This weighted sum is also called fatigue trade-off cost.
Therefore, in order to maximize HAWT economic profit, it is important to optimize this fatigue
trade-off. Dedicated control of HAWT blade pitch angle can contribute to this cost reduction.

The main objectives of HAWT blade pitch control are to regulate output power and rotor
speed while reducing mechanical fatigue. In the early work on blade pitch control, wind was
assumed to be uniformly distributed over the rotor area. Therefore, all the blades were pitched
to the same angle, this technique is called Collective Pitch Control (CPC). With recent increase
in rotor diameter, this assumption becomes questionable. Aerodynamic forces on the blades
fluctuate with the azimuth angle while the blade pitch angle remains constant [3]. Therefore,
by varying each blade pitch angle individually depending on its azimuth, blades fatigue loads
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can be alleviated. This technique is called Individual Pitch Control (IPC) [4]. IPC is usually
divided in two stages:

(i) The CPC stage whose objective is to regulate the rotor rotational speed and power, while
alleviating the fatigue loads on the tower.

(ii) The IPC stage that gives a differential pitch angle on each blade, added to the collective
pitch angle, in order to reduce the unbalanced loads on the rotor, contributing to the
rotating components damage (i.e. blades, rotor bearing, blade bearings)

Therefore, the goal of the IPC stage is essentially to optimize the fatigue damage trade-off.
Optimal control is a good solution to achieve this objective. However, expressing this objective
as an economic cost function for optimal control is a challenging task due to the fatigue dam-
age estimation [5, 6]. Fatigue damage is quantified using the Palmgrem-Miner fatigue theory,
where it is expressed as a sum of damages caused by hysteresis load cycles [7]. These cycles are
counted using a RainFlow Counting (RFC) algorithm [8] which cannot be expressed as a simple
algebraic function. Consideration of fatigue as an explicit control objective remains an open
topic [9]. To our best knowledge, it is possible to find in the literature five methods considering
directly fatigue as an objective cost function for HAWT control. In [5], the spectral properties
of the stress history are used to design an optimal feedback controller. In [2], a data driven
surrogate model is designed to select the best controller among several candidates. In [10], a
quadratic cost function parameters are varied to match an on-line estimated economic fatigue
cost function. In [1], a sequential optimization is made where the cost function parameters are
iteratively modified between gradient steps, based on RFC. Only the two last methods are used
to design an MPC controller, as their approach is temporal. In [11], several aspects of the pre-
vious methods are bridged together. A data-driven surrogate model relating quadratic norms
(variance) and fatigue of given signals is used in order to approximate the fatigue trade-off cost
with a non-quadratic cost function. This approximated objective function is used to optimize
the system input trajectory during an open-loop optimization.

This paper is organized as follows:

• In Section 2, the equations governing the rotor dynamics of an HAWT are presented.

• In Section 3 the parameterization of a quadratic cost function used as benchmark, which
was firstly presented in [11], is depicted.

• In Section 4, the novel fatigue-oriented cost function presented in [11] is introduced.

• In Section 5, an effective optimization method for optimal control using the presented
fatigue-oriented cost function is detailed, involving a fixed-point method and a
decomposition of the optimization horizon.

• In Section 6, performance of an optimization using the fatigue-oriented cost function is
compared to one using a parameterized quadratic cost function, along with suggestions
suggestions for closed-loop implementation.

• In Section 7, a conclusion and an outlook on the undergoing work are given.

2. Presentation of the system: An HAWT rotor in MBC coordinates
This section presents the system under interest, which is a multi-body HAWT disturbed by the
wind, whose different bodies vibrations are coupled. It is a multi-inputs/multi-outputs system,
that can be simulated using high fidelity nonlinear aero-elastic HAWT simulators, such as FAST
[12]. It can be noted that FAST allows to linearize the nonlinear equations governing the HAWT
behavior for control purposes. In this study, the focus is set on the IPC stage of an HAWT blade
pitch controller. As mentioned previously, the IPC stage objective is to reduce the fatigue of
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multiple HAWT components by giving differential pitch angles on each blade, to be added to
the collective pitch angle. These differential pitch angles can be obtained from a non-rotating
reference frame by using the Coleman [13] or Multi-Blade Coordinate (MBC) transform [14].

