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AN ANALYSIS OF THE UNIFIED FORMULATION FOR THE EQUILIBRIUM
PROBLEM OF COMPOSITIONAL MULTIPHASE MIXTURES

Ibtihel Ben Gharbia1, Mounir Haddou2, Quang Huy Tran1,˚

and Duc Thach Son Vu1

Abstract. In this paper, we conduct a thorough mathematical analysis of the unified formulation
advocated by Lauser et al. [Adv. Water Res. 34 (2011) 957–966] for compositional multiphase flows
in porous media. The interest of this formulation lies in its potential to automatically handle the
appearance and disappearance of phases. However, its practical implementation turned out to be not
always robust for realistic fugacity laws associated with cubic equations of state, as shown by Ben
Gharbia and Flauraud [Oil Gas Sci. Technol. 74 (2019) 43]. By focusing on the subproblem of phase
equilibrium, we derive sufficient conditions for the existence of the corresponding system of equations.
We trace back the difficulty of cubic laws to a deficiency of the Gibbs functions that comes into play
due to the “unifying” feature of the new formulation. We propose a partial remedy for this problem
by extending the domain of definition of these functions in a natural way. Besides, we highlight the
crucial but seemingly unknown fact that the unified formulation encapsulates all the properties known
to physicists on phase equilibrium, such as the tangent plane criterion and the minimization of the
Gibbs energy of the mixture.
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1. Introduction

1.1. Motivation and objectives

In the numerical simulation of multicomponent (a.k.a. compositional) multiphase fluid flows, a delicate issue
often arises in the handling of the appearance and disappearance of phases for various species, due to the laws
of thermodynamic equilibrium. The traditional dynamic approach, known as variable-switching in reservoir
simulations [10], considers only the unknowns and equations of the present phases. Albeit natural, it is awkward
and even costly to implement, insofar as switching can occur all the time. Lauser et al. [17] proposed an
alternative approach, called unified formulation, in which a fixed set of unknowns and equations is maintained
during the calculations. This major theoretical advance is achieved by means of complementarity conditions,
which allow distinct functioning regimes to be expressed in the same mathematical way, as is already the case
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in a wide range of areas such as mechanics, electronics or geology [1, 31]. Another key ingredient behind this
“egalitarian” treatment of all regimes is the notion of extended partial fractions that must be assigned to species
in all phases, including absent ones.

As a promise of more efficient simulations, the unified formulation has met with some success among numeri-
cists, as testified by the subsequent works by Ben Gharbia [5], Ben Gharbia and Jaffr [7], Masson et al. [20,21]
and Beaude et al. [4]. These are all based on simple fugacity coefficients, such as given by Henry’s law. Another
series of works at IFPEN [6, 8, 19, 30] is focused on realistic fugacity coefficients given by cubic equations of
state, such as Peng–Robinson’s law. Although the latter investigations have demonstrated a clear superiority
of the unified formulation over the variable-switching one regarding computational time in some cases, the out-
come remains unclear in other cases with single-phase transition: the nonlinear solver for the (unified) algebraic
system of equations may not converge at all, unlike its competitor.

There are two possible explanations for this observed lack of robustness from the unified formulation. To
sketch them out in a precise manner, we need the following formal setup. After discretization in time and
space of the continuous flow model using the unified formulation, the system of equations to be solved at each
time-step takes the abstract form

Λp𝑋q “ 0, (1.1a)
minp𝐺p𝑋q, 𝐻p𝑋qq “ 0, (1.1b)

where 𝑋 P 𝒟 Ă Rℓ is the unknown vector and Λ : 𝒟 Ñ Rℓ´𝑚, 𝐺 : 𝒟 Ñ R𝑚 et 𝐻 : 𝒟 Ñ R𝑚 are continuously
differentiable functions on the open domain 𝒟. The componentwise action of the minimum function in (1.1b) is
merely a convenient way of expressing the complementarity 0 ď 𝐺p𝑋q K 𝐻p𝑋q ě 0. For conciseness, let us put

𝐹 p𝑋q “

„

Λp𝑋q
minp𝐺p𝑋q, 𝐻p𝑋qq



P Rℓ, (1.2)

so that (1.1) becomes 𝐹 p𝑋q “ 0. We can then envision two scenarios that could cause the unified formulation
to perform poorly:

(1) System (1.1) is ill-posed for some data and thermodynamic laws. In other words, it may not have a unique
solution or may not have a solution at all. An even worse situation is when some components of Λ – and
therefore of 𝐹 – are not well-defined over the whole domain of interest 𝒟, so that (1.1) no longer makes
sense. As will be seen later, this occurs for cubic equations of state frequently used in realistic simulations.

(2) The numerical algorithm used to solve system (1.1) is not well suited to the semismooth nature of 𝐹 . Indeed,
the complementarity equations (1.1b) are not differentiable, which prevents the standard Newton method
to be applied. A common remedy is the so-called Newton-min method [2, 15]. However, Newton-min may
suffer from periodic oscillations for large time-steps, as evidenced by Ben Gharbia and Flauraud [6].

The first issue originates from physical modeling. It is the subject of this article, whose primary objective
is to clarify the conditions on thermodynamic laws under which system (1.1) is well-behaved and to propose
some improvements of the model so as to guarantee the existence of a solution. The second issue pertains to
numerical methods. It requires a new method to be designed in order to replace Newton-min and was addressed
in a previous paper [35].

1.2. Main results and outline of the paper

Valuable insights into the difficulty can be gained if, instead of the fully discretized flow model, we focus
on an elementary phase equilibrium problem that lies at the core of the thermodynamic part. This is why
we start by stating the phase equilibrium problem for multicomponent mixtures in Section 2, comparing the
variable-switching formulation to the unified formulation (Sect. 2.2) after recalling some preliminary notions in
Section 2.1.
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Section 3 is devoted to the analysis of the unified formulation. We first revisit two thermodynamic properties
in light of the new framework, namely, the principle of Gibbs energy minimization (Sect. 3.1) and the tangent
plane criterion (Sect. 3.2). Although these properties are well-known in thermodynamics by virtue of various
physical arguments, the point we would like to make here is that they are all mathematical consequences of
the unified formulation. In (3.3), we introduce an important phasewise subproblem called local inversion of
extended fugacities in Section 3.3.1. Sufficient conditions are worked out to ensure the existence and uniqueness
of a solution to this extended fugacities inversion subproblem. In essence, we require strict convexity of the Gibbs
functions in each phase, as well as invertibility and surjectivity of their gradient maps. These assumptions are
also shown in Section 3.4 to guarantee the existence of a solution to the full phase equilibrium problem.

Given a fugacity or activity law from physics textbooks, there is no reason for the corresponding molar
Gibbs function to fulfill the hypotheses of strict convexity and invertibility/surjectivity of the gradient map. In
Section 4, we further investigate the question of strict convexity for some simple fugacity and activity models,
namely, Henry’s laws (Sect. 4.1), Margules’ law (Sect. 4.2), and Van Laar’s law (Sect. 4.3). For each of these,
we manage to determine the subregion in the space of parameters for which strict convexity holds.

A prominent category of fugacity laws widely used in realistic simulations of two-phase mixtures stems from
cubic equations of state (EOS). As recalled in Section 5.1, the definition of the corresponding thermodynamic
quantities involves solving a cubic equation which does not always have three real roots. After a careful study
of the critical values (Sect. 5.2) and the frontier between the 1-root and 3-root regions (Sect. 5.3) for Peng–
Robinson’s law, one of the most advanced cubic EOS-based models, we explain the trouble with these laws
regarding the domains of definition for different functions involved in (1.1). In a nutshell, since there are not
always three real roots, the Gibbs functions and fugacity coefficients are not always well-defined simultaneously
for both phases over the whole domain of generalized partial fractions. While this pathology is not detrimental to
the variable-switching formulation, where only present phases are considered, it causes tremendous harm to the
unified formulation, for which information relative to both phases must be permanently available. The uncovering
of this difficulty in Section 6.1 prompts us to design an extension procedure for various thermodynamic functions,
in an attempt to maintain a good behavior for the unified formulation, that is, to hope for the existence of a
solution to (1.1). The basic idea, elaborated on in Section 6.2, is to extend the Gibbs functions by replacing the
missing real root by the common real part of the two conjugate complex roots. This construction is supported
by further calculations.

2. Phase equilibrium for multicomponent mixtures

2.1. Preliminary notions

In this paper, we are concerned with the advantages and drawbacks of the unified formulation for the phase
equilibrium problem at fixed pressure and temperature. To state this problem, one needs some prerequisites on
the thermodynamics of multiphase multicomponent mixtures.

2.1.1. Species, phases and fractions

A multicomponent mixture is a physical system consisting of several chemically distinct components or
species, e.g., hydrogen pH2q, water pH2Oq, carbon dioxide pCO2q, methane pCH4q . . . It can be thought of in a
more abstract way by introducing the set of species

𝒦 “ tI, II, . . . , 𝐾u, 𝐾 ě 2, (2.1)

whose elements are labeled by Roman numerals. The total number of components 𝐾 “ |𝒦| usually ranges from
tens to hundreds. Each component 𝑖 P 𝒦 may be present under one or many phases. Intuitively, a phase is more
or less a state of matter, e.g., gas p𝐺q, liquid p𝐿q, oil p𝑂q, solid p𝑆q . . . This notion may be subtler, though, at
high pressure [12]. Again, to lay down an abstract framework, we consider the set of all virtually possible phases

P “ t1, 2, . . . , 𝑃 u, 𝑃 ě 2, (2.2)
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whose elements are labeled by Arabic numerals. The choice of P within a model is the (difficult) task of
physicists: 𝑃 should be large enough to take into account the appearance of new phases in models with time
evolution, but not too large for computations to remain feasible. In reservoir simulations, the maximum number
of possible phases 𝑃 “ |P| is commonly about 3.

The relative importance of each phase 𝛼 P P within the mixture is measured by the phasic fraction 𝑌𝛼 P r0, 1s,
such that

ÿ

𝛼PP

𝑌𝛼 “ 1. (2.3)

A phase for which 𝑌𝛼 “ 0 is said to be absent. Otherwise, it is present. The subset of present phases, namely,

Γ “ t𝛼 P P | 𝑌𝛼 ą 0u ĂP (2.4)

is referred to as the context. For a present phase 𝛼 P Γ, it is possible to compare the relative contribution of
each component 𝑖 P 𝒦 within it by defining the partial fractions 𝑥𝑖

𝛼 P r0, 1s, such that
ÿ

𝑖P𝒦
𝑥𝑖

𝛼 “ 1. (2.5)

The vector 𝑥𝛼 “
`

𝑥I
𝛼, . . . , 𝑥𝐾´1

𝛼

˘

P Ω Ă R𝐾´1 is called partial composition of phase 𝛼. It consists of only the
first 𝐾´1 partial fractions, since the quantities 𝑥I

𝛼, 𝑥II
𝛼 , . . . , 𝑥𝐾

𝛼 are not independent, in view of (2.5). Whenever
a 𝑥𝐾

𝛼 turns up in any formula, it should be interpreted as 𝑥𝐾
𝛼 “ 1´ 𝑥I

𝛼 ´ . . .´ 𝑥𝐾´1
𝛼 . The domain of 𝑥𝛼 is the

closure of

Ω “
 

𝑥 “
`

𝑥I, . . . , 𝑥𝐾´1
˘

P R𝐾´1 | 𝑥I ą 0, . . . , 𝑥𝐾´1 ą 0, 1´ 𝑥I ´ . . .´ 𝑥𝐾´1 ą 0
(

, (2.6a)

namely,
Ω “

 

𝑥 “
`

𝑥I, . . . , 𝑥𝐾´1
˘

P R𝐾´1 | 𝑥I ě 0, . . . , 𝑥𝐾´1 ě 0, 1´ 𝑥I ´ . . .´ 𝑥𝐾´1 ě 0
(

. (2.6b)

Although this choice somehow breaks the symmetry, it is commonly resorted to in practice.
Finally, there is a third notion of fraction, called global fractions and denoted by 𝑐𝑖 P r0, 1s, which quantifies

the overall relative importance of each component 𝑖 P 𝒦 inside the mixture. Of course, we have
ÿ

𝑖P𝒦
𝑐𝑖 “ 1. (2.7)

The vector 𝑐 “
`

𝑐I, . . . , 𝑐𝐾´1
˘

P Ω Ă R𝐾´1 is called global composition of components. Again, because of the
dependence (2.7), only the first 𝐾 ´ 1 values in 𝑐. Whenever a 𝑐𝐾 appears in the text, it should be understood
as 𝑐𝐾 “ 1´ 𝑐I ´ . . .´ 𝑐𝐾´1. The material balance of component 𝑖 implies that

𝑐𝑖 “
ÿ

𝛼PΓ

𝑌𝛼𝑥𝑖
𝛼. (2.8)

Given the context Γ, the phasic fractions t𝑌𝛼u𝛼PΓ and the partial fractions t𝑥𝑖
𝛼up𝑖,𝛼qP𝒦ˆP , it is straightforward

to calculate the global composition t𝑐𝑖u𝑖P𝒦 by (2.8). The phase equilibrium problem takes exactly the opposite
direction: given the global composition t𝑐𝑖u𝑖P𝒦 satisfying (2.7), is it possible to find the context Γ, the phasic
fractions t𝑌𝛼u𝛼PΓ and the partial fractions t𝑥𝑖

𝛼up𝑖,𝛼qP𝒦ˆP satisfying (2.3), (2.5) and (2.8) beside positivity?
Obviously, we do not have enough equations yet. The missing ones will be supplied at the end of Section 2.1.3.

Remark 2.1. We have deliberately not specified whether the three kinds of fractions 𝑌𝛼, 𝑥𝑖
𝛼 and 𝑐𝑖 are molar,

volumic or specific fractions. In fact, this does not matter. The mathematical structure of the problem remains
the same and the theoretical development is similar in all cases.
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2.1.2. Gibbs energy and chemical potential

The behavior of each phase 𝛼 P P is governed by a single fundamental function 𝑔𝛼 : Ω Ñ R known as the
(intensive) Gibbs free energy of the phase. We require 𝑔𝛼 to be as smooth as necessary in Ω and continuously
extendable to BΩ. However, ∇𝑔𝛼 may blow up on BΩ. From 𝑔𝛼, we define 𝐾 functions 𝜇𝑗

𝛼 : Ω Ñ R, 𝑗 P 𝒦, called
chemical potentials by

𝜇𝑗
𝛼p𝑥q “ 𝑔𝛼p𝑥q `

@

∇𝑔𝛼p𝑥q, 𝛿𝑗
´ 𝑥

D

(2.9)

for 𝑥 P Ω, where the vector 𝛿𝑗
“ p𝛿𝑗,1, 𝛿𝑗,2, . . . , 𝛿𝑗,𝐾´1q P R𝐾´1 is made up of Kronecker’s symbols. The

following statement gives two helpful identities between 𝑔𝛼 and 𝜇𝑖
𝛼. The first one (2.10a) relates the Gibbs

energy to the potentials. The second one (2.10b) provides the gradient of the Gibbs energy from the potentials.

Lemma 2.2 (Connection between Gibbs energy and chemical potentials). For all 𝑥 P Ω:

𝑔𝛼p𝑥q “
𝐾
ÿ

𝑗“I

𝑥𝑗 𝜇𝑗
𝛼p𝑥q; (2.10a)

B𝑔𝛼

B𝑥𝑗
p𝑥q “ 𝜇𝑗

𝛼p𝑥q ´ 𝜇𝐾
𝛼 p𝑥q, @𝑗 P 𝒦zt𝐾u. (2.10b)

Proof. Multiplying (2.9) by 𝑥𝑗 , summing over 𝑗 P 𝒦 and noticing that
ř

𝑗P𝒦 𝑥𝑗𝛿𝑗
“ 𝑥, we end up with (2.10a).

To prove (2.10b), we subtract the last potential

𝜇𝐾
𝛼 p𝑥q “ 𝑔𝛼p𝑥q `

A

∇𝑔𝛼p𝑥q, 𝛿𝐾
´ 𝑥

E

from each 𝜇𝑗
𝛼, 𝑗 P 𝒦zt𝐾u, given by (2.9). This cancels out 𝑔𝛼p𝑥q and the desired identity follows from 𝛿𝐾

“

p0, 0, . . . , 0q. �

Remark 2.3. In the above, we used the generic variable 𝑥 to alleviate notations. Of course, 𝑔𝛼 is to be evaluated
at 𝑥𝛼, the composition of phase 𝛼. As a matter of fact, the Gibbs function also depends on the pressure P𝛼 and
the temperature T𝛼 of the phase [33]. But since we work at fixed pressure and temperature, we purposely omit
to write them down in order to concentrate on the dependency with respect to the fractions.

2.1.3. Fugacity, fugacity coefficient and quilibrium conditions

For a solid phase, 𝜇𝑖
𝛼 is a constant. For fluid phases such as gas, liquid and oil, the chemical potentials take

the form
𝜇𝑖

𝛼p𝑥q “ ln
`

𝑥𝑖Φ𝑖
𝛼p𝑥q

˘

, (2.11a)

in which Φ𝑖
𝛼 is called the fugacity coefficient of component 𝑖 in phase 𝛼. Note, however, that it depends on the

whole composition vector. As for the quantity

𝑓 𝑖
𝛼p𝑥q “ 𝑥𝑖Φ𝑖

𝛼p𝑥q, (2.11b)

it is known as the fugacity of component 𝑖 in phase 𝛼. Substituting the form (2.11a) into (2.10a), we obtain

𝑔𝛼p𝑥q “
𝐾
ÿ

𝑖“I

𝑥𝑖 ln 𝑥𝑖 `

𝐾
ÿ

𝑖“I

𝑥𝑖 ln Φ𝑖
𝛼p𝑥q (2.12)

The first sum
ř𝐾

𝑗“I 𝑥𝑗 ln 𝑥𝑗 is the ideal part. The second sum, denoted by

Ψ𝛼p𝑥q “
𝐾
ÿ

𝑖“I

𝑥𝑖 ln Φ𝑖
𝛼p𝑥q, (2.13)
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is the excess part. In this perspective, a fluid phase 𝛼 is assimilated to a “perturbation” of the ideal gas. As
will be done in Section 6, we shall act only on the excess part to modify the Gibbs function.

