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The capture of CO2 from post-combustion streams or from other mixtures, such

as natural gas, is an effective way of reducing CO2 emissions, which contribute to

the greenhouse effect in the atmosphere. One of the developing technologies for

this purpose is physisorption on selective solid adsorbents. The ideal adsorbents are

selective toward CO2, have a large adsorption capacity at atmospheric pressure and are

easily regenerated, resulting in high working capacity. Therefore, adsorbents combining

molecular sieving properties and low heats of adsorption of CO2 are of clear interest

as they will provide high selectivities and regenerabilities in CO2 separation process.

Here we report that some aluminophosphate (AlPO) and silicoaluminophosphate (SAPO)

materials with LTA, CHA and AFI structures present lower heats of adsorption of

CO2 (13–25 kJ/mol) than their structurally analogous zeolites at comparable framework

charges. In some cases, their heats of adsorption are even lower than those of pure silica

composition (20–25 kJ/mol). This could mean a great improvement in the regeneration

process compared to the most frequently used zeolitic adsorbents for this application

while maintaining most of their adsorption capacity, if materials with the right stability and

pore size and topology are found.

Keywords: carbon dioxide, separation, adsorption, capture, molecular sieves, zeolites

INTRODUCTION

Carbon dioxide is a greenhouse gas that is emitted to the atmosphere due to a large number
of industrial processes. Combustion of fossil fuels for transport or in power plants, metallurgy,
cement and chemical production are some of the most important processes related to CO2 massive
release to the atmosphere (U.S. National Coal Council, 2015). In order to mitigate CO2 emissions
and prevent the negative effect they have on climate change, Carbon Capture and Storage (CCS)
technologies are being applied and developed. CCS from air is the only way of reducing CO2

presence in the atmosphere, while CCS from large point sources (i.e., power plant or cement factory
exhaust) is the best way of minimizing future emissions (Boot-Handford et al., 2014; Leung et al.,
2014; The National Academies of Sciences, Engineering and Medicine, 2018).

The currently most common technology for CCS from large point sources is amine scrubbing,
which involves flowing the CO2-containing mixture through a liquid solution of amines and its
thermal regeneration afterwards. This is a highly energy demanding process, which as well presents
problems with reactant stability and corrosion of the equipment. Thus, along with optimization
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of this technology in what refers to heat integration and
reactant improvement, a number of alternative methods is being
researched and developed, such as oxycombustion or separation
using either membranes or adsorbents (Boot-Handford et al.,
2014; Rubin et al., 2015; Bui et al., 2018; Global CCS Institute,
2019).

Separation by adsorption is being researched, as its
operation costs have potential to be lower than those of
other current processes. Materials that have been studied as
adsorbents for CO2 include carbonaceous materials, metal-
organic frameworks (MOFs), covalent organic frameworks
(COFs), supported amines, zeolites, AlPOs, and SAPOs (Lee
et al., 2008; Tagliabue et al., 2009; Liu et al., 2011; Cheung
et al., 2012; Lee and Park, 2015; Fischer, 2017; Riboldi and
Bolland, 2017). Selectivity, working capacity and easiness
of regeneration are the three parameters to be maximized
in the selection of an adsorbent. Out of the mentioned
materials, supported amines and some MOFs and low silica
zeolites interact chemically with CO2, i.e., chemisorption
takes place. The CO2/CH4 and CO2/N2 selectivities on these
materials is usually very high, due to the specific interaction
between the CO2 and the adsorbent. However, this strong
interaction also leads to large amounts of energy required
for regeneration. These kinds of adsorbents are usually
hydrophilic (or even water-sensitive) too, which is another
major drawback, as water and CO2 adsorption interfere with
each other.

TABLE 1 | Framework composition as determined per ICP, isolated Si fraction as

determined from 29Si-NMR spectra and the estimated framework negative charge.