FAST and its MBC module allows to obtain a linearization of the dynamics around an operat-
ing point, relating the hub-height wind velocity, denoted by v and, the yawing and tilting pitch
angles, denoted respectively by θyaw and θtilt, to the yawing and tilting out-of-plane blade root
bending moments, denoted respectively by Myaw and Mtilt. The operating point is defined by
its steady wind velocity v0, yawing and tilting steady out-of-plane blade root bending moments,
denoted respectively by M0

yaw and M0
tilt. Let δM = [Myaw −M0

yaw,Mtilt −M0
tilt]

T be the differ-

ential yawing and tilting out-of-plane blade root bending moments, moreover Θ = [θyaw, θtilt]
T ,

x ∈ R6 is the state of the system corresponding to the blades first flapwise mode, and δv = v−v0
is the differential wind speed. By augmenting the system obtained from FAST linearization and
MBC modules with the actuators dynamics modeled by a first order low-pass filter, similar to
the one presented in [11], the following Linear Time Invariant (LTI) system can be obtained:

ẋ = Ax+Bu+Bdδv (1a)

y = Cx+Du+Ddδv (1b)

where y = [δMT ,ΘT ]T , u = [θspyawθ
sp
tilt]

T , θspyaw and θsptilt denote respectively the yawing and
tilting blade pitch angles to be given to the actuators via the inverse MBC transform. A, B,
Bd, C, D and Dd are matrices of appropriate dimensions allowing to model the dynamics of the
system. It should be noticed that in this paper, it is assumed that the system is not restricted
by any constraints whatsoever, or that it cannot reach its constraints in the operational range it
is working on. This can be forced by appropriate choice of the weighting coefficient and checked
a posteriori. In the sequel, in order to alleviate notations δv := v.

3. Parameterized quadratic cost function benchmark
Quadratic cost functions are widely used in the formulation of fatigue-oriented open-loop optimal
control problems. This is the reason why such cost functions are used as a benchmark for
comparison with other open-loop formulations. The tuning of a quadratic cost functions can
be computationally expensive and might be sub-optimal. However, as far as the tuning of a
quadratic structure is concerned, for the specific case of HAWT rotors, it is possible to use this
knowledge in order to derive a low-dimensional parameterization of the quadratic cost function
weights.

3.1. Quadratic cost function parameterization
In [11], a parameterization of a quadratic cost function for the specific problem of HAWT
fatigue alleviation with IPC is described. The quadratic cost function is denoted by Jquad and
parameterized by ρ:

Jquad(u|v, x0, ρ) =

N∑
k=1

yk(u,v, x0)
TQ(ρ)yk(u,v, x0) + uTkR(ρ)uk (2)

where yk(u,v, x0), u and v are respectively the output vector at instant k, inputs and
disturbance trajectories over the optimization horizon. The index k represents the kth time
instant, x0 is the initial state of the open-loop optimization and N is the number of prediction
steps considered in the optimization horizon. Q ∈ R4 and R ∈ R2 are respectively semi-definite
and definite positive matrices, parameterized by ρ > 0, such that Q(ρ) = diag ([ρ, ρ, 1, 1]) and
R(ρ) = min(ρ, 1)× 10−3I2 where In is the identity matrix of dimension n. It should be noticed
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that y is therefore a function of u, v and x0, driven by the dynamic system (1). Moreover,
this parameterization is designed such that the variations of blade pitch angles set-points do not
impact the fatigue trade-off.