Owing to the regularity assumptions made on 𝑔𝛼 and 𝜇𝑖
𝛼, the functions Ψ𝛼 : Ω Ñ R and ln Φ𝑖

𝛼 : Ω Ñ R
are also as smooth as necessary, with Ψ𝛼 extendable by continuity to Ω but not the ln Φ𝑖

𝛼’s. The very useful
relations below between Ψ𝛼 and ln Φ𝑖

𝛼 are similar to those between 𝑔𝛼 and 𝜇𝑖
𝛼.

Lemma 2.4 (Connection between excess energy and fugacity coefficients). For all 𝑥 P Ω:

ln Φ𝑗
𝛼p𝑥q “ Ψ𝛼p𝑥q `

@

∇Ψ𝛼p𝑥q, 𝛿𝑗
´ 𝑥

D

, @𝑗 P 𝒦; (2.14a)

BΨ𝛼

B𝑥𝑗
𝛼

p𝑥q “ ln Φ𝑗
𝛼p𝑥q ´ ln Φ𝐾

𝛼 p𝑥q, @𝑗 P 𝒦zt𝐾u; (2.14b)

Proof. The proof is straightforward. For each identity from Lemma 2.2, we just have to separate the ideal part
from the excess part. The ideal part vanishes trivially. �

In a multicomponent mixture without any chemical reaction (also called non-reactive), the presence of two
phases p𝛼, 𝛽q P ΓˆΓ implies that some equilibrium conditions must be achieved. According to thermodynamics,
these conditions are the equalities across the two phases of pressure, temperature, and the chemical potentials
corresponding to each component 𝑖 P 𝒦. In other words, the missing conditions for the phase equilibrium
problem at fixed pressure and temperature are

𝜇𝑖
𝛼p𝑥𝛼q “ 𝜇𝑖

𝛽p𝑥𝛽q, for all p𝑖, 𝛼, 𝛽q P 𝒦 ˆ Γˆ Γ, (2.15a)

or equivalently,
𝑥𝑖

𝛼Φ𝑖
𝛼p𝑥𝛼q “ 𝑥𝑖

𝛽Φ𝑖
𝛽p𝑥𝛽q, for all p𝑖, 𝛼, 𝛽q P 𝒦 ˆ Γˆ Γ. (2.15b)

The fugacity coefficients Φ𝑖
𝛼 are given empirically or inferred from an equation of state.

Remark 2.5. Our definitions (2.11) are not exactly those of textbooks, where

p𝜇𝑖
𝛼p𝑥𝛼, P, Tq “ p𝜇𝑖

‚pP, Tq ` RT ln
`

𝑥𝑖
𝛼Φ𝑖

𝛼p𝑥𝛼, P, Tq
˘

, (2.16a)
p𝑓 𝑖
𝛼p𝑥𝛼, P, Tq “ 𝑥𝑖

𝛼Φ𝑖
𝛼p𝑥𝛼, P, TqP, (2.16b)

with R the universal gas constant and 𝜇𝑖
‚pP, Tq a reference ideal value. Since P and T are equal across the phases,

it is readily checked that the equality of “classical” chemical potentials p𝜇𝑖
𝛼p𝑥𝛼, P, Tq “ p𝜇𝑖

𝛽p𝑥𝛽 , P, Tq is indeed
equivalent to (2.15a). Opting for (2.11) instead of (2.16) amounts to working with the Gibbs energy function
𝑔𝛼 instead of

p𝑔𝛼p𝑥𝛼, P, Tq “
ÿ

𝑖P𝒦
p𝜇𝑖
‚pP, Tq𝑥𝑖

𝛼 ` RT𝑔𝛼p𝑥𝛼q,

which differs from 𝑔𝛼 by an additive affine function and a multiplicative constant.

A given family of positive real-valued functions tΦ𝑖
𝛼up𝑖,𝛼qP𝒦ˆP is said to be admissible if, for each 𝛼 P P,

there exists a Gibbs energy function 𝑔𝛼 of which they are the fugacity coefficients.

2.2. Two mathematical formulations

Equipped with the preliminary notions of Section 1, we are now in a position to rigorously state the phase
equilibrium problem in two different ways: the “traditional” one and the “modern” one.
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2.2.1. Variable-switching formulation

The first formulation has the advantage of being “natural,” insofar as it uses the variables that have been
introduced so far. It also bears the name of natural variable formulation.

GIVEN
𝒦, P, tΦ𝑖

𝛼up𝑖,𝛼qP𝒦ˆP admissible, 𝑐 P Ω,

FIND
Γ Ă P, t𝑌𝛼u𝛼PΓ ą 0, t𝑥𝑖

𝛼up𝑖,𝛼qP𝒦ˆΓ ě 0

so as to satisfy
ÿ

𝛽PΓ

𝑌𝛽𝑥𝑖
𝛽 ´ 𝑐𝑖 “ 0, @𝑖 P 𝒦; (2.17a)

𝑥𝑖
𝛼Φ𝑖

𝛼p𝑥𝛼q ´ 𝑥𝑖
𝜔Φ𝑖

𝜔p𝑥𝜔q “ 0, @p𝑖, 𝛼q P 𝒦 ˆ Γzt𝜔u, (2.17b)

ÿ

𝑗P𝒦
𝑥𝑗

𝛼 ´ 1 “ 0, @𝛼 P Γ, (2.17c)

where 𝜔 is a fixed phase of Γ.
Obviously, equation (2.17b) is none other than (2.15b), but expressed in such a way to avoid redundancy. The

material balances (2.17a), (2.17c) respectively match (2.8), (2.5). Note that (2.3) is not explicitly prescribed
because it can be deduced from the existing equations by summing (2.17a) over 𝑖 P 𝒦, switching order, and
invoking (2.17c). For a given context Γ, system (2.17) contains p𝐾 ` 1q|Γ| equations and unknowns. It must
of course be assumed that the physical properties of the species involved are such that the 𝐾p|Γ| ´ 1q fugacity
equalities (2.17b) are independent.

The price to be paid for naturality is that the context Γ is itself an unknown. To circumvent this difficulty,
we start by making an “educated guess” for Γ. At every fixed Γ, we attempt to solve the algebraic equations
(2.17): this is what physicists call a pP, Tq-flash. After exiting the flash, we check the positivity of 𝑌𝛼 and
the non-negativity of 𝑥𝑖

𝛼, for 𝛼 P Γ. Should one of these fractions have the wrong sign, we must change Γ by
adding or deleting phases and go for another flash! The number of unknowns and equations for a flash strongly
depends on the assumption currently made about the context Γ. There is a vast literature on numerical methods
[22–24, 36] for the flash problem (2.17) at fixed Γ. In addition to the classical and generic Newton-Raphson
method [3, 33], many special purpose algorithms have been dedicated to the flash problem. These are itera-
tive methods based on various kinds of substitution [13], the most famous of them being the Rachford-Rice
substitution [32].

2.2.2. Unified formulation

To avoid the annoyance of dynamically handling the context, Lauser et al. [17] put forward another formu-
lation for the phase equilibrium problem.

GIVEN
𝒦, P,

 

Φ𝑖
𝛼

(

p𝑖,𝛼qP𝒦ˆP
admissible, 𝑐 P Ω,

FIND
t𝑌𝛼u𝛼PP ě 0,

 

𝜉𝑖
𝛼

(

p𝑖,𝛼qP𝒦ˆP
ě 0

so as to satisfy
ÿ

𝛽PP

𝑌𝛽𝜉𝑖
𝛽 ´ 𝑐𝑖 “ 0, @𝑖 P 𝒦; (2.18a)

𝜉𝑖
𝛼Φ𝑖

𝛼p𝑥𝛼q ´ 𝜉𝑖
𝜔Φ𝑖

𝜔p𝑥𝜔q “ 0, @p𝑖, 𝛼q P 𝒦 ˆPzt𝜔u, (2.18b)
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min

˜

𝑌𝛼, 1´
ÿ

𝑗P𝒦
𝜉𝑗
𝛼

¸

“ 0, @𝛼 P P, (2.18c)

where 𝜔 is a fixed phase of P and 𝑥𝛼 “ p𝑥
I
𝛼, . . . , 𝑥𝐾´1

𝛼 q P R𝐾´1 is defined as

𝑥𝑖
𝛼 “

𝜉𝑖
𝛼

ř

𝑗P𝒦 𝜉𝑗
𝛼

¨ (2.18d)

In this second formulation, the partial fractions 𝑥𝑖
𝛼 have been replaced by a new notion, that of extended

fractions 𝜉𝑖
𝛼. The latter are defined over p𝑖, 𝛼q P 𝒦ˆP instead of being restricted to p𝑖, 𝛼q P 𝒦ˆΓ. Although the

connection between extended fractions and partial fractions is given by the renormalization (2.18d), the 𝑥𝑖
𝛼’s

here are merely auxiliary variables that can be eliminated by inserting (2.18d) into (2.18b). The thermodynamic
equilibrium (2.18b) is now the equality of extended fugacity across phases for each component.

The complementarity conditions (2.18c) actually mean that, for each 𝛼 P P,

𝑌𝛼 ě 0, 1´
ÿ

𝑗P𝒦
𝜉𝑗
𝛼 ě 0, 𝑌𝛼

˜

1´
ÿ

𝑗P𝒦
𝜉𝑗
𝛼

¸

“ 0. (2.19)

As a consequence, for each phase 𝛼 P P, there are three possible regimes:

– 𝑌𝛼 ą 0 (phase 𝛼 is present). This implies
ř

𝑗P𝒦 𝜉𝑗
𝛼 “ 1 and by (2.18d), 𝜉𝑖

𝛼 “ 𝑥𝑖
𝛼. Hence, the extended

fractions of a present phase coincide with the usual partial fractions.
– 1´

ř

𝑗P𝒦 𝜉𝑗
𝛼 ą 0. This entails 𝑌𝛼 “ 0 (phase 𝛼 is absent) and 𝜉𝑖

𝛼 ‰ 𝑥𝑖
𝛼. The extended fractions of an absent

phase differ from the usual partial fractions (see exception below).
– 𝑌𝛼 “ 0 and 1 ´

ř

𝑗P𝒦 𝜉𝑗
𝛼 “ 0. This corresponds to a transition point, where phase 𝛼 starts appearing or

disappearing.

It is legitimate to wonder about the origin of the sign condition 1 ´
ř

𝑗P𝒦 𝜉𝑗
𝛽 ě 0. After all, it brings a new

piece of information that was not included in the variable-switching formulation (2.17). As will be proven in
Section 3.2, this condition ensures a stability property known as the tangent plane criterion by physicists. It
can also be related to the minimization of the Gibbs energy of the mixture, as will be done in Section 3.1.

The ability of formulation (2.18) to deal with all possible configurations (arising from the presence or the
absence of each phase) in a unified way is very attractive not only for convenience but also for computational
efficiency. The context Γ no longer appears in the statement of the problem, but can be determined a posteriori
by collecting those phases 𝛼 for which 𝑌𝛼 ą 0. As before, note that the phase balance (2.3) is not explicitly
imposed because it can be recovered from the existing equations by summing (2.18a) over 𝑖 P 𝒦, permuting
order and taking advantage of (2.18c). System (2.18) has p𝐾 ` 1q𝑃 equations and unknowns. It can be cast
under the abstract form (1.1) with

ℓ “ p𝐾 ` 1q𝑃, 𝑚 “ 𝑃,
´

t𝑌𝛼u𝛼PP ,
 

𝜉𝑖
𝛼

(

p𝑖,𝛼qP𝒦ˆP

¯

“: 𝑋 P 𝒟 :“ R𝑃
` ˆ

`

R𝐾
`

˘𝑃
.

The existence of a solution to (2.18) can be guaranteed under some sufficient conditions on the Gibbs functions
𝑔𝛼, as elucidated in Section 3.4.

3. Properties of the unified formulation

The unified formulation enjoys many remarkable properties that seem to be unknown so far, at least to our
knowledge. In particular, by postulating 1´

ř

𝑖P𝒦 𝜉𝑖
𝛼 ě 0 from the beginning, it achieves a deep connection with

some classical results in thermodynamics.
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3.1. Connection with Gibbs energy minimization

We would like to better understand where this sign information comes from. In the literature, the condition
1 ´

ř

𝑖P𝒦 𝜉𝑖
𝛼 ě 0 is customarily derived from a phase stability analysis [22] (see also [6] for a more recent

presentation). However, this classical analysis suffers from a few limitations. First, it is restricted to two phases.
Second, it is local: the Gibbs energy difference under study must be linearized via a first-order Taylor expansion,
before minimizing. Third, the notion of extended fractions appears only at the end, in a very ad hoc way.

We propose a more direct connection between the unified formulation (2.18) and some Gibbs energy mini-
mization problem expressed in terms of the extended fractions 𝜉𝑖

𝛼, without any linearization. In this problem, the
quantities 1´

ř

𝑖P𝒦 𝜉𝑖
𝛼 will appear to be the Lagrange multipliers associated with the constraints 𝑌𝛼 ě 0. Con-

versely, while not every critical point of the minimization problem p𝒫q is a solution of the unified formulation,
some “natural” choice of critical points satisfies the unified formulation.

3.1.1. Towards a novel interpretation

In order to state the minimization problem, we need to introduce a new Gibbs function. For each phase
𝛼 P P, let g𝛼 : R𝐾

` Ñ R be the extended molar Gibbs energy defined as

g𝛼

`

𝜉I, . . . , 𝜉𝐾
˘

“
ÿ

𝑖P𝒦
𝜉𝑖 ln

`

𝜉𝑖Φ𝑖
𝛼p𝑥q

˘

, (3.1)

using the renormalization (2.18d) to compute 𝑥 P Ω from 𝜉 “
`

𝜉I, . . . , 𝜉𝐾
˘

P R𝐾
` zt0u. For normalized fractions,

g𝛼p𝑥
I, . . . , 𝑥𝐾q “ 𝑔𝛼p𝑥q. Thus, 𝑔𝛼 lifts the intensive Gibbs function 𝑔𝛼 to the domain of extended fractions, but

it does not coincide with the usual extensive Gibbs function [33]. The following Lemma summarizes its most
useful properties.

Lemma 3.1. For 𝜉 P R𝐾
` zt0u and 𝑗 P 𝒦, we have

Bg𝛼

B𝜉𝑗
p𝜉q “ ln

`

𝜉𝑗Φ𝑗
𝛼p𝑥q

˘

` 1, (3.2a)

g𝛼p𝜉q “
ÿ

𝑖P𝒦
𝜉𝑖 Bg𝛼

B𝜉𝑖
p𝜉q ´ 𝜎, with 𝜎 “

ÿ

𝑖P𝒦
𝜉𝑖. (3.2b)

1 “
ÿ

𝑖P𝒦
𝜉𝑖 B ln

`

𝜉𝑖Φ𝑖
𝛼

˘

B𝜉𝑗
p𝜉q. (3.2c)

Proof. The readers are referred to Lemma 2.3 from [34]. The calculations involve the extensive Gibbs energy
that we have not introduced here for conciseness, but are not difficult. �

We can now consider the following minimization problem p𝒫q.

GIVEN
𝒦, P, tΦ𝑖

𝛼up𝑖,𝛼qP𝒦ˆP admissible, 𝑐 P Ω,

FIND
min

t𝑌𝛼u𝛼PP

t𝜉𝛼u𝛼PP

ÿ

𝛼PP

𝑌𝛼g𝛼p𝜉𝛼q (3.3a)

subject to
ÿ

𝛼PP

𝑌𝛼 ´ 1 “ 0, (3.3b)

ÿ

𝛼PP

𝑌𝛼𝜉𝑖
𝛼 ´ 𝑐𝑖 “ 0, @𝑖 P 𝒦, (3.3c)
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´𝑌𝛼 ď 0, @𝛼 P P. (3.3d)

The objective function in (3.3a) represents the extended Gibbs energy for the mixture. The equality constraints
(3.3b), (3.3c) are exactly the material balances (2.3), (2.18a). This time, there is no redundancy since we have
not imposed the complementarity conditions (2.18c).

Let 𝑢, t𝑣𝑖u𝑖P𝒦 and t𝑤𝛼u𝛼PP be the Lagrange multipliers associated respectively with the constraints (3.3b),
(3.3c) and (3.3d). The Lagrangian of the minimization problem (3.3) reads

L
`

t𝑌𝛼u, t𝜉𝛼u, 𝑢,
 

𝑣𝑖
(

, t𝑤𝛼u
˘

“
ÿ

𝛼PP

𝑌𝛼g𝛼p𝜉𝛼q ` 𝑢

˜

ÿ

𝛼PP

𝑌𝛼 ´ 1

¸

`
ÿ

𝑖P𝒦
𝑣𝑖

˜

ÿ

𝛼PP

𝑌𝛼𝜉𝑖
𝛼 ´ 𝑐𝑖

¸

´
ÿ

𝛼PP

𝑤𝛼𝑌𝛼.

The saddle-points of L are given by the Karush-Kuhn-Tucker (KKT) conditions [26]

g𝛽p𝜉𝛽q ` 𝑢`
ÿ

𝑖P𝒦
𝑣𝑖𝜉𝑖

𝛽 ´ 𝑤𝛽 “ 0, @𝛽 P P (3.4a)

𝑌𝛽

„

Bg𝛽

B𝜉𝑗
p𝜉𝛽q ` 𝑣𝑗



“ 0, @p𝑗, 𝛽q P 𝒦 ˆP, (3.4b)
ÿ

𝛼PP

𝑌𝛼 ´ 1 “ 0, (3.4c)

ÿ

𝛼PP

𝑌𝛼𝜉𝑖
𝛼 ´ 𝑐𝑖 “ 0, @𝑖 P 𝒦, (3.4d)

minp𝑌𝛽 , 𝑤𝛽q “ 0, @𝛽 P P. (3.4e)

The last equation (3.4e) expresses the complementarity between each inequality constraint (3.3d) and its
Lagrange multiplier at optimality. It can be rephrased as

𝑌𝛽 ě 0, 𝑤𝛽 ě 0, 𝑌𝛽 𝑤𝛽 “ 0.