Sample xSi xAl xP Isolated Si Estimated

fraction, framework

from NMR negative charge

AlPO-42 – 0.53 0.47 – 0

SAPO-42-104 0.04 0.50 0.46 0.24 0.010

SAPO-42-24 0.05 0.52 0.43 0.82 0.041

SAPO-42-13 0.1 0.54 0.36 0.8 0.080

Si-LTA 1 – – – 0

LTA-31 0.97 0.03 – – 0.032

LTA-6 0.83 0.17 – – 0.167

LTA-4.5 0.78 0.22 – – 0.222

LTA-3 0.67 0.33 – – 0.333

AlPO-34 – 0.57 0.43 – 0

SAPO-34-10 0.10 0.55 0.35 0.975 0.097

SAPO-34-7 0.18 0.51 0.31 0.814 0.146

Si-CHA 1 – – – 0

CHA-19 0.95 0.05 – – 0.052

CHA-18 0.94 0.06 – – 0.055

CHA-6 0.84 0.16 – – 0.164

CHA-3 0.65 0.35 – – 0.348

AlPO-5 – 0.54 0.46 – 0

SAPO-5-46 0.04 0.53 0.43 0.6 0.022

SAPO-5-34 0.07 0.54 0.40 0.45 0.030

Si-AFI 1 – – – 0

Adsorption of CO2 on high and pure silica zeolites, together
with carbonaceousmaterials, manyMOFs andAlPOs and SAPOs
takes place via a physisorption mechanism, which means that the
interaction between sorbent and sorbate is weaker, thus meaning
regeneration will be less energy intensive. Nevertheless, this does
not mean that CO2/CH4 and/or CO2/N2 selectivities have to
be low. Compositional and structural tuning of carbonaceous
materials, MOFs (Lee and Park, 2015), zeolites, AlPOs, and
SAPOs (García et al., 2014; Fischer, 2017) can lead to materials
with high selectivities, capacities and low regeneration energies.

AlPOs and SAPOs are microporous materials closely related
to zeolites and present a framework based on alternating PO4

and AlO4 tetrahedra. In the case of SAPOs, some P atoms can
be replaced by isolated Si atoms and pure silica domains (Si-rich
domains or Si-islands) can also be present (Man et al., 1991).
These materials were discovered in the early 1980s (Wilson et al.,
1982; Lok et al., 1984). Since then, AlPOs and SAPOs with many
different structures have been prepared and studied as catalysts or
adsorbents (Zibrowius et al., 1992; Martin et al., 1998; Schreyeck
et al., 1998; Wright and Connor, 2008; Liu et al., 2011; Cheung
et al., 2012; Martínez-Franco et al., 2015; Dawson et al., 2017;
Fischer, 2017).

In this work, we have studied the adsorption of CO2 on AlPOs
and SAPOs with LTA, CHA, and AFI structures (Baerlocher
and McCusker), and compared the calculated isosteric heats of
adsorption with those of analogous zeolites previously reported.
The choice of adsorbent structures was made in order to include

TABLE 2 | Textural properties of the studied adsorbents.

Sample BET surface Micropore volume DA surface

area (m2/g) (cm3/g) area (m2/g)

AlPO-42 774 0.290 –

SAPO-42-104 797 0.301 –

SAPO-42-24 776 0.289 –

SAPO-42-13 743 0.275 –

Si-LTA 811 0.320 –

LTA-31 777 0.305 –

LTA-6 806 0.297 –

LTA-4.5 799 0.304 680

LTA-3 794 0.295 609

AlPO-34 – 0.226 –

SAPO-34-10 595 0.210 –

SAPO-34-7 699 0.242 –

Si-CHA 821 0.296 –

CHA-19 869 0.305 –

CHA-18 801 0.293 –

CHA-6 749 0.273 600

CHA-3* – – 470

AlPO-5 310 0.117 –

SAPO-5-46 383 0.141 –

SAPO-5-34 355 0.119 –

Si-AFI 359 0.130 –

*N2 isotherms at 77K could not be obtained due to very slow diffusion.
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two small pore structures (LTA and CHA) which have been
extensively reported as selective CO2 adsorbents (Tagliabue et al.,
2009; Palomino et al., 2010; Miyamoto et al., 2012; Shang et al.,
2012; Pham et al., 2014). Materials with AFI structure were

included in order to check if the same findings obtained for
small pore materials applied as well to large pore zeotypes. The
surprisingly low isosteric heats of adsorption found in these
materials suggest that AlPOs and SAPOs can present major

FIGURE 1 | CO2 adsorption isotherms at 25–30◦C and up to 1 bar on materials with LTA (A,B), CHA (C,D), and AFI (E,F) structures. The lines are guides to the eye.
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advantages in the field of CO2 separation and adsorption in
comparison to zeolites, if materials with structures that maximize
selectivities over methane or nitrogen are found.

MATERIALS AND METHODS

Synthesis of Materials
Experimental details on the synthesis procedures used can
be found in the Supplementary Material. The naming of the
samples has been explained in the SM, as well. Zeolites with
LTA structure and different aluminum content were prepared as
reported in IZA, Küehl (1980), Moscoso et al. (2003), Corma
et al. (2004), Palomino et al. (2010), and Lemishko et al.