3.2. Parameterized quadratic cost function tuning procedure
The parameterized quadratic cost function is thus used to solve the following unconstrained
open-loop optimal control problem:

min
u

Jquad(u|v, x0) (3)

for given v and x0. This open-loop optimization yields an output trajectory, which can be fed
to the fatigue cost function denoted by Jfat(.) in order to estimate the output trajectory fatigue
cost. Therefore, each triplet (ρ, x0,v) corresponds to a fatigue cost, denoted by Jfat(ρ, x0,v).
The tuning procedure consists in finding the parameter ρ that minimizes the fatigue cost for
given x0 and v:

min
ρ

Jfat(ρ, x0,v) (4)

where x0 and v are randomly drawn from a given relevant distribution to be carefully chosen.

4. The novel fatigue-oriented cost function
In [2], the fatigue cost function Jfat is defined to be a weighed sum of the damages and prices of
replacements, denoted respectively by Di and πi for the ith component, out of n in total:

Jfat(y) =
n∑
i=i

πiDi(yi) (5)

where yi is the ith output trajectory.

In [11], it was shown that it is possible to derive a data-driven relationship between a variance
such as variance of a signal and fatigue damage, thanks to a linear regression between the
logarithms of variance and fatigue damage of a given signal. This allows to approximate the
fatigue damage of the ith component considered in the fatigue cost estimation with a function
denoted by D̂i:

D̂i(yi) =
ebi

(Lult
i )mi

Var(yi)
ai (6)

where Lult
i , mi, ai and bi are respectively the ultimate load, Wöhler exponent, linear coefficient

and bias of the regression corresponding to the ith component. It should be noticed that the
ultimate load is the maximum load that the component can bear and the Wöhler exponent
depends on the material (4 for steel and 10 for glass fiber). Therefore, Jfat can be approximated
by the fatigue-oriented cost function, denoted by J̃fat, for a given output trajectory y:

J̃fat(y) =

n∑
i=1

πi
ebi

(Lult
i )mi

(Var(yi))
ai (7)

Hence, J̃fat allows to approximate Jfat with a differentiable cost function based on variance. This
cost function can be efficiently implemented in an optimization, in order to better reduce Jfat
in optimal control problems.
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5. The fatigue-oriented optimization
The cost function J̃fat is particularly interesting for optimal control problems because it is convex
provided that ai ∈]−∞, 0]∪]1,+∞] ∀i ∈ {1, . . . , n}, differentiable and expressed algebraically.
Therefore, there is no loss of convexity nor differentiability in using it instead of standard
quadratic function of time series. The resulting problem can be solved directly using standard
NonLinear Programming (NLP) solvers:

min
u

J̃fat (y(x0,u,v)) (8)

where x0 and v are given. Moreover, as J̃fat is based on variance, it is possible to efficiently
solve the problem with sequential Quadratic Programming (QP) in a fixed-point problem, by
approximating J̃fat with a first order Taylor expansion. Besides, it is possible to decompose
the horizon of the successive QP free of inequality constraints, in order to significantly reduce
the computational time. In this section are presented the derivation of the fixed-point problem
from the NLP and the decomposition of the horizon, which together significantly reduce the
computational time needed for the resolution of the NLP.

5.1. Fixed-point problem formulation
It is a common approach to approximate NLP with QP which are easier to solve than NLP and
convex, in order to efficiently approach a suboptimal solution of the NLP. The approximated
fatigue cost function J̃fat has the advantage to be based on a quadratic cost function which is
variance. Therefore, a first order Taylor expansion of J̃fat, defined by (7), around an output

trajectory y(σ) is sufficient to make appear a quadratic form:

J̃
(σ)
fat (y) = J̃fat

(
y(σ)

)
+

n∑
i=1

πie
biai

(Lult
i )mi

(
Var(y

(σ)
i )
)ai−1

︸ ︷︷ ︸
αi(y(σ))

(
Var(yi)−Var(y

(σ)
i )
)