A set of values tp𝑌𝛼, 𝜉𝛼qu𝛼PP is said to be a critical point for problem (3.3) if there exists a set of values
p𝑢, t𝑣𝑖u𝑖P𝒦, t𝑤𝛼u𝛼PPq such that the KKT optimality system (3.4) is satisfied.

3.1.2. From one formulation to the other

We first show that it is easy to go from the unified formulation to the minimization problem.

Theorem 3.2. Every solution
 `

s𝑌𝛼, s𝜉𝛼

˘(

𝛼PP
of the unified formulation (2.18) is a critical point of the mini-

mization problem (3.3), with

s𝑢 “ 1, s𝑣𝑗 “ ´
“

ln
`

s𝜙𝑗
˘

` 1
‰

, s𝑤𝛽 “ 1´ s𝜎𝛽 , (3.5)

where s𝜙𝑗 is the common value of the extended fugacity s𝜉𝑗
𝛼Φ𝑗

𝛼ps𝑥𝛼q across all phases 𝛼 P P.

Proof. Let
 `

s𝑌𝛼, s𝜉𝛼

˘(

𝛼PP
be a solution of (2.18). The material balances (3.4c), (3.4d) are naturally met,

as observed in Section 2.2.2. The equality of extended fugacities (2.18b) makes it possible to define s𝑣𝑗 “

´
“

ln
`

𝜙𝑗
˘

` 1
‰

in the way described in the theorem. This choice of s𝑣𝑗 trivially fulfills (3.4b) because of (3.2a).
The choice of s𝑤𝛽 implies (3.4e) because of (2.18c). It remains to check (3.4a). To this end, we use Lemma 3.1
to write

g𝛽

`

s𝜉𝛽

˘

` s𝑢`
ÿ

𝑖P𝒦
s𝑣𝑖
s𝜉𝑖
𝛽 ´ s𝑤𝛽 “

ÿ

𝑖P𝒦

s𝜉𝑖
𝛽

Bg𝛽

Bs𝜉𝑖
𝛽

`

s𝜉𝛽

˘

´ s𝜎𝛽 ` 1´
ÿ

𝑖P𝒦

s𝜉𝑖
𝛽

Bg𝛽

Bs𝜉𝑖
𝛽

`

s𝜉𝛽

˘

´ p1´ s𝜎𝛽q “ 0.

This completes the proof. �
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The reverse direction is more delicate. The main difficulty lies in the indetermination of the extended fractions
for an absent phase.

Theorem 3.3. Let
!´

r𝑌𝛼, r𝜉𝛼

¯)

𝛼PP
be a critical point of the minimization problem (3.3).

(1) If two phases p𝛼, 𝛽q PP ˆP are both present, i.e., r𝑌𝛼 ą 0 and r𝑌𝛽 ą 0, then

r𝜎𝛼 “ r𝜎𝛽 “ 1, r𝜉𝑖
𝛼Φ𝑖

𝛼pr𝑥𝛼q “ r𝜉𝑖
𝛽Φ𝑖

𝛽pr𝑥𝛽q for all 𝑖 P 𝒦. (3.6)

This implies that the complementarity condition (2.18c) holds for both phases and that the extended fugacity
equalities (2.18b) hold between the two phases considered.

(2) If phase 𝛼 is present and phase 𝛽 is absent, i.e., r𝑌𝛼 ą 0 and r𝑌𝛽 “ 0, then

r𝜎𝛼 “ 1,
ÿ

𝑖P𝒦

r𝜉𝑖
𝛽

”

ln
´

r𝜉𝑖
𝛽Φ𝑖

𝛽pr𝑥𝛽q

¯

´ ln
´

r𝜉𝑖
𝛼Φ𝑖

𝛼pr𝑥𝛼q

¯ı

` 1´ r𝜎𝛽 ě 0. (3.7)

This implies that, in general, the complementarity condition (2.18c) does not hold for phase 𝛽 and the
extended fugacity equalities (2.18b) do not hold between 𝛼 and 𝛽. But (2.18c) is automatically met for phase
𝛽 as soon as (2.18b) holds between 𝛼 and 𝛽.

Proof. Let
!´

r𝑌𝛼, r𝜉𝛼

¯)

𝛼PP
,
`

r𝑢,
 

r𝑣𝑖
(

𝑖P𝒦, t r𝑤𝛼u𝛼PP

˘

be a solution of the KKT system (3.4). First, assume that

r𝑌𝛼 ą 0 and r𝑌𝛽 ą 0. Dividing (3.4b) by r𝑌 , we obtain B𝜉𝑗 g𝛼

´

r𝜉𝛼

¯

`r𝑣𝑗 “ 0 and B𝜉𝑗 g𝛽

´

r𝜉𝛽

¯

`r𝑣𝑗 “ 0. From this, we

deduce that B𝜉𝑗 g𝛼

´

r𝜉𝛼

¯

“ B𝜉𝑗 g𝛽

´

r𝜉𝛽

¯

“ ´r𝑣𝑗 . According to (3.2a) (Lem. 3.1), this is equivalent to the equality

of extended fugacities (2.18b), rewritten in the second part of (3.6). On the other hand, r𝑌𝛼 ą 0 implies r𝑤𝛼 “ 0
by (3.4e). Equation (3.4a) then becomes

g𝛼

´

r𝜉𝛼

¯

` r𝑢´
ÿ

𝑖P𝒦

r𝜉𝑖
𝛼

Bg𝛼

B𝜉𝑖

´

r𝜉𝛼

¯

“ 0.

Combining this with (3.2b) (Lem. 3.1), we infer that r𝜎𝛼 “ r𝑢. Repeating the same reasoning for 𝛽, we also get
r𝜎𝛽 “ r𝑢. Hence, r𝜎𝛼 “ r𝜎𝛼. This means that r𝜎 takes on the same value r𝑢 in all present phases. Let rΓ be set of
𝜋 P P such that r𝑌𝜋 ą 0. Note that rΓ ‰ H because of (3.4c). Summing (3.4d) over 𝑖 P 𝒦 and permuting the
order of summation yields

0 “
ÿ

𝑖P𝒦

ÿ

𝜋PP

r𝑌𝜋
r𝜉𝑖
𝜋 ´

ÿ

𝑖P𝒦
𝑐𝑖 “

ÿ

𝜋PP

r𝑌𝜋r𝜎𝜋 ´ 1 “ r𝑢
ÿ

𝜋PrΓ

r𝑌𝜋 ´ 1 “ r𝑢´ 1.

Therefore, r𝑢 “ 1, which proves the first part of (3.6).
Assume now that r𝑌𝛼 ą 0 and r𝑌𝛽 “ 0. It is no longer possible to divide (3.4b) by r𝑌𝛽 to retrieve information

on the extended fugacities. Likewise, we now simply have 𝑤𝛽 ě 0 from (3.4e). Equation (3.4a) for phase 𝛽 leads
to

g𝛽

´

r𝜉𝛽

¯

` r𝑢`
ÿ

𝑖P𝒦
r𝑣𝑖
r𝜉𝑖
𝛽 “ r𝑤𝛽 ě 0.

Because phase 𝛼 is present, r𝜎𝛼 “ r𝑢 “ 1 and r𝑣𝑖 “ ´B𝜉𝑖g𝛼

´

r𝜉𝛼

¯

. Invoking (3.2b) (Lem. 3.1) for phase 𝛽, we can
transform the above equality into

ÿ

𝑖P𝒦

r𝜉𝑖
𝛽

„

Bg𝛽

B𝜉𝑖

´

r𝜉𝛽

¯

´
Bg𝛼

B𝜉𝑖

´

r𝜉𝛼

¯



´ r𝜎𝛽 ` 1 ě 0.

This is none other than the second part of (3.7). �
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To fully grasp the meaning of Theorem 3.3, it is capital to observe that when a critical point of (3.3) has
a vanishing phase 𝛽 P P for which r𝑌𝛽 “ 0, the corresponding extended fractions r𝜉𝛽 cannot be uniquely
determined. Indeed, r𝜉𝛽 plainly does not contribute to neither the objective function (3.3a) nor the constraint
(3.3c) at fixed r𝑌𝛽 “ 0. To put it another way, changing r𝜉𝛽 to any other vector R𝐾

` will provide another acceptable
critical point. Thus, as soon as there is a critical point of (3.3) for which r𝑌𝛽 “ 0, there are in fact an infinity of
such critical points. Among this infinity of critical points, only those for which

r𝜉𝑖
𝛽Φ𝑖

𝛽pr𝑥𝛽q “ r𝜉𝑖
𝛼Φ𝑖

𝛼pr𝑥𝛼q for all 𝑖 P 𝒦, (3.8)

where 𝛼 is present phase
´

r𝑌𝛼 ą 0
¯

, will be also solutions of the unified formulation (2.18). Combining this with
Theorem 3.2, we can interpret the unified formulation as a set of equations that is slightly “stronger” than that
of the KKT system for the critical points. It is stronger in the sense that it helps selecting some special critical
points – and hopefully just one – among the infinity of possible critical points that appear when one of the
phases disappears.

3.1.3. A continuity principle

We even have heuristic arguments to claim the critical points selected by the unified formulation are “natural”
ones. By this, we mean that the additional conditions (3.8) to be prescribed on the extended fractions of an
absent phase 𝛽 can be construed as the limit of a continuous process during which 𝛽 was present before vanishing.
To build up this process, let us reformulate the minimization problem p𝒫q or (3.3) as the bilevel or hierarchical
problem

min
𝑌𝛽

min
t𝑌𝛼u𝛼PPzt𝛽u

t𝜉𝛼u𝛼PP

ÿ

𝛼PPzt𝛽u

𝑌𝛼g𝛼p𝜉𝛼q ` 𝑌𝛽g𝛽p𝜉𝛽q (3.9a)

subject to
ÿ

𝛼PPzt𝛽u

𝑌𝛼 ` 𝑌𝛽 ´ 1 “ 0, (3.9b)

ÿ

𝛼PPzt𝛽u

𝑌𝛼𝜉𝑖
𝛼 ` 𝑌𝛽𝜉𝑖

𝛽 ´ 𝑐𝑖 “ 0, @𝑖 P 𝒦, (3.9c)

´𝑌𝛼 ď 0, @𝛼 P Pzt𝛽u. (3.9d)

The constraints (3.9b)–(3.9d) are imposed on the inner minimization problem p𝒫𝑌𝛽
q

min
t𝑌𝛼u𝛼PPzt𝛽u

t𝜉𝛼u𝛼PP

ÿ

𝛼PPzt𝛽u

𝑌𝛼g𝛼p𝜉𝛼q ` 𝑌𝛽g𝛽p𝜉𝛽q (3.10)

for a fixed 𝑌𝛽 ě 0. Assume that for each small enough 𝑌𝛽 ą 0 there is a unique critical point, denoted by
tr𝑌𝛼p𝑌𝛽qu𝛼PPzt𝛽u, tr𝜉𝛼p𝑌𝛽qu𝛼PP . From the KKT conditions for (3.10) subject to (3.9b)–(3.9d), it follows that
(see [34], Sect. 2.3.2.4 for details)

r𝜉𝛽
𝑖 p𝑌𝛽qΦpr𝑥𝛽p𝑌𝛽qq “ r𝜉𝛼

𝑖 p𝑌𝛽qΦpr𝑥𝛼p𝑌𝛽qq for all 𝑖 P 𝒦.

Now, we let 𝑌𝛽 Ó 0. If all of the quantities involved in the above equality have finite limits, we clearly end up
with (3.8).

3.2. Tangent plane criterion

Another set of properties can be established by looking at the geometric significance of the extended fugacity
equalities (2.18b). Recall that Ω defined in (2.6b), is the domain of the partial fractions 𝑥 renormalized from 𝜉
by (2.18d). The generic element of Ωˆ R is denoted by p𝑥, 𝑦q. Let

𝒢𝛼 “
 

p𝑥, 𝑦q P Ωˆ R | 𝑦 “ 𝑔𝛼p𝑥q
(

(3.11)
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be the graph of the Gibbs energy function 𝑔𝛼 : Ω Ñ R. For an interior point 𝑥𝛼 P Ω, we designate by 𝑇𝑥𝛼
𝒢𝛼 the

tangent hyperplane to 𝒢𝛼 at 𝑥𝛼. This tangent hyperplane, which exists thanks to the regularity assumptions
on 𝑔𝛼, is the graph of the affine function 𝑇𝑥𝛼𝑔𝛼 : R𝐾´1 Ñ R defined as

𝑇𝑥𝛼
𝑔𝛼p𝑥q “ 𝑔𝛼p𝑥𝛼q ` x∇𝑔𝛼p𝑥𝛼q, 𝑥´ 𝑥𝛼y. (3.12)

Let us assume that a solution
` 

s𝑌𝛼

(

𝛼PP
,
`

s𝜉𝛼

˘

𝛼PP

˘

exists to the unified formulation (2.18), in which the
renormalized fractions s𝑥𝛼 P Ω are computed from s𝜉𝛼 by (2.18d). We are going to learn as much as we can about
it.

Theorem 3.4. For any pair p𝛼, 𝛽q PP ˆP of phases, present or absent:

(1) The potentials in phase 𝛽 are shifted from their counterparts in phase 𝛼 by a same constant, i.e.,

𝜇𝑗
𝛽ps𝑥𝛽q “ 𝜇𝑗

𝛼ps𝑥𝛼q ` rln s𝜎𝛼 ´ ln s𝜎𝛽s (3.13a)

for all 𝑗 P 𝒦, where
s𝜎𝛼 “

ÿ

𝑖P𝒦

s𝜉𝑖
𝛼. (3.13b)

(2) The two tangent hyperplanes 𝑇
s𝑥𝛼
𝒢𝛼 and 𝑇

s𝑥𝛽
𝒢𝛽 are parallel. Put another way,

∇𝑔𝛼ps𝑥𝛼q “ ∇𝑔𝛽ps𝑥𝛽q. (3.13c)

Proof. For each phase 𝛼 P P, let us define s𝜎𝛼 as in (3.13b), so that for 𝑗 P 𝒦 we have s𝜉𝑗
𝛼 “ s𝜎𝛼s𝑥

𝑗
𝛼 in view of

(2.18d). The extended fugacity equalities (2.18b) then become

s𝜎𝛼s𝑥
𝑗
𝛼Φ𝑗

𝛼ps𝑥𝛼q “ s𝜎𝛽s𝑥
𝑗
𝛽Φ𝑗

𝛽ps𝑥𝛽q. (3.14)

Taking the logarithm of both sides and recalling (2.11a), we obtain

ln s𝜎𝛼 ` 𝜇𝑗
𝛼ps𝑥𝛼q “ ln s𝜎𝛽 ` 𝜇𝑗

𝛽ps𝑥𝛽q. (3.15)

From this, we deduce the translation property (3.13). Subtracting the last equality ln s𝜎𝛼 ` 𝜇𝐾
𝛼 ps𝑥𝛼q “ ln s𝜎𝛽 `

𝜇𝐾
𝛽 ps𝑥𝛽q from (3.15) and recalling (2.10b) (Lem. 2.2), we have

B𝑔𝛼

B𝑥𝑗
ps𝑥𝛼q “

B𝑔𝛽

B𝑥𝑗
ps𝑥𝛽q

for all 𝑗 P tI, II, . . . ,𝐾 ´ 1u. This completes the proof for (3.13c). �

The first part of Theorem 3.4 reveals that, in general, there is no equality of chemical potentials if these were
computed using the renormalized partial fractions. The second part of Theorem 3.4 is more interesting. Let us
investigate this further by making an additional assumption on one of the phases. We recall the definition (3.12)
of the linearized expansion 𝑇𝑥𝛼

𝑔𝛼p𝑥q.

Theorem 3.5 (Tangent plane criterion). Assume that a phase 𝛼 P P is present, i.e., s𝑌𝛼 ą 0. Then, for any
other phase 𝛽 P P, absent or present,

𝑇
s𝑥𝛽

𝑔𝛽p𝑥q ě 𝑇
s𝑥𝛼

𝑔𝛼p𝑥q, for all 𝑥 P R𝐾´1. (3.16)

Thus, the tangent hyperplane 𝑇
s𝑥𝛽
𝒢𝛽 lies above or coincides with the tangent hyperplane 𝑇

s𝑥𝛼𝒢𝛼.
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Proof. From equality (3.13a), we have

𝜇𝐾
𝛽 ps𝑥𝛽q “ 𝜇𝐾

𝛼 ps𝑥𝛼q ` 𝐶𝛼𝛽 , 𝐶𝛼𝛽 “ ln s𝜎𝛼 ´ ln s𝜎𝛽 .