(2016). AlPO-42, with LTA structure, was synthesized according
the method reported in Schreyeck et al. (1998) and SAPO-
42 materials with different Si distribution were prepared as
reported in Martínez-Franco et al. (2015). Pure silica CHA and
CHA-19 were synthesized using a previously reported method
(Díaz-Cabañas and Barrett, 1998). Other CHA zeolitic samples
containing Al (CHA-3; CHA-18) were synthesized according
to procedures reported on the Verified Syntheses of Zeolitic
Materials of the International Zeolite Association (VSZM-IZA)
(Bourgogne et al., 1985; Zones and van Nordstrand, 1988; IZA)
and CHA-6 was synthesized according to Zones (1991). SAPO-
34-10 was prepared following a recently described procedure
using tetraethylammonium hydroxide (TEAOH) as the OSDA

FIGURE 2 | CO2 isosteric heat of adsorption depending on the loading on materials with LTA (A,B), CHA (C,D), and AFI (E,F) structures.
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(Martínez-Franco et al., 2016). SAPO-34-7 was also synthesized
according to the procedure reported on the VSZM-IZA (Prakash
and Unnikrishnan, 1994; IZA). Zeolite SSZ-24 (pure silica AFI)
was synthesized according to a procedure reported on the
VSZM-IZA (Nordstrand et al., 1988; IZA). AlPO-5 and SAPO-5
materials were synthesized following a procedure reported on the
VSZM-IZA (Young and Davis, 1991; Girnus et al., 1995; IZA).

AlPO-34 was synthesized according to a novel method
using (S)-1-methyl-2-(pyrrolidin-1-ylmethyl)pyrrolidine
(Supplementary Figure 2) as the organic structure directing
agent (OSDA). The OSDA was dispersed in a solution of
phosphoric acid in water. Aluminum isopropoxide was then
added and the resulting mixture stirred for 2 h at room
temperature for homogenization. Hydrofluoric acid was then
added, reaching pH= 7 and the resulting mixture was stirred for
1 h at room temperature. The resulting gel composition was:

1Al2O3 : 1.3 P2O5 : 1.6 OSDA : 1.3 HF : 425 H2O

The gel was introduced in a Teflon lined autoclave and kept
at 175◦C for 18 h with no stirring. The solid was recovered by
filtration and after thorough washing with water, dried in an oven
at 100◦C. The resulting solid was calcined in air at 650◦C.

Characterization
Structural characterization of the studied materials was
performed by powder X-Ray Diffraction (XRD) using a CUBIX
PANalytical diffractometer, operating with CuKα radiation (λ1

= 1.5406 Å) at 45 kV and 40mA in the 2θ range from 4 to 40◦.
Some samples were measured after dehydration by applying
heat and under dry air flow using an in situ reaction chamber
Anton-Paar XRK-900 attached to a PANalytical Empyrean
diffractometer with CuKα radiation (λ1 = 1.5406 Å) at 45 kV
and 40mA in the 2θ range from 3 to 75◦.

The connectivity and chemical environment of the framework
species were studied by magic angle spinning nuclear magnetic
resonance (MAS NMR) spectroscopy at room temperature. A
Bruker Avance III HD 400 MHz spectrometer was used for this
purpose. 27Al MAS NMR were recorded at ν0(27Al) = 104.21
MHz at a spinning rate of 20 kHz with a 90◦ pulse length of 1.3
µs with a 1 s repetition time. The 27Al chemical shift was referred
to Al(NO3)3·9H2O. 31P NMR spectra were recorded at ν0(31P)
= 161.9 MHz using spinning rate of 10 kHz, a 90◦ pulse length
of 3.7 µs with spinal proton decoupling and a repetition time
of 20 s. The 31P chemical shift was referred to phosphoric acid.
29Si NMR spectra were recorded at ν0(29Si) = 79.5 MHz using
a spinning rate of 5 kHz with a 60◦ pulse length of 3.5 µs, spinal
proton decoupling and 180 s as repetition time. The 29Si chemical
shift was referred to tetramethylsilane.

The chemical composition of the solids was analyzed by
inductively coupled plasma optical emission spectroscopy (ICP-
OES) using a Varian 715-ES device.

Scanning electron microscopy (SEM) images were obtained
using a Zeiss Ultra 55 microscope with an accelerating voltage
of 1 kV.

The textural analysis was performed by measuring N2

isotherms at 77K on volumetric Micromeritics ASAP 2020 and

2420 devices after activation at 400◦C and under vacuum. The
Brunauer-Emmet-Teller (BET) and t-plot methods were used in
order to obtain estimations of the surface area and the micropore
volume, respectively (Thommes et al., 2015). In some samples,
the Dubinin-Astakhov (DA) method was used to calculate the
surface area from CO2 isotherms at 273K (Dubinin, 1975).

Adsorption Isotherms and Calculated
Isosteric Heat of Adsorption of CO2
CO2 was purchased from Abelló-Linde with 99.9993% purity.
Adsorption isotherms of CO2 at temperatures ranging from 0 to
60◦Cwere recorded up to 1 bar using a volumetric Micromeritics
ASAP2010 and at higher pressures using a Hiden IGA3. The
measured isotherms could be successfully fitted by either Virial,
Toth, or Dual Site Langmuir models, which were used in the
calculation of the isosteric heat of adsorption.