(9)

where σ is the iteration number of the fixed-point problem. Let Q(y(σ)) =

diag
(
[α1(y

(σ)), . . . , αn(y(σ))]
)

and R(y(σ)) = I2 min
(
[1, α1(y

(σ))]
)
× 10−3 be the weighting

matrices of an QP that approximates the solution of (8) at the σth iteration:

P(x0,v,y
(σ)) : min

u

J̃
(σ)
fat (y) =

N∑
k=1

(yk(u,v, x0)− µ)TQ(y(σ))(yk(u,v, x0)− µ)+

uTkR(y(σ))uk

(10a)

s.t. µ =
1

N

N∑
k=1

yk(u,v, x0) (10b)

where R avoids singularities in the optimization problem. It should be noticed that the
optimization (10) gives an optimal solution u(σ+1), which integrated with the system dynamic
equation (1) for given x0 and v yield an output trajectory y(σ+1). This y(σ+1) gives a new
optimal control problem P(x0,v,y

(σ+1)), defined by (10), resulting in a u(σ+2) different from
u(σ+1), so on and so forth. There is thus a fixed-point problem consisting in finding the right
u(σ) and y(σ). The following algorithm is proposed to solve this fixed-point problem:

(i) σ ← 0, Give an initial guess for y(0) and u(0)

(ii) Compute the weighting matrices Q(y(σ)) and R(y(σ))

(iii) u(σ+1) ←− Solve the optimal control problem P(x0,v,y
(σ)) defined by (10)

(iv) y(σ+1) ←− Integrate the dynamic equations, defined by (1), for u(σ+1), x0 and v
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. . . QPj . . .

x0 v

u(σ)

Master QP

µ(
x
(j)
0 , x

(j+1)
0 , µ,v(j)

)

u(j,σ) y(j)

Mean

y
Jj

X0

Figure 1. Schematization of the temporal decomposition scheme.

(v) If y(σ) and u(σ) have not converged, increment σ and go to step (ii), otherwise stop

This fixed-point method is used in the sequel instead of NLP solvers. However, for a high number
of decision variables, the QP is computationally and time expensive because of the inversion of
high dimensional matrices. That is the reason why a time decomposition is introduced in the
next section in order to define a change in the decision variable’s definition and significantly
reduce the RAM and time needed for the QP resolution.

5.2. Optimization horizon decomposition scheme
The solution to the QP defined by (10) is a linear combination of x0 and v, which requires a
matrix inversion of dimension [N × 2, N × 2]. The longer the prediction horizon is, the more
RAM and CPU time are required, moreover the QP must be solved at every iterations of the
fixed-point method. Therefore, reducing significantly the time needed for the QP resolution can
also significantly reduce the time to solve the fixed-point method and the NLP defined by (8).

The optimization horizon of an QP can be temporally decomposed as in [15, 16], allowing
to significantly alleviate the computational cost. The temporal decomposition of an QP opti-
mization horizon consists in decomposing the problem into a series of smaller QPs with shorter
optimization horizons, constrained by their initial and final states, provided that the cost func-
tion on the interval is independent from the others. Then, the solution to (10) is recovered by
solving another QP that manages the initial states of the smaller QPs. However, for the QP
defined by (10), the cost function on the smaller intervals is not independent from the others,
as µ, which is the average of the outputs on the whole horizon has an influence on the cost
function. Therefore, µ is first considered as an exogenous parameter in the smaller QPs and
retrieved later with the QP managing the initial states. A schematization of the optimization
horizon decomposition is proposed in Figure 1. Let M be the number of intervals the horizon
is decomposed into, which is also the number of smaller QPs. The QP on the jth interval, for
j ∈ {1, . . . ,M}, at the σth iteration, denoted by QPj, is parameterized by the initial condition

and disturbance on the interval, denoted respectively by x
(j)
0 and v(j), and the initial condition

on the next interval x
(j+1)
0 . All the QPj are using the same cost function parameterized by y(σ)

and µ which are considered as external parameters:

min
u(j)

Jj =

kf (j)∑
k=k0(j)