Since s𝑌𝛼 ą 0, the complementarity condition (2.18c) entails s𝜎𝛼 “
ř

𝑗P𝒦
s𝜉𝑗
𝛼 “ 1, hence ln s𝜎𝛼 “ 0. For any

other 𝛽 P P, we have s𝜎𝛽 “
ř

𝑗P𝒦
s𝜉𝑗
𝛽 ď 1, also by virtue of (2.18c). Therefore, ln s𝜎𝛽 ď 0 and 𝐶𝛼𝛽 ě 0. Hence,

𝜇𝐾
𝛽 ps𝑥𝛽q ě 𝜇𝐾

𝛼 ps𝑥𝛼q. Using (2.9) from Lemma 2.2, we can rewrite the previous inequality as

𝑔𝛽ps𝑥𝛽q ´ x∇𝑥𝑔𝛽ps𝑥𝛽q, s𝑥𝛽y ě 𝑔𝛼ps𝑥𝛽q ´ x∇𝑥𝑔𝛼ps𝑥𝛼q, s𝑥𝛼y. (3.17)

On the other hand, taking the dot product of the equality of gradients (3.13c) with any 𝑥 P Ω, we have

x∇𝑥𝑔𝛽ps𝑥𝛽q, 𝑥y “ x∇𝑥𝑔𝛼ps𝑥𝛼q, 𝑥y. (3.18)

Adding together (3.17) and (3.18), we end up with

𝑔𝛽ps𝑥𝛽q ` x∇𝑥𝑔𝛽ps𝑥𝛽q, 𝑥´ s𝑥𝛽y ě 𝑔𝛼ps𝑥𝛽q ` x∇𝑥𝑔𝛼ps𝑥𝛼q, 𝑥´ s𝑥𝛼y

which is the desired result (3.16). �

This result, notoriously known as the tangent plane criterion, is usually derived by physicists from a local
analysis of phase stability [22] (see also Sect. 3.1). Theorem 3.5 testifies to the fact that this stability property
is already encoded in the unified formulation via the sign of 1´

ř

𝑗P𝒦
s𝜉𝑗
𝛽 . If phase 𝛽 is “strictly” absent, namely,

if 1´
ř

𝑗P𝒦
s𝜉𝑗
𝛽 ą 0 and s𝑌𝛽 “ 0, then the tangent hyperplane 𝑇

s𝑥𝛽
𝒢𝛽 will lie strictly above 𝑇

s𝑥𝛼𝒢𝛼.
We now push one step further by looking at the case of several present phases. Let sΓ be the set of all 𝛼 P P

such that s𝑌𝛼 ą 0.

Corollary 3.6 (Common tangent hyperplane). At a solution of the unified formulation satisfying s𝑥𝛼 P Ω for
all 𝛼 P P, the tangent hyperplanes t𝑇

s𝑥𝛼
𝒢𝛼u𝛼PsΓ, are all the same. Moreover,

𝑐 “
`

𝑐I, . . . , 𝑐𝐾´1
˘

P intpconvpts𝑥𝛼u𝛼PsΓqq, (3.19)

i.e., the global composition point belongs to the open convex hull spanned by the points ts𝑥𝛼u𝛼PsΓ.

Proof. Let p𝛼, 𝛽q P sΓˆ sΓ. Applying Theorem 3.5 twice and switching their roles, we have 𝑇
s𝑥𝛽

𝑔𝛽p𝑥q ě 𝑇
s𝑥𝛼

𝑔𝛼p𝑥q
and 𝑇

s𝑥𝛼𝑔𝛼p𝑥q ě 𝑇
s𝑥𝛽

𝑔𝛽p𝑥q, whence 𝑇
s𝑥𝛼𝑔𝛼p𝑥q “ 𝑇

s𝑥𝛽
𝑔𝛽p𝑥q for all 𝑥 P Ω. Thus, 𝑇

s𝑥𝛼𝒢𝛼 “ 𝑇
s𝑥𝛽
𝒢𝛽 . The material

balance (2.18a) reads
𝑐𝑖 “

ÿ

𝛽PP

s𝑌𝛽
s𝜉𝑖
𝛽 “

ÿ

𝛼PsΓ

s𝑌𝛼s𝑥
𝑖
𝛼,

where the last equality comes from retaining only those summands in sΓ. Extracting the first 𝐾 ´ 1 components
from the above equation yields

𝑐 “
ÿ

𝛼PsΓ

s𝑌𝛼s𝑥𝛼. (3.20)

Since s𝑌𝛼 ą 0 and
ř

𝛼PΓ
s𝑌𝛼 “ 1, the point 𝑐 belongs to the interior of convpts𝑥𝛼u𝛼PsΓq. �

From this common tangent plane property, a purely geometric procedure can be devised in order to build a
solution of the phase equilibrium problem (2.18). The construction involves the lower convex envelope of the
function 𝑥 ÞÑ min𝛼PP 𝑔𝛼p𝑥q. More details will be given in Section 3.4.

3.3. Existence and uniqueness for a phasewise subproblem

The key step towards ensuring the existence of a solution to (2.18) is to study a phasewise subproblem that
arises in two different forms.
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3.3.1. Extended fugacities local inversion problem

To solve (2.18) in practice, Lauser et al. [17] advocated using the common values t𝜙𝑖u𝑖P𝒦 of extended fugacity
across phases as main unknowns. This gives rise to a two-level algorithm. In the inner level, we solve 𝑃 nonlinear
systems of size 𝐾 ˆ𝐾

𝜉𝑖
𝛼Φ𝑖

𝛼p𝑥𝛼q “ 𝜙𝑖, @𝑖 P 𝒦, (3.21)

one for each 𝛼 P P. These local fugacity inversion problems express the extended fractions as implicit functions
𝜉𝑖
𝛼p𝜙q of the extended fugacity vector 𝜙 “

`

𝜙I, . . . 𝜙𝐾
˘

P R𝐾
` . In the outer level, we solve one nonlinear system

consisting of the 𝐾 ` 𝑃 remaining equations
ř

𝛽PP 𝑌𝛽𝜉𝑖
𝛽p𝜙q ´ 𝑐𝑖 “ 0, @𝑖 P 𝒦, (3.22a)

min
´

𝑌𝛼, 1´
ř

𝑗P𝒦 𝜉𝑗
𝛼p𝜙q

¯

“ 0, @𝛼 P P, (3.22b)

in the 𝐾 ` 𝑃 unknowns
`

t𝑌𝛼u𝛼PP ,
 

𝜙𝑖
(

𝑖P𝒦

˘

. This approach, the interest of which is to involve only “small”
systems, was adopted by many authors [6, 8, 20,21].

Taking the logarithm of both sides of (3.21), writing 𝜉𝑖
𝛼 “ 𝜎𝛼𝑥𝑖

𝛼 and proceeding as in the proof of Theorem 3.4,
we can transform the inner system (3.21) into

∇𝑔𝛼p𝑥𝛼q “
 

ln 𝜙𝑖 ´ ln 𝜙𝐾
(

1ď𝑖ď𝐾´1
, (3.23a)

ln 𝜎𝛼 ` 𝜇𝐾
𝛼 p𝑥𝛼q “ ln 𝜙𝐾 . (3.23b)

Thus, our ability to solve (3.23) for all reasonable inputs 𝜙 P R𝐾
` relies on the existence of an unambiguous

reciprocal function r∇𝑔𝛼s
´1.

3.3.2. Extended fractions for a single-phase solution

The second situation occurs when the solution of (2.18) is single-phase, say, in phase 𝛽. Put another way,
s𝑌𝛽 “ 1 and s𝑌𝛼 “ 0 for all 𝛼 P Pzt𝛽u. By (2.18a), rewritten as (3.20), we have s𝑥𝛽 “ 𝑐. Assume 𝑐 P Ω. After
Theorem 3.4, the extended fractions in a vanishing phase 𝛼 P Pzt𝛽u satisfy

∇𝑔𝛼ps𝑥𝛼q “ ∇𝑔𝛽p𝑐q, (3.24a)

ln s𝜎𝛼 ` 𝜇𝐾
𝛼 ps𝑥𝛼q “ 𝜇𝐾

𝛽 p𝑐q, (3.24b)

If the function ∇𝑔𝛼 were invertible, we could write s𝑥𝛼 “ r∇𝑔𝛼s
´1p∇𝑔𝛽p𝑐qq. Then, it could deduced from (3.24b)

that s𝜎𝛼 “ expr𝜇𝐾
𝛽 p𝑐q ´ 𝜇𝐾

𝛼 ps𝑥𝛼qs and s𝜉𝑖
𝛼 “ s𝜎𝛼s𝑥

𝑖
𝛼. Hence, phase 𝛼 would be entirely known. The ability to

assign well-determined values to the extended fractions in an absent phase is an important feature of the unified
formulation. System (3.24) has the same structure as (3.23).

3.3.3. Fundamental assumptions

The superiority of the unified formulation over the variable-switching formulation hinges upon the invertibility
of (3.23) and (3.24), which cannot be taken for granted. To this end, additional assumptions need to be made.
Below is the most natural set of assumptions.

Hypotheses 3.7. The gradient map ∇𝑥𝑔𝛼 : Ω Ñ R𝐾´1 is surjective. Moreover, the Gibbs energy 𝑔𝛼 : Ω Ñ R is
strictly convex, that is, it satisfies one of the two conditions below, which are equivalent for a twice differentiable
function:

(a) For all p𝑥, 𝑦q P Ωˆ Ω with 𝑥 ‰ 𝑦,
@

∇𝑔𝛼p𝑥q ´∇𝑔𝛼p𝑦q, 𝑥´ 𝑦
D

ą 0. (3.25)

(b) For all 𝑥 P Ω, the Hessian matrix ∇2𝑔𝛼p𝑥q is positive definite .
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We refer the reader to [9] for the notion of strict convexity and for the equivalence between the two conditions
(a) and (b) for twice differentiable functions.

Theorem 3.8 (Existence and uniqueness of the phasewise subproblem). Under Hypotheses 3.7, the extended
fugacities local inversion problem (3.23) has a unique solution.

Proof. Surjectivity provides existence of a solution 𝑥 P Ω to ∇𝑔𝛼p𝑥q “ 𝑢 for all 𝑢 P R𝐾´1. Strict convexity
enforces uniqueness of such a solution. �

Hypotheses 3.7 is neither unrealistic nor unreachable, as shown by the following example.

Proposition 3.9. The Gibbs energy function of an ideal gas

𝑔𝛼p𝑥q “
𝐾
ÿ

𝑖“I

𝑥𝑖 ln 𝑥𝑖, (3.26)

where 𝑥𝐾 “ 1´ 𝑥I ´ . . .´ 𝑥𝐾´1, satisfies Hypotheses 3.7.

Proof. The gradient ∇𝑔𝛼 : Ω Ñ R𝐾´1 is given by

∇𝑔𝛼p𝑥q “
`

ln 𝑥I ´ ln 𝑥𝐾 , . . . , ln 𝑥𝐾´1 ´ ln 𝑥𝐾
˘

. (3.27)

This map is continuous over Ω. For any given 𝑢 “
`

𝑢I, . . . , 𝑢𝐾´1
˘

P R𝐾´1, the nonlinear system ∇𝑔𝛼p𝑥q “ 𝑢
can be easily inverted and the only solution is

𝑥𝑗 “
exp

`

𝑢𝑗
˘

1`
ř𝐾´1

𝑖“I expp𝑢𝑖q
, 𝑗 P tI, II, . . . ,𝐾 ´ 1u.

This defines a unique continuous inverse map r∇𝑔𝛼s
´1 : R𝐾´1 Ñ Ω.

From the expression (3.27) of the gradient, the Hessian matrix can be found to be

∇2𝑔p𝑥q “
1

𝑥𝐾
E`Diag

ˆ

1
𝑥I

, . . . ,
1

𝑥𝐾´1

˙

,

where E is the matrix whose all entries are equal to 1. It follows that, for a generic 𝑣 P R𝐾´1,

@

∇2𝑔p𝑥q𝑣, 𝑣
D

“
1

𝑥𝐾

ˇ

ˇ𝑣I ` . . .` 𝑣𝐾´1
ˇ

ˇ

2
`

𝐾´1
ÿ

𝑖“1

|𝑣𝑖|2

𝑥𝑖
¨

When 𝑥 P Ω, it is obvious that
@

∇2𝑔p𝑥q𝑣, 𝑣
D

ą 0 for all 𝑣 ‰ 0. �

3.4. Existence for the phase equilibrium problem in the unified formulation

Thanks to Hypotheses 3.7, a solution of (2.18) can also be worked out explicitly. Its construction is inspired
by Gibbs’ geometric one [12] for the two-phase binary p𝐾 “ 2q case. This settles the issue of existence under
some minor technicalities.

Hypotheses 3.7 are taken for granted throughout this section. Additionally, we recall that the functions
t𝑔𝛼u𝛼PP are smooth (say, twice differentiable), take finite values on the boundary BΩ but their gradients blow
up there, i.e., lim𝑥ÑBΩ‖∇𝑔𝛼p𝑥q‖ “ `8. The latter is due to the presence of logarithms in the ideal parts of the
Gibbs functions. The function

𝑔 “ min
𝛼PP

𝑔𝛼 (3.28)

is continuous on sΩ but may not be differentiable. Let q𝑔 be the lower convex envelope of 𝑔 on sΩ. By design, q𝑔 is
a convex function. Like 𝑔, q𝑔 is continuous. Here, we have a stronger property.
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Lemma 3.10. The lower convex envelope q𝑔 is differentiable at all interior points 𝑐 P Ω.

Proof. The lower convex envelope at 𝑐 can be characterized as

q𝑔p𝑐q “ sup
ℎď𝑔, ℎ affine

ℎp𝑐q. (3.29)

It is a convex function, which allows us to consider its subdifferential Bq𝑔p𝑐q at 𝑐 P Ω. It is known that Bq𝑔p𝑐q is
a nonempty and convex set [9]. Let us distinguish two cases.

Case 1: q𝑔p𝑐q “ 𝑔p𝑐q. Let 𝑝 P Bq𝑔p𝑐q. By definition of a subgradient, q𝑔p𝑥q ě q𝑔p𝑐q ` x𝑝, 𝑥 ´ 𝑐y for all 𝑥 P sΩ.
Let 𝛼 P P such that 𝑔p𝑐q “ 𝑔𝛼p𝑐q. Combining the previous inequality with 𝑔𝛼p𝑥q ě 𝑔p𝑥q ě q𝑔p𝑥q and
q𝑔p𝑐q “ 𝑔𝛼p𝑐q, we obtain 𝑔𝛼p𝑥q ě 𝑔𝛼p𝑐q ` x𝑝, 𝑥´ 𝑐y for all 𝑥 P sΩ. This means that 𝑝 P B𝑔𝛼p𝑐q “ t∇𝑔𝛼p𝑐qu,
which results in 𝑝 “ ∇𝑔𝛼p𝑐q. Since the subdifferential Bq𝑔p𝑐q is reduced to a singleton, q𝑔 is differentiable at
𝑐.

Case 2: q𝑔p𝑐q ă 𝑔p𝑐q. Let 𝑝 P Bq𝑔p𝑐q. Since 𝑔p𝑥q ě q𝑔p𝑥q ě q𝑔p𝑐q ` x𝑝, 𝑥 ´ 𝑐y for all 𝑥 P sΩ, the affine map
ℎp𝑥q “ q𝑔p𝑐q ` x𝑝, 𝑥 ´ 𝑐y is a legitimate “competitor” in the supremum (3.29). If the graph of ℎ does not
intersect that of 𝑔, namely, if ℎp𝑥q ă 𝑔p𝑥q for all 𝑥 P sΩ, we can find 𝜖 ą 0 such that ℎp𝑥q ` 𝜖 ă 𝑔p𝑥q for
all 𝑥 P sΩ, thanks to continuity of the functions and compactness of the domain. But then ℎ ` 𝜖 would be
a better “candidate” in (3.29), as it would raise by 𝜖 the value of q𝑔p𝑐q. To avoid this contradiction, there
exists s𝑥𝛼 P sΩ such that ℎps𝑥𝛼q “ 𝑔𝛼ps𝑥𝛼q “ 𝑔ps𝑥𝛼q.

Let us investigate q𝑔ps𝑥𝛼q. On the one hand, ℎps𝑥𝛼q ď q𝑔ps𝑥𝛼q ď 𝑔ps𝑥𝛼q. On the other hand, ℎps𝑥𝛼q “ 𝑔ps𝑥𝛼q as
said above. Therefore, q𝑔ps𝑥𝛼q “ 𝑔ps𝑥𝛼q. By the same argument as in Case 1, we conclude that q𝑔 is differentiable
at s𝑥𝛼 and ∇q𝑔ps𝑥𝛼q “ ∇𝑔𝛼ps𝑥𝛼q. From the inequality 𝑔𝛼p𝑥q ě 𝑔p𝑥q ě q𝑔p𝑐q ` x𝑝, 𝑥 ´ 𝑐y and the equality
𝑔𝛼ps𝑥𝛼q “ q𝑔p𝑐q`x𝑝, s𝑥𝛼´𝑐y, we infer that s𝑥𝛼 achieves the minimum of the function 𝑥 ÞÑ 𝑔𝛼p𝑥q´q𝑔p𝑐q´x𝑝, 𝑥´𝑐y
over sΩ. Since the latter function is strictly convex with unbounded derivatives on the boundary, the minimum
cannot take place on BΩ. Thus, s𝑥𝛼 P Ω and minimality then entails 𝑝 “ ∇𝑔𝛼ps𝑥𝛼q. Hence, s𝑥𝛼 is a tangent point.