(
y
(j)
k

(
u(j),v(j), x

(j)
0

)
− µ

)T
Q(y(σ))

(
y
(j)
k

(
u(j),v(j), x

(j)
0

)
− µ

)
+

u
(j)
k

T
R(y(σ))u

(j)
k

(11a)

s.t. x
(j+1)
0 = xf

(
u(j),v(j), x

(j)
0

)
(11b)
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where u(j) is the input trajectory on the jth interval, u
(j)
k is the input value at the kth time

instant in u(j), k0(j) = (j − 1)NM + 1 and kf (j) = j NM are respectively the index of the first and

last time instant of the jth interval. y
(j)
k and xf are affine functions giving respectively the output

value at the kth time instant and the jth interval final state for given x0, v
(j) and u(j). It should

be noticed that that x
(1)
0 = x0, which is the initial state of the QP defined by (10). The solution

to (11), denoted by u(j,σ), is an affine function of x
(j)
0 , x

(j+1)
0 , v(j) and µ, besides each resolution

of the QPj needs a matrix inversion of dimension [NM×2, NM×2]. Therefore, the output trajectory,

denoted by y(j), which is a concatenation of the y
(j)
k

(
u(j),v(j), x

(j)
0

)
∀k ∈ {k0(j), . . . , kf (j)}

is an affine function of x
(j)
0 , u(j,σ) and v(j), moreover by composition it is an affine function of

x
(j)
0 , x

(j+1)
0 , v(j) and µ. Hence, Jj can be expressed as a quadratic function of x

(j)
0 , x

(j+1)
0 , v(j)

and µ. Let X0 = [x
(1)
0 , . . . , x

(M+1)
0 ] be the vector of the interval initial conditions. The cost

function Jj can thus be expressed as quadratic cost function of X0 and µ, given the disturbance

trajectory v. Therefore the cost function J̃
(σ)
fat (y) of the QP defined by (10) can be expressed as

the sum of the Jj ∀j ∈ {1, . . . ,M}. Moreover, µ is the average of y which is a concatenation

of the y(j) ∀j ∈ {1, . . . ,M}, which makes thus µ an affine function, denoted by F , of X0 and
µ, given x0 and v. The master QP than manages the vector of initial conditions X0, such that
the concatenation of y(j,σ) ∀j ∈ {1, . . . ,M} matches the solution of (10) is the following:

min
X0

J̃
(σ)
fat =

M∑
j=1

Jj

(
X0, µ|v(j), x0

)
(12a)

s.t. µ = F
(
X0, µ|v(j), x0

)
(12b)

where the implicit equation defined by (12b) is actually a linear equality constraint allow-
ing to retrieve µ. The solution of (12) is thus a linear combination of x0 and v, requiring a
matrix inversion of dimension [6 × (M + 1), 6 × (M + 1)] as the state dimension is 6. Eventu-
ally, the optimal input trajectory u(σ) can be recovered by concatenating the solutions of the

QPj defined by (11), denoted by u(j,σ) with the x
(j)
0 and x

(j+1)
0 obtained from the solution of (12).

From the above discussion, it comes out that M determines the computation burden involved
in the solution of (11) and (12). The computational complexity of the QP problem, for the
considered system (1) without temporal decomposition is O

(
(2N)2(2N + 6 +N)

)
, while using

the temporal decomposition it becomes O
(
M6(M − 1)2(6 + 1) + (2N)2

M (NM (2 + 1) + 12 +m)
)

.

This means that if N takes values of 100, 1000 or 10000, the M giving the lowest computational
complexity are respectively 5, 16 and 49, allowing to divide the computational complexity of the
global QP problem by 12, 120 and 1200 respectively.