At this stage, we have proved that to each 𝑝 P Bq𝑔p𝑐q there corresponds a phase 𝛼 P P and a point s𝑥𝛼 P Ω
such that 𝑝 “ ∇𝑔𝛼ps𝑥𝛼q and q𝑔p𝑐q “ 𝑔𝛼ps𝑥𝛼q ` x𝑝, 𝑐 ´ s𝑥𝛼y (the last condition simply expresses that 𝑐 belongs
to the tangent hyperplane 𝑇

s𝑥𝛼𝑔𝛼. Assume that Bq𝑔p𝑐q contains two distinct elements 𝑝 ‰ 𝑞. By convexity,
p1 ´ 𝑢q𝑝 ` 𝑢𝑞 P Bq𝑔p𝑐q for all 𝑢 P r0, 1s. To each 𝑢 P r0, 1s there correspond a phase 𝛼p𝑢q P P and point
s𝑥𝛼p𝑢qp𝑢q P Ω such that p1 ´ 𝑢q𝑝 ` 𝑢𝑞 “ ∇𝑔𝛼p𝑢qps𝑥𝛼p𝑢qp𝑢qq. If necessary and up to a reparametrization, we can
always take another 𝑞 in this segment that is sufficiently close to 𝑝 so that 𝛼p𝑢q ” 𝛼 for all 𝑢. Let

𝑦𝑐p𝑢q “ 𝑇
s𝑥𝛼p𝑢q𝑔𝛼p𝑐q “ 𝑔𝛼ps𝑥𝛼p𝑢qq ` xp1´ 𝑢q𝑝` 𝑢𝑞, 𝑐´ s𝑥𝛼p𝑢qy (3.30)

be the value at 𝑐 of the tangent map at s𝑥𝛼p𝑢q. Since 𝑦𝑐p𝑢q “ q𝑔p𝑐q for all 𝑢 P r0, 1s, the derivative of 𝑦𝑐 with
respect to 𝑢 must identically vanish. The calculation of this derivative leads to

x𝑞 ´ 𝑝, 𝑐´ s𝑥𝛼p𝑢qy “ 0. (3.31)

Taking the difference of (3.31) between 𝑢 “ 0 and 𝑢 “ 1 leads to

x∇𝑔𝛼ps𝑥𝛼p0qq ´∇𝑔𝛼ps𝑥𝛼p1qq, s𝑥𝛼p0q ´ s𝑥𝛼p1qy “ 0,

which violates the strict convexity condition (3.25). Therefore, Bq𝑔p𝑐q is a singleton. �

Thus, for 𝑐 P Ω, it makes sense to speak about the gradient ∇q𝑔p𝑐q and the tangent hyperplane, defined as
the graph of the linearized expansion 𝑇𝑐q𝑔p𝑥q “ q𝑔p𝑐q ` x∇q𝑔p𝑐q, 𝑥´ 𝑐y. We introduce

sΓp𝑐q “ t𝛼 P P | D s𝑥𝛼 P Ω, 𝑔𝛼ps𝑥𝛼q “ 𝑇𝑐q𝑔ps𝑥𝛼q, ∇𝑔𝛼ps𝑥𝛼q “ ∇q𝑔p𝑐qu (3.32)

as the set of thoses phases whose Gibbs function 𝑔𝛼 is tangent to the hyperplane 𝑇𝑐q𝑔.
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Lemma 3.11. For 𝑐 P Ω, the following properties hold true:

(1) sΓp𝑐q ‰ H.
(2) For each phase 𝛼 P sΓp𝑐q, the contact point s𝑥𝛼 is unique.
(3) If 𝑃 ď 𝐾, then 𝑐 P convts𝑥𝛼u𝛼PsΓp𝑐q.

Proof. Existence of at least a contact point. The argument is similar to the proof of Lemma 3.10, with 𝑝 “ ∇q𝑔p𝑐q.
Uniqueness of the contact point in each phase. If the hyperplane 𝑇𝑐q𝑔 were tangent to 𝑔𝛼 at two distinct points

s𝑥𝛼 ‰ r𝑥𝛼, then ∇q𝑔p𝑐q “ ∇𝑔𝛼ps𝑥𝛼q “ ∇𝑔𝛼pr𝑥𝛼q, and we would have x∇𝑔𝛼ps𝑥𝛼q ´∇𝑔𝛼pr𝑥𝛼q, s𝑥𝛼 ´ r𝑥𝛼y “ 0, which
violates the strict convexity condition (3.25).

Convex hull of the contact points. In the characterization (3.29) of q𝑔, the supremum is also a maximum
reached at ℎ “ 𝑇𝑐q𝑔 due to differentiability. The idea is to express this optimality by rotating the common
tangent hyperplane of the contact points ts𝑥𝛼u𝛼PsΓp𝑐q using the gradient vector 𝑝 as parameter. For 𝑝 P R𝐾´1,
we define r𝑥𝛼p𝑝q “ r∇𝑔𝛼s

´1p𝑝q for 𝛼 P sΓp𝑐q. Note that r𝑥𝛼p∇q𝑔p𝑐qq “ s𝑥𝛼. The tangent map of 𝑔𝛼 at r𝑥𝛼p𝑝q reads

𝑇
r𝑥𝛼p𝑝q𝑔𝛼p𝑥q “ 𝑔𝛼pr𝑥𝛼p𝑝qq ` x𝑝, 𝑥´ r𝑥𝛼p𝑝qy “ x𝑝, 𝑥y ´ 𝑔˚𝛼p𝑝q, (3.33)

where 𝑔˚𝛼 stands for the Legendre conjugate of 𝑔𝛼. Let sΓp𝑐q “ t𝛼, 𝛽, . . . , 𝜋, 𝜔u and consider the maximization
problem

max
𝑝

𝑇
r𝑥𝛼p𝑝q𝑔𝛼p𝑐q (3.34a)

subject to the |sΓp𝑐q| ´ 1 equality constraints

𝑔˚𝛼p𝑝q “ 𝑔˚𝛽 p𝑝q, 𝑔˚𝛼p𝑝q “ 𝑔˚𝛾 p𝑝q, . . . , 𝑔˚𝛼p𝑝q “ 𝑔˚𝜋p𝑝q, 𝑔˚𝛼p𝑝q “ 𝑔˚𝜔p𝑝q. (3.34b)

The constraints (3.34b) are aimed at making the |sΓp𝑐q| functions (3.33) coincide with each other, so as to preserve
common tangency. Since |sΓp𝑐q| ď 𝑃 ď 𝐾, the number of constraints does not exceed the space dimension and
problem (3.34) keeps a chance of being feasible. The objective function (3.34a) is the value taken by this common
tangent hyperplane at 𝑐.

If 𝑝 stays in a small enough neighborhood of ∇q𝑔p𝑐q, then 𝑇
r𝑥𝛼p𝑝q remains below 𝑔 (thanks to the compactness

of sΩ) and ℎ “ 𝑇
r𝑥𝛼p𝑝q can be considered as a valid “candidate” in (3.29). Therefore, it is expected that 𝑝 “ ∇q𝑔p𝑐q

achieves a local optimum of (3.34). The first-order optimality conditions for (3.34) imply

𝑐´∇𝑔˚𝛼p𝑝q ` 𝜆𝛽

`

∇𝑔˚𝛼p𝑝q ´∇𝑔˚𝛽 p𝑝q
˘

` . . .` 𝜆𝜔p∇𝑔˚𝛼p𝑝q ´∇𝑔˚𝜔p𝑝qq “ 0, (3.35)

where 𝜆𝛽 , . . . , 𝜆𝜔 are the Lagrange multiplies associated with the constraints (3.34b). Plugging 𝑝 “ ∇q𝑔p𝑐q into
(3.35) and using ∇𝑔˚𝛼p𝑝q “ r𝑥𝛼p𝑝q, we end up with

𝑐 “ p1´ 𝜆𝛽 ´ . . . 𝜆𝜔qs𝑥𝛼 ` 𝜆𝛽s𝑥𝛽 ` . . .` 𝜆𝜋s𝑥𝜋 ` 𝜆𝜔s𝑥𝜔. (3.36)

Since the coefficients in the right-hand side sum to 1, at least one of them must be positive. Up to a permuation
of sΓp𝑐q, we can assume that 1 ´ 𝜆𝛽 ´ . . . ´ 𝜆𝜔 ą 0. Let us prove that the other coefficients are nonnegative.
Suppose that 𝜆𝜔 ă 0. The idea is now to rotate the common tangent hyperplane but to leave out the tangency
constraint for 𝜔, so that the new affine function becomes strictly lower that 𝑔𝜔, remains tangent to the other
Gibbs functions in sΓp𝑐q and achieves a higher value at 𝑐, which is contradiction.

Let 𝑝 “ ∇q𝑔p𝑐q`𝛿𝑝, where 𝛿𝑝 is orthogonal to the subspace spanned by s𝑥𝛼´s𝑥𝛽 , . . . , s𝑥𝛼´s𝑥𝜋. Since s𝑥𝛼´s𝑥𝛽 “
´

∇𝑔˚𝛼 ´∇𝑔˚𝛽

¯

p∇q𝑔p𝑐qq and similarly for other phases, the |sΓp𝑐q|´2 constraints 𝑔˚𝛼p𝑝q “ 𝑔˚𝛽 p𝑝q, . . . , 𝑔
˚
𝛼p𝑝q “ 𝑔˚𝜋p𝑝q

remain satisfied at first-order expansion. Let 𝑦𝑐p𝑝q “ 𝑇
r𝑥𝛼p𝑝q𝑔𝛼p𝑐q and 𝑦

s𝑥𝜔
p𝑝q “ 𝑇

r𝑥𝛼p𝑝q𝑔𝛼ps𝑥𝜔q be the values
of the new hyperplane evaluated at 𝑐 and s𝑥𝜔. It is straigthforward to show that ∇𝑦𝑐p𝑝q “ 𝑐 ´ r𝑥𝛼p𝑝q and
∇𝑦

s𝑥𝜔
p𝑝q “ s𝑥𝜔 ´ r𝑥𝛼p𝑝q, so that ∇𝑦𝑐p∇q𝑔p𝑐qq “ 𝑐´ s𝑥𝛼 and ∇𝑦

s𝑥𝜔
pq𝑔p𝑐qq “ s𝑥𝜔 ´ s𝑥𝛼. In view of (3.36),

𝑐´ s𝑥𝛼 “ 𝜆𝛽ps𝑥𝛽 ´ s𝑥𝛼q ` . . .` 𝜆𝜋ps𝑥𝜋 ´ s𝑥𝛼q ` 𝜆𝜔ps𝑥𝜔 ´ s𝑥𝛼q.
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Taking the dot product with 𝛿𝑝 yields x∇𝑦𝑐p∇q𝑔p𝑐qq, 𝛿𝑝y “ 𝜆𝜔 x∇𝑦
s𝑥𝜔
pq𝑔p𝑐qq, 𝛿𝑝y. Hence, it is possible to choose

𝛿𝑝 so as to increase 𝑦𝑐 and to decrease 𝑦
s𝑥𝜔

, in other words such that 𝑇
r𝑥𝛼p𝑝q𝑔𝛼p𝑐q ą q𝑔p𝑐q and 𝑇

r𝑥𝛼p𝑝q𝑔𝛼ps𝑥𝜔q ă

𝑔𝜔ps𝑥𝜔q at first-order expansion. The affine function ℎ “ 𝑇
r𝑥𝛼p𝑝q𝑔𝛼 would then be a strictly better candidate

than 𝑇𝑐q𝑔 in (3.29). This is impossible. �

The last property means that 𝑐 is a convex combination of the contact points, that is, there exist ts𝑌𝛼u𝛼PsΓp𝑐q ě

0 such that
ř

𝛼PsΓp𝑐q
s𝑌𝛼 “ 1 and

ř

𝛼PsΓp𝑐q
s𝑌𝛼s𝑥𝛼 “ 𝑐. We are now ready to describe a solution.

Theorem 3.12. Assume 𝑃 ď 𝐾, 𝑐 P Ω. Let ts𝑥𝛼u𝛼PsΓp𝑐q, ts𝑌𝛼u𝛼PsΓp𝑐q be defined as above and set

s𝜉𝑖
𝛼 “ s𝑥𝑖

𝛼, for p𝛼, 𝑖q P sΓp𝑐q ˆ𝒦. (3.37a)

For p𝛽, 𝑖q PPzsΓp𝑐q ˆ𝒦, set

s𝑌𝛽 “ 0, s𝑥𝛽 “ r∇𝑔𝛽s
´1
p∇q𝑔p𝑐qq, s𝜉𝑖

𝛽 “ expr𝑇𝑐q𝑔ps𝑥𝛽q ´ 𝑔𝛽ps𝑥𝛽qss𝑥
𝑖
𝛽 . (3.37b)

This procedure supplies us with a solution of (2.18).

Proof. The material balance (2.18a) is an easy consequence of
ř

𝛼PsΓp𝑐q
s𝑌𝛼s𝑥𝛼 “ 𝑐,

ř

𝛼PsΓp𝑐q
s𝑌𝛼 “ 1 and s𝑌𝛽 “ 0

for 𝛽 P PzsΓp𝑐q.
The equality of extended fugacities (2.18b) across phases is equivalent to that of ∇𝑔𝛼ps𝑥𝛼q and of ln s𝜎𝛼 `

𝜇𝐾ps𝑥𝛼q, as was pointed out in Sections 3.2 and 3.3. On the one hand, it follows from (3.32) and (3.37b) that
∇𝑔𝛼ps𝑥𝛼q “ ∇q𝑔p𝑐q for all 𝛼 P P. On the other hand, if 𝛼 P sΓp𝑐q, the common tangency q𝑔p𝑐q`x∇q𝑔p𝑐q, s𝑥𝛼 ´ 𝑐y “
𝑔𝛼ps𝑥𝛼q implies that

𝜇𝐾ps𝑥𝛼q “ 𝑔𝛼ps𝑥𝛼q ´ x∇𝑔𝛼ps𝑥𝛼q, s𝑥𝛼y “ q𝑔p𝑐q ´ x∇q𝑔p𝑐q, 𝑐y.

Since s𝜎𝛼 “
ř

𝑖P𝒦
s𝜉𝑖
𝛼 “ 1 after (3.37a), we have ln s𝜎𝛼 ` 𝜇𝐾ps𝑥𝛼q “ q𝑔p𝑐q ´ x∇q𝑔p𝑐q, 𝑐y. If 𝛽 P PzsΓp𝑐q, by virtue of

(3.37b),
s𝜎𝛽 “

ÿ

𝑖P𝒦

s𝜉𝑖
𝛽 “ expr𝑇𝑐q𝑔ps𝑥𝛽q ´ 𝑔𝛽ps𝑥𝛽qs. (3.38)

Therefore, ln s𝜎𝛽 `𝜇𝐾ps𝑥𝛽q “ 𝑇𝑐q𝑔ps𝑥𝛽q´ 𝑔𝛽ps𝑥𝛽q “ q𝑔p𝑐q´ x∇q𝑔p𝑐q, 𝑐y. As a result, ln s𝜎𝛼`𝜇𝐾ps𝑥𝛼q takes the same
value for all 𝛼 P P.

To prove the complementarity conditions (2.18c), we first notice from various definitions that s𝑌𝛼 ě 0 and
s𝑌𝛼

`

1´
ř

𝑖P𝒦
s𝜉𝑖
𝛼

˘

“ 0 for all 𝛼 P P. Moreover, 1 ´
ř

𝑖P𝒦
s𝜉𝑖
𝛼 “ 0 for 𝛼 P sΓp𝑐q. Hence, it just remains to prove

that 1´
ř

𝑖P𝒦
s𝜉𝑖
𝛽 ě 0 for 𝛽 P PzsΓp𝑐q. Starting from (3.38) and invoking the convexity of q𝑔, we have

s𝜎𝛽 ď exprq𝑔ps𝑥𝛽q ´ 𝑔𝛽ps𝑥𝛽qs ď expr𝑔ps𝑥𝛽q ´ 𝑔𝛽ps𝑥𝛽qs ď expp0q “ 1,

which is the desired result. �

The assumption 𝑃 ď 𝐾 turns out to be true in practice: there are about two or three phases at most for tens
to hundreds of components. For the two-phase binary case, namely, when 𝐾 “ 𝑃 “ 2, the previous solution can
be proved to be unique ([34], Thm. 2.5).

4. Convexity analysis of simple laws

The goal of this section is to review some commonly used laws that satisfy Hypotheses 3.7 unconditionally
or conditionally. Each law will be given by the excess Gibbs function Ψ𝛼, which is connnected to the Gibbs
function 𝑔𝛼 by

𝑔𝛼p𝑥q “
𝐾
ÿ

𝑖“I

𝑥𝑖 ln 𝑥𝑖 `Ψ𝛼p𝑥q. (4.1)

The subscript 𝛼 stands for the phase to which the physical law under consideration applies.
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4.1. Henry’s law

In Section 3.3 (Prop. 3.9), we saw that an ideal gas Ψ𝛼 ” 0 fulfills Hypotheses 3.7. Next in the level of
complexity is Henry’s law [14]

Ψ𝛼p𝑥q “
𝐾
ÿ

𝑖“1

𝑥𝑖 ln 𝑘𝑖 (4.2)

where
 

𝑘𝑖
(

𝑖P𝒦 are positive constants, each of them embodying a property of the corresponding species. The
fugacity coefficients calculated by (2.14a) are then

ln Φ𝑗
𝛼p𝑥q “ ln 𝑘𝑖, for all 𝑗 P 𝒦. (4.3)

This is why this law is also called the constant coefficients law.

Proposition 4.1. For all
`

𝑘I, . . . , 𝑘𝐾
˘

P
`

R˚`
˘𝐾 , the Gibbs energy function 𝑔𝛼 associated with Henry’s law

fulfills Hypotheses 3.7.

Proof. Since Ψ𝛼 is affine with respect to 𝑥 “
`

𝑥I, . . . , 𝑥𝐾´1
˘

, its second derivatives all vanish. Therefore, the
Hessian matrix ∇2𝑔𝛼 coincides with that of the Gibbs function of the ideal gas. But this matrix was shown to
be positive definite in Proposition 3.9. We still have to check that the range of the gradient map

∇𝑔𝛼p𝑥q “
`

ln
`

𝑘I𝑥I
˘

´ ln
`

𝑘𝐾𝑥𝐾
˘

, . . . , ln
`

𝑘𝐾´1𝑥𝐾´1
˘

´ ln
`

𝑘𝐾𝑥𝐾
˘˘

.

is equal to R𝐾´1. For a given 𝑢 “
`

𝑢I, . . . , 𝑢𝐾´1
˘

P R𝐾´1, the nonlinear system ∇𝑔𝛼p𝑥q “ 𝑢 can be easily
inverted and the only solution is

𝑥𝑗 “
exp

`

𝑢𝑗
˘

{𝑘I

1{𝑘𝐾 `
ř𝐾´1

𝑖“I expp𝑢𝑖q{𝑘𝑖
, 𝑗 P tI, II, . . . ,𝐾 ´ 1u.

This defines a unique continuous inverse map r∇𝑔𝛼s
´1 : R𝐾´1 Ñ Ω. �

4.2. Margules’ law

We now consider two laws dedicated to liquid binary mixtures p𝐾 “ 2q, namely, Margules’ and Van Laar’s
[29]. For liquids, physicists rather talk about activity coefficients instead of fugacity coefficients. This distinction
is however anecdotical, since the mathematical structure of thermodynamic equilibria remains the same [27].