6. Results
In this section, an assessment regarding the relationship between variance and fatigue damage
is first presented. Then the sensitivity of the optimal solution to horizon’s length is analyzed in
terms of both mechanical fatigue and CPU time. Furthermore, comparison with optimization
using a finely tuned quadratic cost function is proposed. Finally, in a prospect of using the open-
loop optimization with the fatigue-oriented cost function in closed-loop, a sensitivity analysis
to the prediction horizon of a linear quadratic MPC in terms of fatigue is conducted. Statistics
on each results are made using 1000 disturbances which are Gaussian noises filtered through
a family of first order low pass filters. The filters are parameterized by their static gain and
characteristic time, taking values in uniform distributions ranging respectively on ]0, 104] and
]0, 10]. In the sequel, all simulations are considering an initial state located at the origin.
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6.1. Relationship between fatigue damage and variance
The experience described in Section 4 is conducted and the results are plotted in Figure 2. The
relation can be effectively approximated by a linear regression in Logarithmic scale and yield
couples of parameters (a, b) of value (2.6, 4.6) and (5.6, 15.6), for Wöhler coefficients of 4 and 10
respectively.

6.2. Fatigue reduction and computing time-sensitivity analysis
Concerning the sensitivity study of optimal control problem solutions using the parameterized
quadratic and non-quadratic fatigue-oriented cost function to the horizon’s length, a sampling
time of 0.1 second is considered. For both optimizations, the optimization horizon’s
temporal decomposition scheme described above is implemented. The parameter M takes
the values {5, 5, 5, 5, 5, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 20} together with the horizon lengths
{2, 3, 4, 5, 7.5, 10, 20, 30, 40, 50, 100, 200, 300, 600} seconds respectively.
The parameterized quadratic cost function, defined in Section 3, is optimized for a disturbance
whose filter parameters are randomly drawn, in the same distribution that the one used for
disturbance generation. In this presented case, the static gain and characteristic time drawn
are 6950 and 2.86 seconds respectively. The optimization of ρ is conducted for each horizon
considered. The fatigue cost of the 1000 optimizations solutions using the non-quadratic cost
function, defined by (7), is estimated and denoted by JNQ

fat . The fatigue cost of the optimization
solutions using the finely tuned parameterized quadratic cost function, defined by (3) is also

estimated and denoted by JQfat. For the fatigue estimations, parameters are carefully chosen in

order to yield a realistic fatigue trade-off. The values of Lult, π and m for the yawing and tilting
blade root bending moments are 3 × 103, 103, 10 respectively, while for the yawing and tilting
pitch angles they are respectively 6.98× 10−1, 1 and 4.
In Figure 3, the mean, the median and the 90th percentile of the ratio between the fatigue costs
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Figure 2. Plot of the relation between Var
and (Lult)mD in Logarithmic scale, for two
Wöhler coefficients.
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Figure 3. Plot of the influence of predic-
tion horizon time length on the relative sys-
tem fatigue cost between the non-quadratic
and quadratic cost functions.

open-loop optimal trajectories using the non-quadratic and quadratic cost functions, defined by
JNQ
fat

JQ
fat

are shown. The thick red line represents the border between cases where non-quadratic

optimization induces higher fatigue cost compared to the quadratic one (above), and cases where
it induces lower fatigue costs (below). It can be seen that the longer the time horizon is, the
smaller the relative fatigue. More precisely, the median relative fatigue cost is lower than 1 for
time horizon length longer than 4 seconds, while for the mean and 90th percentile of the relative
fatigue cost it is respectively 7.5 and 50 seconds. Moreover, beyond 20 seconds, the fatigue
reduction ratio induced by the non quadratic cost is as high as 50%.

In Figure 4, the mean and the range of the CPU times needed for the 1000 quadratic and
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Figure 4. Influence of time horizon length
on the CPU time. Thick lines correspond
to the mean and the shaded areas to the
range of values.
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Figure 5. Plot showing that the prediction
horizon typically used in common MPC
design is far too short to be relevant.