Since 𝐾 ´ 1 “ 1, we simply write 𝑥 instead of 𝑥I and 𝑥. The excess function associated with Margules’ law
is

Ψ𝛼p𝑥q “ 𝑥p1´ 𝑥qr𝐴12p1´ 𝑥q `𝐴21𝑥s, (4.4)

where p𝐴12, 𝐴21q P pR˚q2 are two nonzero parameters. By (2.14a), the fugacity coefficients are

ln ΦI
𝛼p𝑥q “ r𝐴12 ` 2p𝐴21 ´𝐴12q𝑥sp1´ 𝑥q2, (4.5a)

ln ΦII
𝛼 p𝑥q “ r𝐴21 ` 2p𝐴12 ´𝐴21qp1´ 𝑥qs𝑥2. (4.5b)

To meet Hypotheses 3.7, the pair p𝐴12, 𝐴21q must be restricted to some region of R2.

Proposition 4.2. Let 𝑆 “ 𝐴12 `𝐴21 and 𝐷 “ 𝐴12 ´𝐴21. Then, the Gibbs energy function 𝑔𝛼 associated with
Margules’ law fulfills Hypotheses 3.7 if and only if

𝑆 ă 4 and |𝐷| ă
1
3

”

𝑆2 ´ 18𝑆 ` 54` 2p9´ 2𝑆q
3{2

ı1{2

. (4.6)
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Figure 1. Region of strict convexity for the parameters of Margules’ law in the p𝑆, 𝐷q-plane.

The region indicated by (4.6) is colored in striped green in Figure 1. Its right-most point is located at
p𝑆, 𝐷q “ p4, 0q, where it has a vertical tangent.

Proof. The first derivative of 𝑔𝛼 is

𝑔1𝛼p𝑥q “ ln 𝑥´ lnp1´ 𝑥q `𝐴12 ` p2𝐴21 ´ 4𝐴12q𝑥` 3p𝐴12 ´𝐴21q𝑥
2.

This is a continuous function over p0, 1q, with lim𝑥Ó0 𝑔1𝛼p𝑥q “ ´8 and lim𝑥Ò1 𝑔1𝛼p𝑥q “ `8. Thus, 𝑔1𝛼 has range
in R.

The second derivative of 𝑔𝛼, multiplied by 𝑥p1´ 𝑥q to remove singularities, is equal to

ℎp𝑥q :“ 𝑥p1´ 𝑥q𝑔2𝛼p𝑥q “ 1`
`

𝑥´ 𝑥2
˘

r2𝐴21 ´ 4𝐴12 ` 6p𝐴12 ´𝐴21q𝑥s.

Let us change the variable to 𝑦 “ 𝑥´ 1
2 P

`

´ 1
2 , 1

2

˘

to work with the more symmetric function

𝐻p𝑦q :“ ℎ

ˆ

𝑥´
1
2

˙

“ 1`
ˆ

1
4
´ 𝑦2

˙

r6p𝐴12 ´𝐴21q𝑦 ´ p𝐴12 `𝐴21qs.

It remains to study 𝐻 in order to determine the region of strict positivity 𝐻p𝑦q ą 0. The technical details can
be found in [16] or Proposition 3.2 of [34]. �

4.3. Van Laar’s law

Van Laar’s law is also a model for activity coefficients of a liquid [29]. The excess Gibbs function associated
with it is

Ψ𝛼p𝑥q “
𝐴12𝐴21𝑥p1´ 𝑥q

𝐴12𝑥`𝐴21p1´ 𝑥q
, (4.7)

where p𝐴12, 𝐴21q P pR˚q2 are two nonzero parameters. By (2.14a), the fugacity coefficients are

ln ΦI
𝛼p𝑥q “ 𝐴12

„

𝐴21p1´ 𝑥q

𝐴12𝑥`𝐴21p1´ 𝑥q

2

, (4.8a)

ln ΦII
𝛼 p𝑥q “ 𝐴21

„

𝐴12𝑥

𝐴12𝑥`𝐴21p1´ 𝑥q

2

¨ (4.8b)
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Figure 2. Region of strict convexity for the parameters of Van Laar’s law.

To make sure that formulae (4.7) and (4.8) are well-defined over 𝑥 P p0, 1q, the denominator 𝐴12𝑥`𝐴21p1´ 𝑥q
must keep the same sign. This amounts to requiring that

𝐴12𝐴21 ą 0. (4.9)

Besides, the pair p𝐴12, 𝐴21q must be further restricted in order to comply with Hypotheses 3.7.

Proposition 4.3. Let 𝑆 “ 𝐴12 `𝐴21 and 𝐷 “ 𝐴12 ´𝐴21. Then, the Gibbs energy function 𝑔𝛼 associated with
Van Laar’s law fulfills Hypotheses 3.7 if and only if

p𝑆, 𝐷q P ℛ´ Yℛ`, (4.10a)

where

ℛ´ “ t𝑆 ă 0 and |𝐷| ă ´𝑆u, (4.10b)

ℛ` “
"

0 ă 𝑆 ă 4 and |𝐷| ă min
ˆ

𝑆;
”

𝑆2 ´ 18𝑆 ` 54` 2p9´ 2𝑆q3{2
ı1{2

˙*

. (4.10c)

The region indicated by (4.10) is colored in yellow in Figure 2. It lies inside the cone 𝐷2 ă 𝑆2 that corresponds
to condition (4.9). The origin p0, 0q must be excluded.

Proof. The first derivative of 𝑔𝛼 is

𝑔1𝛼p𝑥q “ ln 𝑥´ lnp1´ 𝑥q `𝐴12𝐴21
𝐴21p1´ 𝑥q

2
´𝐴12𝑥

2

r𝐴12𝑥`𝐴21p1´ 𝑥qs
2 ¨

Under assumption (4.9), this is a continuous function over p0, 1q, with lim𝑥Ó0 𝑔1𝛼p𝑥q “ ´8 and lim𝑥Ò1 𝑔1𝛼p𝑥q “
`8. Thus, 𝑔1𝛼 has range in R.
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The second derivative of 𝑔𝛼, multiplied by 𝑥p1´ 𝑥q to get rid of singularities, is equal to

ℎp𝑥q :“ 𝑥p1´ 𝑥q𝑔2𝛼p𝑥q “ 1´ 2𝐴2
12𝐴

2
21

𝑥p1´ 𝑥q

p𝐴12𝑥`𝐴21p1´ 𝑥qq
3 ¨

Let us change the variable to 𝑦 “ 𝑥´ 1
2 P

`

´ 1
2 , 1

2

˘

to work with the more symmetric function

𝐻p𝑦q :“ ℎ

ˆ

𝑥´
1
2

˙

“ 1´ 2𝐴2
12𝐴

2
21

1
4 ´ 𝑦2

“

1
2 p𝐴12 `𝐴21q ` p𝐴12 ´𝐴21q𝑦

‰3 ¨

It remains to study 𝐻 in order to determine the region of strict positivity 𝐻p𝑦q ą 0. The technical details can
be found in [16] or Proposition 3.3 in [34]. �

5. Cubic equation of states for two-phase mixtures

The fugacity laws investigated in Section 4 are simple and apply to a selected phase 𝛼, regardless of the
remaining ones. We are now going to examine a prominent category of laws for a two-phase (gas and liquid)
mixture, in which the fugacity coefficients for both phases are computed in a “simultaneous” way. Throughout
the rest of this paper, it is therefore assumed that

P “ t𝐺, 𝐿u, 𝑃 “ 2. (5.1)

The new labels 𝐺 (gas) and 𝐿 (liquid) are aimed at being more meaningful. To fix ideas, the presentation is
done for Peng–Robinson’s law [28]. The philosophy is the same for other cubic laws.

5.1. Peng–Robinson’s law

5.1.1. Mixing rules and cubic equation

Each component 𝑖 P 𝒦 in a pure state is characterized by a pair of positive parameters 𝑎𝑖 (cohesion term) and
𝑏𝑖 (covolume). These are highly sophisticated functions of the pressure and the temperature, but at fixed pP, Tq
can be considered as constants. This gives rise at fixed pP, Tq to a pair of positive dimensionless parameters

𝐴𝑖 “
P𝑎𝑖

pRTq2
, 𝐵𝑖 “

P𝑏𝑖

RT
¨ (5.2)

As before, we shall never write down explicitly the dependency of
`

𝐴𝑖, 𝐵𝑖
˘

on pP, Tq.
A multicomponent mixture is supposed to behave approximately as a fictitious pure component endowed with

an averaged value for the pair p𝐴, 𝐵q. The latter is computed from the
`

𝐴𝑖, 𝐵𝑖
˘

’s and the current partial fractions
by means of a mixing rule. More specifically, let 𝑥 P sΩ be the partial fractions of some phase. There can be
found [27] a wide variety of mixing rules 𝑥 ÞÑ p𝐴p𝑥q, 𝐵p𝑥qq. We require mixing rules to be smooth and to satisfy
the compatibility relation

`

𝐴
`

𝛿𝑖
˘

, 𝐵
`

𝛿𝑖
˘˘

“
`

𝐴𝑖, 𝐵𝑖
˘

for all 𝑖 P 𝒦. We recall that 𝛿𝑖
“ p𝛿𝑖,1, 𝛿𝑖,2, . . . , 𝛿𝑖,𝐾´1q

was introduced in Section 2.1.2 for 𝑖 P 𝒦 and consists of elementary Kronecker symbols 𝛿𝑖,𝑗 .
The next step is to consider the cubic equation

𝑍3p𝑥q ` p𝐵p𝑥q ´ 1q𝑍2p𝑥q `
“

𝐴p𝑥q ´ 2𝐵p𝑥q ´ 3𝐵2p𝑥q
‰

𝑍p𝑥q `
“

𝐵2p𝑥q `𝐵3p𝑥q ´𝐴p𝑥q𝐵p𝑥q
‰

“ 0 (5.3)

in the variable 𝑍p𝑥q. This accounts for the name “cubic EOS.” The dimensionless quantity 𝑍p𝑥q, called com-
pressibility factor, can be intuitively understood by noting that for a pure component, the cubic equation

𝑍3 ` p𝐵 ´ 1q𝑍2 `
`

𝐴´ 2𝐵 ´ 3𝐵2
˘

𝑍 `
`

𝐵2 `𝐵3 ´𝐴𝐵
˘

“ 0 (5.4)
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simply results from an algebraic transformation of the equation of state

P “
RT

V ´ 𝑏
´

𝑎

V2 ` 2V𝑏´ 𝑏2
, (5.5)

using

𝑍 “
PV

RT
, 𝐴 “

P𝑎

pRTq2
, 𝐵 “

P𝑏

RT
¨ (5.6)

Thus, for an ideal gas p𝑎 “ 𝑏 “ 0q, we have 𝑍 “ 1.
In the most favorable situation, there are three real roots, all greater than 𝐵p𝑥q. These are then named

𝐵p𝑥q ă 𝑍𝐿p𝑥q ă 𝑍𝐼p𝑥q ă 𝑍𝐺p𝑥q. (5.7)

In other words, the smallest root is associated with the liquid phase 𝐿, while the largest one is associated with
the gas phase 𝐺. This is grounded on the physical fact that, at the same pressure and temperature, the gas
phase occupies a larger volume than the liquid phase, which by (5.6) implies that 𝑍𝐺p𝑥q ą 𝑍𝐿p𝑥q. As for the
intermediate root 𝑍𝐼p𝑥q, it does not have any physical meaning.

5.1.2. Gibbs functions and fugacity coefficients

Let 𝛼 P t𝐺, 𝐿u and assume that the real root 𝑍𝛼p𝑥q ą 𝐵p𝑥q is well-defined. Then, the Peng–Robinson excess
Gibbs energy is defined as

Ψ𝛼p𝑥q “ 𝑍𝛼p𝑥q ´ 1´ ln r𝑍𝛼p𝑥q ´𝐵p𝑥qs ´
𝐴p𝑥q

2
?

2𝐵p𝑥q
ln

«

𝑍𝛼p𝑥q `
`

1`
?

2
˘

𝐵p𝑥q

𝑍𝛼p𝑥q ´
`?

2´ 1
˘

𝐵p𝑥q

ff

¨ (5.8)

From this, the fugacity coefficients can be deduced with the help of (2.14a).

Theorem 5.1. The Peng–Robinson fugacity coefficients are given by

ln Φ𝑖
𝛼p𝑥q “

𝐵p𝑥q `
@

∇𝐵p𝑥q, 𝛿𝑖
´ 𝑥

D

𝐵p𝑥q
r𝑍𝛼p𝑥q ´ 1s ´ lnr𝑍𝛼p𝑥q ´𝐵p𝑥qs

`

«

𝐵p𝑥q `
@

∇𝐵p𝑥q, 𝛿𝑖
´ 𝑥

D

𝐵p𝑥q
´

2𝐴p𝑥q `
@

∇𝐴p𝑥q, 𝛿𝑖
´ 𝑥

D

𝐴p𝑥q

ff

¨
𝐴p𝑥q

2
?

2𝐵p𝑥q
ln

«

𝑍𝛼p𝑥q `
`

1`
?

2
˘

𝐵p𝑥q

𝑍𝛼p𝑥q ´
`?

2´ 1
˘

𝐵p𝑥q

ff

, (5.9)

for all 𝑖 P 𝒦 and for any phase 𝛼 P t𝐺, 𝐿u in which 𝑍𝛼p𝑥q ą 𝐵p𝑥q is well-defined.

Proof. Taking the gradient of (5.8), we have

∇Ψ𝛼 “

#

1´
1

𝑍𝛼 ´𝐵
´

𝐴

2
?

2𝐵
“

𝑍 `
`?

2` 1
˘

𝐵
‰ `

𝐴

2
?

2𝐵
“

𝑍 ´
`?

2` 1
˘

𝐵
‰

+

∇𝑍𝛼

`

#

1
𝑍𝛼 ´𝐵

´
𝐴
`?

2` 1
˘

2
?

2
“

𝑍 `
`?

2` 1
˘

𝐵
‰ ´

𝐴
`?

2´ 1
˘

2
?

2
“

𝑍 ´
`?

2` 1
˘

𝐵
‰

`
𝐴

2
?

2𝐵2
ln

«

𝑍𝛼p𝑥q `
`

1`
?

2
˘

𝐵p𝑥q

𝑍𝛼p𝑥q ´
`?

2´ 1
˘

𝐵p𝑥q

ff+

∇𝐵 ´
1

2
?

2𝐵
ln

«

𝑍𝛼p𝑥q `
`

1`
?

2
˘

𝐵p𝑥q

𝑍𝛼p𝑥q ´
`?

2´ 1
˘

𝐵p𝑥q

ff

∇𝐴,
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in which we dropped the variable 𝑥 for clarity. By virtue of the cubic equation (5.3),

1´
1

𝑍𝛼 ´𝐵
´

𝐴

2
?

2𝐵
“

𝑍 `
`?

2` 1
˘

𝐵
‰ `

𝐴

2
?

2𝐵
“

𝑍 ´
`?

2` 1
˘

𝐵
‰ “ 0

and
1

𝑍𝛼 ´𝐵
´

𝐴
`?

2` 1
˘

2
?

2
“

𝑍 `
`?

2` 1
˘

𝐵
‰ ´

𝐴
`?

2´ 1
˘

2
?

2
“

𝑍 ´
`?

2` 1
˘

𝐵
‰ “

𝑍𝛼 ´ 1
𝐵

¨

Thus,

∇Ψ𝛼 “
𝑍𝛼 ´ 1

𝐵
∇𝐵 `

𝐴

2
?

2𝐵
ln

«

𝑍𝛼p𝑥q `
`

1`
?

2
˘

𝐵p𝑥q

𝑍𝛼p𝑥q ´
`?

2´ 1
˘

𝐵p𝑥q

ff

"

1
𝐵
∇𝐵 ´

1
𝐴
∇𝐴

*

.

Applying (2.14a) and using (5.8), we arrive at the desired result. �

5.1.3. Two crucial questions

Formulae (5.8) and (5.9) are well-known to thermodynamicists. A delicate but less often clarified issue is to
know which phase 𝛼 P t𝐺, 𝐿u they can be applied to, especially in the unfavorable situation when equation
(5.3) has only one real root greater than 𝐵p𝑥q. The simple-minded idea of taking 𝑍𝐺 “ 𝑍𝐿 equal to this real
root is of common practice in industrial codes, but is ill-advised since it gives rise to discontinuities in the Gibbs
functions, as will be explained in Remark 6.1.

In fact, in the one-root scenario, two subcases have to be envisaged. If we manage to assign a “natural” phase
label 𝛼 “ 𝐺 or 𝐿 to the real root, then the corresponding excess Gibbs energy Ψ𝛼 is defined by (5.8), leaving its
counterpart in the other phase undefined. If we do not succeed in attributing a “logical” phase label to the real
root, then Ψ𝛼 is undefined in both phases. This process is intuitive enough to describe with words, but raises
two serious questions:

(1) When does the cubic equation have three real roots greater than 𝐵p𝑥q and when does it have only one real
root greater than 𝐵p𝑥q?

(2) When and how can a “natural” phase label be assigned to the unique real root greater than 𝐵p𝑥q?

The upcoming subsections answer to these questions by working on the generic form (5.4). Part of these issues
was already addressed in [18] for Van der Waals’ law. We are not aware of any similar work for Peng–Robinson’s
law. This is why we are taking this opportunity to undertake a rigorous study.

5.2. Assignment of phase labels to roots

Instead of the polynomial

Υ𝐴,𝐵p𝑍q “ 𝑍3 ` p𝐵 ´ 1q𝑍2 `
`

𝐴´ 2𝐵 ´ 3𝐵2
˘

𝑍 `
`

𝐵2 `𝐵3 ´𝐴𝐵
˘

, (5.10)

which is naturally associated with (5.4), it is more convenient to work with the rational function

Π𝐴,𝐵p𝑍q “
1

𝑍 ´𝐵
´

𝐴

𝑍2 ` 2𝐵𝑍 ´𝐵2
´ 1, (5.11)

obtained from Υ𝐴,𝐵 through division by ´p𝑍 ´ 𝐵qp𝑍2 ` 2𝐵𝑍 ´ 𝐵2q. Insofar as the roots of 𝑍2 ` 2𝐵𝑍 ´ 𝐵2,
namely, ´𝐵

`?
2` 1

˘

and 𝐵
`?

2´ 1
˘

, are both lesser than 𝐵, Π𝐴,𝐵 and Υ𝐴,𝐵 have the same roots over p𝐵,`8q.
Since

lim
𝑍Ó𝐵

Π𝐴,𝐵p𝑍q “ `8, lim
𝑍Ñ`8

Π𝐴,𝐵p𝑍q “ ´1, (5.12)

there is at least one root larger than 𝐵.
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A triplet p𝑍𝑐, 𝐴𝑐, 𝐵𝑐q P p𝐵,`8q ˆ pR˚`q2 is said to be a critical point if

Π𝐴𝑐,𝐵𝑐p𝑍𝑐q “ 0, Π1𝐴𝑐,𝐵𝑐
p𝑍𝑐q “ 0, Π2𝐴𝑐,𝐵𝑐

p𝑍𝑐q “ 0. (5.13)

Critical points, also called triple points, are physically important. Here, this notion will help us divide the space
of parameters into various subregions with physically distinct behaviors.

Lemma 5.2. For Peng–Robinson’ law, there is a unique critical point given by

𝑍𝑐 “
1
32

„

11`
3
b

16
?

2´ 13´
3
b

16
?

2` 13


, (5.14a)

𝐴𝑐 “
1

512

„

´59` 3
3
b

276 831´ 192 512
?

2` 3
3
b

276 231` 192 512
?

2


, (5.14b)

𝐵𝑐 “
1
32

„

´1´ 3
3
b

16
?

2´ 13` 3
3
b

16
?

2` 13


. (5.14c)

Approximately,
𝑍𝑐 « 0.307401308, 𝐴𝑐 « 0.457235529, 𝐵𝑐 « 0.077796073. (5.14d)

In physics textbooks [27,33], only decimal approximations (5.14d) of the critical point can be found, without
any proof. The interest of Lemma 5.2 is to derive the exact values (5.14a)–(5.14c) of the critical point.

Proof. System (5.13) can be turned into a set of 3 polynomial equations in p𝑍𝑐, 𝐴𝑐, 𝐵𝑐q. By eliminating 𝐴𝑐, we
obtain the cubic equation 𝑧3

𝑐 ´ 3𝑧2
𝑐 ´ 3𝑧𝑐 ´ 3 “ 0 in 𝑧𝑐 “ 𝑍𝑐{𝐵𝑐, whose only real root is

𝑧𝑐 “ 1`
3
b

4´ 2
?

2`
3
b

4` 2
?

2 « 3.951373036. (5.15)

From this 𝐴𝑐{𝐵𝑐 can be deduced exactly. Once this is done, we can get back to p𝑍𝑐, 𝐴𝑐, 𝐵𝑐q. See Lemma 3.3 in
[34] for more details. �

Theorem 5.3 (Supercritical and subcritical regimes).
(1) If 𝐵{𝐴 ą 𝐵𝑐{𝐴𝑐 « 0.170144420, the function Π𝐴,𝐵 is decreasing over p𝐵,`8q and has only one zero greater

than 𝐵.
(2) If 𝐵{𝐴 ă 𝐵𝑐{𝐴𝑐 « 0.170144420, the function Π𝐴,𝐵 has two disctinct local extrema. In other words, there

exist two distinct values 𝜁𝐿 ă 𝜁𝐺 in p𝐵,`8q such that

Π1𝐴,𝐵p𝜁𝐿q “ Π1𝐴,𝐵p𝜁𝐺q “ 0.

Then, Π𝐴,𝐵 is decreasing on p𝐵, 𝜁𝐿q, increasing on p𝜁𝐿, 𝜁𝐺q and decreasing on p𝜁𝐺,`8q. It may have one
or three distinct zeros over p𝐵,`8q.

Theorem 5.3 paves the way to a natural association of a root with a phase in the subcritical regime. Note
that 𝐵{𝐴 plays the role of a temperature (up to a multiplicative constant).

Definition 5.4 (Phase label assignment). The region 0 ă 𝐵 ă p𝐵𝑐{𝐴𝑐q𝐴 is said to be subcritical. In the
subcritical region, a root 𝑍 ą 𝐵 of the cubic equation (5.4) is said to be associated with the liquid phase 𝐿 if
𝑍 ă 𝜁𝐿; a root 𝑍 ą 𝐵 of the cubic equation (5.4) is said to be associated with the gas phase 𝐺 if 𝑍 ą 𝜁𝐺.

Let us elaborate on this definition before proving Theorem 5.3. If there is only one root 𝑍 ą 𝐵, this root
cannot belong to p𝜁𝐿, 𝜁𝐺q. Therefore, either 𝑍 P p𝐵, 𝜁𝐿q or 𝑍 P p𝜁𝐺,`8q. This way of assigning a phase label
to 𝑍 is most natural, since it extends by continuity the “topological” pattern observed in the case of three real
roots.

The region 𝐵 ą p𝐵𝑐{𝐴𝑐q𝐴 is said to be supercritical. The graph of Π𝐴,𝐵 no longer has two discernable
branches. In this configuration, there is no natural way to associate 𝑍 with a phase. Physically speaking, the
critical threshold 𝐵𝑐{𝐴𝑐 corresponds to a critical temperature T𝑐. Above the critical temperature, the distinction
between gas and liquid phases no longer holds [12].
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Proof. To find the local extrema of Π𝐴,𝐵 on p𝐵,`8q, we search for the zeros on p𝐵,`8q of

Π1𝐴,𝐵p𝑍q “ ´
1

p𝑍 ´𝐵q2
`

𝐴p2𝑍 ` 2𝐵q

p𝑍2 ` 2𝐵𝑍 ´𝐵2q
2 ,

or equivalently, of the polynomial

𝑄𝐴,𝐵p𝑍q “ ´
`

𝑍2 ` 2𝐵𝑍 ´𝐵2
˘2
` 2𝐴p𝑍 `𝐵qp𝑍 ´𝐵q2,

which is equal to p𝑍´𝐵q2
`

𝑍2 ` 2𝐵𝑍 ´𝐵2
˘2Π1𝐴,𝐵p𝑍q. An even more convenient choice is to set T “ p𝑍´𝐵q{𝐵 P

p0,`8q and to study

𝑞𝐴,𝐵pTq :“
1

𝐵4
𝑄𝐴,𝐵p𝐵T`𝐵q “ ´

`

T2 ` 4T` 2
˘2
` 2

𝐴

𝐵
pT` 2qT2. (5.16)

The key idea is to insert 𝐴𝑐{𝐵𝑐 and to put the latter function under the form

𝑞𝐴,𝐵pTq “ pT´ T𝑐q
`

𝑞0 ` 𝑞1T` 𝑞2T
2
˘

` 2
ˆ

𝐴

𝐵
´

𝐴𝑐

𝐵𝑐

˙

pT` 2qT2

where T𝑐 “ 𝑧𝑐 ´ 1 and 𝑞0 ă 0, 𝑞1 ă 0, 𝑞2 ă 0. See Theorem 3.5 in [34] for the calculation of 𝑞0, 𝑞1, 𝑞2. Thus,
the graph of 𝑞𝐴𝑐,𝐵𝑐 is tangent to the T-axis at T “ T𝑐 with 𝑞𝐴𝑐,𝐵𝑐pTq ď 0 for T ě 0. If 𝐴{𝐵 ą 𝐴𝑐{𝐵𝑐, then
𝑞𝐴,𝐵pT𝑐q ą 0 and 𝑞𝐴,𝐵 vanishes twice on p0,`8q. If 𝐴{𝐵 ă 𝐴𝑐{𝐵𝑐, then 𝑞𝐴,𝐵pTq ă 𝑞𝐴𝑐,𝐵𝑐

pTq for all T ą 0 and
𝑞𝐴,𝐵 does not vanish on p0,`8q. �

5.3. Three-root and one-root regions

We also have the following necessary (and perhaps sufficient) condition for the existence of three real roots
greater than 𝐵. To the best of our knowledge, the frontier given by (5.17) has never been investigated before.

Theorem 5.5. In the quarter-plane p𝐴, 𝐵q P
`

R˚`
˘2, the region for which Peng–Robinson’s cubic equation (5.4)

has three real roots, all greater than 𝐵, is contained in the region

t0 ă 𝐵 ă 𝐵𝑐, 𝐴𝐺p𝐵q ă 𝐴 ă 𝐴𝐿p𝐵qu, (5.17a)

where 𝐴𝐺p𝐵q and 𝐴𝐿p𝐵q are respectively the middle root and greatest roots of the cubic equation

´4𝐴3 ´
`

8𝐵2 ´ 40𝐵 ´ 1
˘

𝐴2 `
`

16𝐵4 ´ 112𝐵3 ´ 88𝐵2 ´ 8𝐵
˘

𝐴

`
`

32𝐵6 ` 128𝐵5 ` 160𝐵4 ` 64𝐵3 ` 8𝐵2
˘

“ 0. (5.17b)

The region (5.17) lies itself inside the subcritical domain 0 ă 𝐵 ă p𝐵𝑐{𝐴𝑐q𝐴. Moreover,

– for t0 ă 𝐵 ă 𝐵𝑐, p𝐴𝑐{𝐵𝑐q𝐵 ă 𝐴 ă 𝐴𝐺p𝐵qu, the only real root is associated with the gas phase 𝐺, in the
sense of Definition 5.4;

– for t0 ă 𝐵 ă 𝐵𝑐, 𝐴𝐿p𝐵q ă 𝐴u or t𝐵𝑐 ă 𝐵, p𝐴𝑐{𝐵𝑐q𝐵 ă 𝐴u, the only real root is associated with the liquid
phase 𝐿, in the sense of Definition 5.4.

The region characterized by (5.17) is colored in cyan in Figure 3. Inside it, Peng–Robinson’s cubic equation
(5.4) has three real roots. Nevertheless, we could not prove that all the roots are greater than 𝐵, despite abundant
numerical evidences supporting the validity of this claim. The first branch 𝐴𝐺p¨q starts at p𝐴, 𝐵q “ p0, 0q with
slope 𝐴1𝐺p𝐵 “ 0q “ 4 ` 2

?
2. The second branch 𝐴𝐿p¨q starts at p𝐴, 𝐵q “ p1{4, 0q with slope 𝐴1𝐿p𝐵 “ 0q “ 2.

Both branches end at p𝐴, 𝐵q “ p𝐴𝑐, 𝐵𝑐q, with the common slope 𝐴1𝐺p𝐵 “ 𝐵𝑐q “ 𝐴1𝐿p𝐵 “ 𝐵𝑐q « 2.95686087.
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Figure 3. Number of roots for Peng–Robinson’s law in the p𝐴, 𝐵q-quarter plane.

Proof. The discriminant3 of the cubic equation (5.4) is

∆p𝐴, 𝐵q “ ´ 4𝐴3 ´
`

8𝐵2 ´ 40𝐵 ´ 1
˘

𝐴2 `
`

16𝐵4 ´ 112𝐵3 ´ 88𝐵2 ´ 8𝐵
˘

𝐴

`
`

32𝐵6 ` 128𝐵5 ` 160𝐵4 ` 64𝐵3 ` 8𝐵2
˘

. (5.18)

For (5.4) to have three real roots, ∆p𝐴, 𝐵q must be positive. If the polynomial (5.18) has only one real root
𝐴0p𝐵q, since the leading coefficient ´4 is negative, we must have 𝐴 ă 𝐴0p𝐵q to ensure ∆p𝐴, 𝐵q ą 0. If (5.18) has
three real roots 𝐴0p𝐵q ă 𝐴𝐺p𝐵q ă 𝐴𝐿p𝐵q, we must have 𝐴 ă 𝐴0p𝐵q or 𝐴 P p𝐴𝐺p𝐵q, 𝐴𝐿p𝐵qq. The discriminant
of (5.18) with respect to 𝐴 is equal to

∆𝐴p𝐵q “ ´32𝐵2
`

64𝐵3 ` 6𝐵2 ` 12𝐵 ´ 1
˘

¨
`

4096𝐵6 ` 768𝐵5 ` 1572𝐵4 ` 16𝐵3 ` 132𝐵2 ´ 24𝐵 ` 1
˘

.

It can be shown that ∆𝐴p𝐵q ą 0 for 𝐵 P p0, 𝐵𝑐q, ∆𝐴p𝐵𝑐q “ 0 and ∆𝐴p𝐵q ă 0 for 𝐵 ą 𝐵𝑐. Therefore, if 𝐵 ą 𝐵𝑐,
only 𝐴0p𝐵q exists. If 𝐵 P p0, 𝐵𝑐q, there exist 𝐴0p𝐵q ă 𝐴𝐺p𝐵q ă 𝐴𝐿p𝐵q.

The rest of the proof goes as follows. We first show that 𝐴0p𝐵q ą 0. Then, we rule out the region t0 ă
𝐵 ă 𝐵𝑐, 0 ă 𝐴 ă 𝐴0p𝐵qu which in fact belongs to the supercritical region. Next, in the region tp𝐴𝑐{𝐵𝑐q𝐵 ă

𝐴 ă 𝐴0p𝐵q, 𝐵˚ ă 𝐵u, where 𝐵˚ « 2.435425 is the ordinate at which the graphe of 𝐴0p¨q enters the subcritical
region, we show that the three real real roots cannot be all larger than 𝐵. In conclusion, the only way for (5.4)
to have three real roots, all greater than 𝐵, is that 𝐵 P p0, 𝐵𝑐q and 𝐴 P p𝐴𝐺p𝐵q, 𝐴𝐿p𝐵qq. This region is shown
to be contained in the subcritical domain. The comprehensive discussion can be found in Theorem 3.6 from
[34]. �

6. Domain extension for cubic EOS-based Gibbs functions

From Section 5.3, it appears that the cubic equation (5.3) may not always have three real roots greater than
𝐵p𝑥q for all 𝑥 P sΩ. As a consequence, the domain of definition for the functions Ψ𝛼, Φ𝑖

𝛼 for a given phase 𝛼
may not always cover the whole simplex sΩ. This turns out to be detrimental to the unified formulation (2.18).

6.1. Difficulty of the unified formulation with cubic EOS

In a nutshell, the Gibbs energy functions 𝑔𝛼 may grossly violate Hypotheses 3.7. To give a visual picture
of the nature of the obstruction, let us consider the simplistic case of a two-phase binary p𝐾 “ 2q mixture,
governed by Peng–Robinson’s law combined with the mixing rule

𝐴p𝑥q “
”

𝑥
?

𝐴I ` p1´ 𝑥q
?

𝐴II
ı2

, 𝐵p𝑥q “ 𝑥𝐵I ` p1´ 𝑥q𝐵II. (6.1)

For an arbitrary choice of the two pairs
`

𝐴I, 𝐵I
˘

and
`

𝐴II, 𝐵II
˘

in the subcritical region 0 ă 𝐵 ă p𝐵𝑐{𝐴𝑐q𝐴,
the parametrized curve 𝛾 : r0, 1s Q 𝑥 ÞÑ p𝐴p𝑥q, 𝐵p𝑥qq P

`

R˚`
˘2 is an arc of parabola.

3The discriminant of the equation 𝑎𝑋3 ` 𝑏𝑋2 ` 𝑐𝑋 ` 𝑑 “ 0 is Δ “ 𝑏2𝑐2 ´ 4𝑎𝑐3 ´ 4𝑏3𝑑 ´ 27𝑎2𝑑2 ` 18𝑎𝑏𝑐𝑑.



AN ANALYSIS OF THE UNIFIED FORMULATION FOR PHASE EQUILIBRIUM 3009

Figure 4. Curve 𝛾 defined by the mixing rule in the p𝐴, 𝐵q-plane.

Assume that
`

𝐴I, 𝐵I
˘

belongs to the one-root region labelled 𝐺, while
`

𝐴II, 𝐵II
˘

belongs to the one-root
region labelled 𝐿, as illustrated in Figure 4. At 𝑥 “ 0, the curve 𝛾 starts from

`

𝐴II, 𝐵II
˘

in the 𝐿-root region.
At some parameter value 𝑥 “ 𝑥5 P p0, 1q, it enters the three-root region. At some further value 𝑥 “ 𝑥7 P p𝑥5, 1q,
it exits the three-root region. At 𝑥 “ 1, it finally meets

`

𝐴I, 𝐵I
˘

in the 𝐺-root region. It is not difficult to realize
that:

– the quantities 𝑍𝐿p𝑥q, Ψ𝐿p𝑥q, 𝑔𝐿p𝑥q are well-defined only for 𝑥 P r0, 𝑥7s; 𝑔𝐿

´

𝑥´7

¯

and 𝑔1𝐿

´

𝑥´7

¯

remain bounded,

while 𝑔2𝐿

´

𝑥´7

¯

and 𝑍 1𝐿

´

𝑥´7

¯

blow up;

– the quantities 𝑍𝐺p𝑥q, Ψ𝐺p𝑥q, 𝑔𝐺p𝑥q are well-defined only for 𝑥 P r𝑥5, 1s; 𝑔𝐺

`

𝑥`
5

˘

and 𝑔1𝐺
`

𝑥`
5

˘

remain bounded,
while 𝑔2𝐺

`

𝑥`
5

˘

and 𝑍 1𝐺
`

𝑥`
5

˘

blow up.

Since 𝑔1𝐺
`

𝑥`
5

˘

and 𝑔1𝐿

´

𝑥´7

¯

are finite, the image sets 𝑔1𝐺pr𝑥5, 1qq and 𝑔1𝐿pp0, 𝑥7sq are not equal to R. This
prevents us from being always able to assign a well-defined extended fraction to the vanishing phase for the
single-phase problem (3.24) of Section 3.3.2. Indeed, when 𝑐 is sufficiently close to 0, 𝑔1𝐿p𝑐q R 𝑔1𝐺pr𝑥5, 1qq because
lim𝑥Ó0 𝑔1𝐿p𝑥q “ ´8, and it is impossible to find s𝑥𝐺 P r𝑥5, 1q such that 𝑔1𝐺ps𝑥𝐺q “ 𝑔1𝐿p𝑐q. Likewise, when 𝑐 is
sufficiently close to 1, 𝑔1𝐺p𝑐q R 𝑔1𝐿pp0, 𝑥7sq because lim𝑥Ò1 𝑔1𝐺p𝑥q “ `8, and it is impossible to find s𝑥𝐿 P p0, 𝑥7s
such that 𝑔1𝐿ps𝑥𝐿q “ 𝑔1𝐺p𝑐q. Figure 5 depicts this situation.