Method N Compilation time (s) Resolution time (s)

NLP solver CasADi
100 17 0.21
1000 5833 26.50

Fixed-point
100 None 3.20
1000 None 2769.40

Fixed-point with
decomposed horizon

100 None 0.10
1000 None 2.04

Table 1. Summary of the compilation and solving time for the NLP solver, fixed-point and
fixed-point method with a decomposed horizon.

non-quadratic open-loop optimizations are plotted as a function of the horizon time length, for
optimization run on a desktop PC equipped with a 2.60GHz processor and 16Gb RAM. It can
be seen that the optimization using the non-quadratic cost function requires a much longer CPU
time than the quadratic one. This results was expected as the fixed-point method requires to
run a quadratic optimization per iteration.
In Table 1 are summarized the CPU times needed to solve the optimization problem defined by
(8) for N = 100 and 1000, using the NLP solver CasADi [17] and the fixed-point method with and
without a decomposed horizon. It can be seen that, compared to the NLP solver, the fixed-point
method with a decomposed horizon is much less time consuming, especially for long optimization
horizons. Moreover, the fixed-point method avoids the compilation time, which even though it is
performed off-line, can be highly time consuming for long optimization horizons and mandatory
for the NLP solver. It also emphasizes the efficiency of the horizon decomposition, which allows
to decrease the CPU time from one to three order of magnitudes compared to the fixed-point
method without decomposition. Even though, they might have possibilities to decompose the
optimization horizon of the NLP as well, the optimization problem managing the initial states of
the intervals might be very challenging to express for the NLP case, while the fixed-point method
allows to consider only QPs and to relatively easily decompose the optimization horizon.

6.3. Prospects of closed-loop implementation
The non-quadratic criterion is used in an MPC and simulated in closed-loop for several prediction
horizons ranging from 0.2 to 2 seconds. This MPC is compared to another MPC using the
parameterized quadratic cost function on 100 closed-loop simulations of 200 seconds long. In
Figure 5, the fatigue averaged on the 100 closed-loop simulations and normalized by the average
fatigue of the quadratic MPC for a 0.2 seconds prediction horizon is plotted in function of the
prediction horizon. It can be seen that for relatively short prediction horizon, compared to
the ones used for the open-loop optimization, the MPC using the non-quadratic cost function



The Science of Making Torque from Wind (TORQUE 2020)

Journal of Physics: Conference Series 1618 (2020) 022004

IOP Publishing

doi:10.1088/1742-6596/1618/2/022004

10

is less efficient in reducing fatigue than the quadratic MPC. This coincides with the previous
observation, stating that the open-loop optimization using the non-quadratic criterion becomes
efficient compared to the parameterized quadratic one for horizons longer than 4 to 50 seconds.
This is due to the fact that considering fatigue on such short prediction horizons is very limited
as very few hysteresis cycles can be counted, for the dynamics considered in this application
and therefore the statistical relation observed between variance and damage might be weak.
However, the CPU time needed for the open-loop optimizations using the non-quadratic cost
function makes its use in an MPC prohibitive. Nevertheless, it might be possible to learn from the
open-loop optimization using the non-quadratic criterion the behavior of a non-linear feedback
controller, using information on the future disturbance on an acceptable receding horizon.

7. Conclusion and perspectives
In this paper, the sensitivity analysis of fatigue-oriented open-loop optimal cost and its
computational burden with respect to the length of the prediction horizon is conducted for
different choices of cost functions. The analysis shows that the use of a non quadratic cost
induces significant benefit over standard quadratic (even finely tuned) cost functions provided
that prediction horizons longer than 50 seconds are involved. However, the computational
burden of the fatigue-oriented optimization becomes rapidly intractable to be incorporated in
MPC design. Undergoing works focus on the extraction of fitted static nonlinear feedback
from the off-line computation of open-loop formulations with long prediction horizons and non
quadratic cost leading to solutions that inherit the benefit from the newly introduced cost
while being real-time implementable. Preliminary results on this behavioral cloning solution are
encouraging and will hopefully be presented in a forthcoming paper.
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