It could be argued that the same flaw of cubic EOS laws should cause the same prejudice to the variable-
switching formulation of Section 2.2.1. But this is not true. In the variable-switching formulation, if the context
is correctly guessed, we do not need to compute anything from the absent phase and the above problem is
irrelevant. If the context is incorrectly alleged, the flash does not converge or may even crash, but there is an
opportunity for us to make up for it by changing the context. The natural variable formulation does not seek
to explore the regions where information is missing. The unified formulation has to do so, by its very vocation
to treat all phases on an equal footing.

Remark 6.1. From Figure 5, it can be seen that if we abruptly take 𝑍𝐺 “ 𝑍𝐿 in the one-root regions 𝑥 P r0, 𝑥5q
and 𝑥 P p𝑥7, 1s, as often done by practitioners, then we will have 𝑔𝐺 “ 𝑔𝐿 over these two intervals. As a
consequence, 𝑔𝐺 will exhibit a discontinuity at 𝑥5 and 𝑔𝐿 a discontinuity at 𝑥7. These unphysical discontinuities
are not a favorable feature for numerical robustness.
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Figure 5. Typical situation where the fraction in the absent phase cannot be computed.

6.2. A natural domain extension method

To enhance the performance of the unified formulation, it is essential that the domains of definition for the
excess functions Ψ𝛼 can be extended to sΩ. Note that here we just want to extend the domains of definition of
various functions. We do not strive to fulfill Hypotheses 3.7, since these assumptions may already be violated
for the original unextended Gibbs functions. Even without strict convexity, a smooth extension of the Gibbs
functions helps iterative methods [35] to remain well-defined everywhere.

6.2.1. Construction in the one-root region

When the cubic equation does not have three real roots, our idea is to use the common real part of the two
complex conjugate roots, as a “surrogate” of the missing real root. Assume that 𝑍𝛼 is the only real root greater
than 𝐵 of Peng–Robinson’s cubic equation

𝑍3 ` p𝐵 ´ 1q𝑍2 `
`

𝐴´ 2𝐵 ´ 3𝐵2
˘

𝑍 `
`

𝐵2 `𝐵3 ´𝐴𝐵
˘

“ 0,

where the label 𝛼 P t𝐺, 𝐿u has been assigned in accordance with Definition 5.4. To alleviate notations, we do
not explicitly indicate the dependency of 𝐴, 𝐵 and 𝑍 on 𝑥.

Let 𝛽 be the other phase, that is, 𝛽 “ 𝐿 if 𝛼 “ 𝐺 and 𝛽 “ 𝐺 if 𝛼 “ 𝐿. Since the sum of the three (complex)
roots is equal to 1´𝐵, the two remaining conjugate roots share the common real part

𝑊𝛽 “
1´𝐵 ´ 𝑍𝛼

2
¨ (6.2)

The following properties of 𝑊𝛽 speak in favor of its enrollment as a substitute for 𝑍𝛽 , which would have been
subject the same constraints, had it existed.

Lemma 6.2. Let p𝐴, 𝐵q be a pair in the subcritical region 0 ă 𝐵 ă p𝐵𝑐{𝐴𝑐q𝐴 and assume that Peng–Robinson’s
cubic equation has only one real root 𝑍𝛼 ą 𝐵 that corresponds to phase 𝛼.

(1) If 𝐵 ă 0.206813, then
𝑊𝛽 ą 𝐵. (6.3a)

(2) If 𝐵 ă 0.137072, then
𝑍𝛼 ă 𝑊𝛽 if 𝛼 “ 𝐿, 𝑊𝛽 ă 𝑍𝛼 if 𝛼 “ 𝐺. (6.3b)



AN ANALYSIS OF THE UNIFIED FORMULATION FOR PHASE EQUILIBRIUM 3011

Proof. The proof is based on the rational function Π𝐴,𝐵 introduced in (5.11) and its behavior described in
Theorem 5.3. Full details are available in Lemma 3.5 of [34]. �

By restricting ourselves to 𝐵 ă 0.137072, which is reasonable since 𝐵𝑐 « 0.077796, we can rely on Lemma 6.2
to stipulate that

Ψ𝛽 “ 𝑊𝛽 ´ 1´ ln
“

𝑊𝛽 ´𝐵
‰

´
𝐴

2
?

2𝐵
ln

«

𝑊𝛽 `
`?

2` 1
˘

𝐵

𝑊𝛽 ´
`?

2´ 1
˘

𝐵

ff

(6.4)

for the missing phase 𝛽. By (2.14a), we can derive the corresponding fugacity coefficients.

Theorem 6.3. With extension (6.4), the Peng–Robinson fugacity coefficients phase 𝛽 are

ln Φ𝑖
𝛽 “

𝐵 `
@

∇𝐵, 𝛿𝑖
´ 𝑥

D

𝐵
r𝑊𝛽 ´ 1s ´ lnr𝑊𝛽 ´𝐵s

`

«

𝐵 `
@

∇𝐵, 𝛿𝑖
´ 𝑥

D

𝐵
´

2𝐴`
@

∇𝑥𝐴, 𝛿𝑖
´ 𝑥

D

𝐴

ff

𝐴

2
?

2𝐵
ln

«

𝑊𝛽 `
`?

2` 1
˘

𝐵

𝑊𝛽 ´
`?

2´ 1
˘

𝐵

ff

`

«

@

∇𝑊𝛽 , 𝛿𝑖
´ 𝑥

D

𝑊𝛽
´

@

∇𝐵, 𝛿𝑖
´ 𝑥

D

𝐵

ff

𝑊𝛽 Υ𝐴,𝐵p𝑊𝛽q

p𝑊𝛽 ´𝐵q
´

𝑊 2
𝛽 ` 2𝐵𝑊𝛽 ´𝐵2

¯ (6.5)

for all 𝑖 P 𝒦, with Υ𝐴,𝐵p𝑊 q “𝑊 3 ` p𝐵 ´ 1q𝑊 2 `
`

𝐴´ 2𝐵 ´ 3𝐵2
˘

𝑊 `
`

𝐵2 `𝐵3 ´𝐴𝐵
˘

.

Proof. The proof is similar to that of Theorem 5.1. �

The gradient of 𝑊𝛽 required by (6.5) can be computed by ∇𝑊𝛽 “ ´
1
2 p∇𝐵 `∇𝑍𝛼q, in which ∇𝑍𝛼 comes

from differentiating Peng–Robinson’s cubic equation with respect to 𝑥, i.e.,
“

3𝑍2
𝛼 ` 2p𝐵 ´ 1q𝑍𝛼 `

`

𝐴´ 2𝐵 ´ 3𝐵2
˘‰

∇𝑍𝛼 “ p𝐵 ´ 𝑍𝛼q∇𝐴

`
`

𝐴´ 2𝐵 ´ 3𝐵2 ` 6𝐵𝑍𝛼 ` 2𝑍𝛼 ´ 𝑍2
𝛼

˘

∇𝐵. (6.6)

6.2.2. Alteration in the three-root region

In the one-root region, the gradient ∇𝑊𝛽 “ ´
1
2 p∇𝐵 `∇𝑍𝛼q remains bounded. If we start from the three-

root region and move towards the transition boundary where 𝑍𝛽 disappears, the gradient ∇𝑍𝛽 does not remain
bounded. Indeed, 𝑍𝛽 also obeys (6.6) (just replace 𝑍𝛼 by 𝑍𝛽), and as 𝑍𝛽 gets closer to being a double root,
∇𝑍𝛽 blows up. However, we need a finite gradient ∇𝑍𝛽 for the numerical resolution of system (2.18) by, say,
the Newton method.

To achieve a smooth junction, we introduce a further approximation on a tiny portion of the three-root
region. Assuming that we are in the three-root region, with 𝐵 ă 𝑍𝐿 ă 𝑍𝐼 ă 𝑍𝐺, we introduce

𝜗 “
𝑍𝐼 ´ 𝑍𝐿

𝑍𝐺 ´ 𝑍𝐿
P r0, 1s (6.7)

as an indicator of the closeness to the transition boundary. Indeed, the cubic equation has double roots when
𝜗 “ 0 or 𝜗 “ 1. Let 𝜀 P p0, 1{4q be a small threshold.

– If 𝜗 P r2𝜀, 1´ 2𝜀s, we apply the usual formulas for the case of three real-roots.
– If 𝜗 P p1 ´ 2𝜀, 1s, the two roots 𝑍𝐼 and 𝑍𝐺 are close to each other. We keep 𝑍𝐿 but progressively replace

𝑍𝐺 by 𝑊𝐺 “ 1
2 p1 ´ 𝐵 ´ 𝑍𝐿q “

1
2 p𝑍𝐼 ` 𝑍𝐺q whose gradient is bounded. Instead of 𝑍𝐺, we plug r𝑍𝐺 “

r1´ 𝜈𝐺p𝜗qs𝑍𝐺 ` 𝜈𝐺p𝜃q𝑊𝐺 into (5.8), where

𝜈𝐺p𝜗q “

$

’

&

’

%

0 if 𝜗 ď 1´ 2𝜀,

𝑞pp𝜗´ p1´ 2𝜀qq{𝜀q if 𝜗 P p1´ 2𝜀, 1´ 𝜀q,

1 if 𝜗 ě 1´ 𝜀,

(6.8)
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Figure 6. Extended Gibbs energy functions 𝑔𝐿 (blue) and 𝑔𝐺 (red) for Peng–Robinson’s law
by the indirect method, with 𝜀 “ 0.001. Left panel:

`

𝐴I, 𝐵I
˘

“ p0.322, 0.053q and
`

𝐴II, 𝐵II
˘

“

p0.33, 0.03q. Right panel:
`

𝐴I, 𝐵I
˘

“ p0.275, 0.045q and
`

𝐴II, 𝐵II
˘

“ p0.35, 0.04q.

Figure 7. Extended Gibbs energy functions 𝑔𝐿 (blue) and 𝑔𝐺 (red) for Peng–Robinson’s law
by the indirect method, with 𝜀 “ 0.2. Left panel:

`

𝐴I, 𝐵I
˘

“ p0.322, 0.053q and
`

𝐴II, 𝐵II
˘

“

p0.33, 0.03q. Right panel:
`

𝐴I, 𝐵I
˘

“ p0.275, 0.045q and
`

𝐴II, 𝐵II
˘

“ p0.35, 0.04q.

and 𝑞p𝑦q “ 𝑦2p3´ 2𝑦q. The rescaled function 𝑦 ÞÑ 𝑞p𝑦{𝜀q serves as a 𝐶1 step function over the interval r0, 𝜀s.
We note that 𝑞p0q “ 0, 𝑞p1q “ 1 and 𝑞1p0q “ 𝑞1p1q “ 0. From the modified excess Gibbs energy

Ψ𝐺 “ r𝑍𝐺 ´ 1´ ln
”

r𝑍𝐺 ´𝐵
ı

´
𝐴

2
?

2𝐵
ln

«

r𝑍𝐺 `
`?

2` 1
˘

𝐵

r𝑍𝐺 ´
`?

2´ 1
˘

𝐵

ff

(6.9a)

and from the rule (2.14a), the fugacity coefficients are inferred as

ln Φ𝑖
𝐺 “

𝐵 `
@

∇𝐵, 𝛿𝑖
´ 𝑥

D

𝐵

”

r𝑍𝐺 ´ 1
ı

´ ln
”

r𝑍𝐺 ´𝐵
ı
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Figure 8. Close-up comparison of the extended Gibbs functions between 𝜀 “ 0.001 and 𝜀 “ 0.2
for Peng–Robinson’ law with the indirect method.

`

𝐴I, 𝐵I
˘

“ p0.275, 0.045q and
`

𝐴II, 𝐵II
˘

“

p0.35, 0.04q. (A) 𝑔𝐺. (B) 𝑔𝐿.

`

«

𝐵 `
@

∇𝐵, 𝛿𝑖
´ 𝑥

D

𝐵
´

2𝐴`
@

∇𝑥𝐴, 𝛿𝑖
´ 𝑥

D

𝐴

ff

𝐴

2
?

2𝐵
ln

«

r𝑍𝐺 `
`?

2` 1
˘

𝐵

r𝑍𝐺 ´
`?

2´ 1
˘

𝐵

ff

`

«

x∇ r𝑍𝐺, 𝛿𝑖
´ 𝑥y

r𝑍𝐺

´
x∇𝐵, 𝛿𝑖

´ 𝑥y

𝐵

ff

r𝑍𝐺 Υ𝐴,𝐵

´

r𝑍𝐺

¯

´

r𝑍𝐺 ´𝐵
¯´

r𝑍2
𝐺 ` 2𝐵 r𝑍𝐺 ´𝐵2

¯ ¨ (6.9b)

– If 𝜗 P r0, 2𝜀q, we proceed in a similar and symmetric fashion to replace 𝑍𝐿 by r𝑍𝐿 “ r1´ 𝜈𝐿p𝜗qs𝑍𝐿`𝜈𝐿p𝜗q𝑊𝐿

in the expression of Ψ𝐿, while preserving 𝑍𝐺.

Figures 6 and 7 display a few examples of the extension method for Peng–Robinson’s law in the binary case.
Figures 8 and 9 provide a close-up comparison between two choices of 𝜀.

6.2.3. Numerical validation of the extension method

Extensive numerical simulations are provided in [35], a companion paper to the present one, to demonstrate
the relevance of the above extension method. In [35], we considered various systems of equations in the unified
form (2.18) with a wide range of physical parameters and initial points. A careful comparison is carried out
between two numerical methods used to solve these systems: the Newton-min method and the Non-Parametic
Interior Point Method (NPIPM) that we designed on purpose to deal with such systems.

It turned out that very good results (nearly 100% convergence) can be achieved thanks to the combination
of both ingredients, i.e., the extension of Gibbs functions and the NPIPM algorithm. A single ingredient alone
is not enough in the following sense: unextended Gibbs functions always cause divergence of both numerical
methods (Newton-min and NPIPM), but extended Gibbs functions combined with Newton-min does not bring
significant improvement.

7. Conclusion

Beyond implementational advantages, the unified formulation has been shown to be able to recover all the
properties known to physicists on phase equilibrium. Indeed, the complementary equations do encapsulate the
tangent plane criterion (Thm. 3.4), as the sign information is related to some stability condition. The unified
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Figure 9. Close-up comparison of the derivative of the extended Gibbs functions between 𝜀 “
0.001 and 𝜀 “ 0.2 for Peng–Robinson’ law with the indirect method. p𝐴I, 𝐵Iq “ p0.275, 0.045q
and p𝐴II, 𝐵IIq “ p0.35, 0.04q. (A) 𝑔1𝐺. (B) 𝑔1𝐿.

formulation can also be regarded as a solution of some constrained minimization problem (Thms. 3.2 and 3.3)
in which the objective function is a Gibbs energy of the mixture. This solution is characterized by a set of
equations that is slightly stronger than the KKT optimality conditions when a phase vanishes.

The possibility of assigning well-defined values to the extended fractions of an absent phase can only be
achieved if the Gibbs functions meet some restrictive requirements. Strictly convexity and surjectivity of the
gradient over the whole domain of fractions (Hypotheses 3.7) are sufficient for this purpose. Remarkably, these
assumptions also guarantee the existence of a solution to the phase equilibrium problem in the unified formu-
lation (Thm. 3.12).

Unfortunately, Hypotheses 3.7 are not satisfied by realistic Gibbs functions. The obligation of assigning
well-defined fraction values to an absent phase then becomes a weakness that jeopardizes the whole unified
approach. This is especially true for the Gibbs functions derived from cubic EOS, for which they are not
even defined on the whole domain of fractions. The extension procedure of Section 6 is aimed at improving
the robustness of the unified formulation. The corresponding numerical results will be the subject of another
simulation-oriented article, where we also design an interior-point algorithm ([34], Sect. 5) in order to efficiently
cope with complementarity conditions.

Despite its solid theoretical foundation, the current unified formulation is not able to support the phenomenon
of phase separation, where the same phase is split into two or several distinct subphases due to the non-convexity
of its Gibbs function. Note that the variable-switching formulation cannot do it either. Future works should
tackle this question perhaps by combining the unified formulation with some judicious approaches advocated
by [11,25].
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[2] M. Aganagić, Newton’s method for linear complementarity problems. Math. Program. 28 (1984) 349–362.

[3] L. Asselineau, G. Bogdanic and J. Vidal, A versatile algorithm for calculating vapour-liquid equilibria. Fluid Phase Equilib. 3
(1979) 273–290.



AN ANALYSIS OF THE UNIFIED FORMULATION FOR PHASE EQUILIBRIUM 3015

[4] L. Beaude, K. Brenner, S. Lopez, R. Masson and F. Smai, Non-isothermal compositional liquid gas Darcy flow: formulation,
soil-atmosphere boundary condition and application to high-energy geothermal simulations. Comput. Geosci. 23 (2019) 443–
470.
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[30] N. Peton, Comparaison de plusieurs formulations pour les écoulements multiphasiques et compositionnels en milieu poreux.
Tech. report, IFPEN (2015).

[31] N. Peton, C. Cancès, D. Granjeon, Q.-H. Tran and S. Wolf, Numerical scheme for a water flow-driven forward stratigraphic
model. Comput. Geosci. 24 (2020) 37–60.

[32] H.H. Rachford and J.D. Rice, Procedure for use of electronic digital computers in calculating flash vaporization hydrocarbon
equilibrium. J. Petrol. Technol. 4 (1952) 19.

[33] J. Vidal, Thermodynamics. Applications in Chemical Engineering and The Petroleum Industry. Institut Français du Pétrole
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