The procedure for the calculation of the isosteric heat of
adsorption departs from the isotherms measured at 3 or more
different temperatures. These isotherms are fitted to different
isotherm models and the best fit is used for selecting pressure (P)
values at constant loadings (Q) and different temperatures (T).
Linear interpolation is also a valid way of doing this. The isosteric
heat of adsorption (qst) at each Q is then calculated, following
Clausius-Clapeyrons’ equation (Equation 1).

qst = −R

[

∂ ln P

∂
1
T

]

Q

(1)

Where R is the ideal gas constant.

Estimated Framework Negative Charge
The estimated framework negative charge is a parameter that we
have defined in order to be able to compare the isosteric heats of
adsorption of materials with different chemical composition and
connectivities. In the case of zeolites, it equals the Al/(Si + Al)
molar ratio calculated from the ICP-OES results. In the case of
SAPOs, the estimated framework negative charge is calculated by
combining the ICP-OESwith the 29SiMASNMR analyses results.
The Si/(Si+Al+ P) ratio is obtained from the ICP-OES data, and
it gives the Si fraction out of the tetrahedral framework atoms.
However, due to the different possible substitution patterns
of Si in SAPOs (as single or isolated Si atoms or as Si-rich
domains or SiO2-islands), not all the Si atoms contribute equally
to the framework charge. More specifically, isolated Si atoms
contribute with 1 negative charge per substituted P atom, whilst
the contribution of a Si-rich domain is proportionally smaller and
depends on its size. In order to differentiate between both types
of Si in SAPOs, we have fitted the 29Si NMR spectra using two
Gaussian functions centered at values between −100 and −120
ppm for SiO2-islands and at ca. −90 ppm, for isolated Si species.
The Gaussian functions are integrated and the fraction of isolated
Si is calculated. This fraction is multiplied times the Si/(Si + Al
+ P) ratio obtained from the ICP-OES data and the result is
taken as the estimated framework negative charge. The minor
contribution of the Si-islands was disregarded. The estimated
framework negative charge of AlPOs and pure-silica zeolites is
taken as zero.
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RESULTS

Characterization
XRD analysis confirmed the structural purity and degree of
crystallinity of all of the calcined and/or dry materials (see
Supplementary Figure 3).

Compositional analysis using ICP was used to determine the
content of Al, Si, and P in all the samples (Table 1).

Solid State NMR analysis of 27Al, 29Si, and 31P was used
in order to study the local environments of the different
framework atoms. All the recorded spectra can be found
in Supplementary Figures 4–6. Aluminum was found with
tetrahedral coordination (50–30 ppm) but also pentacoordinated
(25–10 ppm) and octahedral (0 to −20 ppm) in AlPOs and
SAPOs after calcination. In addition, several signals are observed
in the 31P spectra of AlPOs and SAPOs. These observations are
primarily due to hydration of the framework, however hydration
issues lay outside of the scope of this work. The 29Si NMR analysis
allowed us to determine how much of the Si could be found
as SiO2-islands (−105 to −120 ppm), and how much of it was
isolated, i.e., surrounded by 4 Al (−80 to−100 ppm).

The estimated framework negative charge was obtained as
described in section Estimated Framework Negative Charge for
the different materials and the values obtained are listed on
Table 1. The results are discussed along with the isosteric heats
of adsorption in section Isosteric Heats of Adsorption of CO2.

Nitrogen adsorption at 77K was used in most samples to
obtain their BET surface area applying Rouquerol’s criterion and
the micropore volumes using the t-plot method. However, in
some zeolites with high Al content (and thus, smaller pores
due to the presence of extraframework cations), nitrogen could
not enter the porosity in these conditions. In those samples the
surface area was calculated from the isotherm of CO2 at 273K
following Dubinin-Astakhov’s (DA) method. In some samples,

FIGURE 3 | Isosteric heats of adsorption on zeolites (open symbols), AlPOs

and SAPOs (filled symbols) of LTA (black squares), CHA (red circles), and AFI

(blue triangles) structures at low CO2 loadings plotted against the estimated

negative framework charge. The points labeled as SAPOs that fall in the

vertical axis (zero framework charge) correspond to AlPOs.

especially when the CO2 isotherm was close to saturation, both
values were obtainable and are well-comparable. The results are
presented in Table 2. It can be seen that for materials with
the same structure, the calculated BET surface area and the t-
plot micropore volume values are very similar. The DA surface
area, however, presents larger differences between isostructural
samples. In the case of LTA-4.5 (680 m2 g−1) and LTA-3 (609
m2 g−1) the reason may be the different available Na-sites for
adsorption and their specific interaction with CO2. In the case of
CHA-6 (600 m2 g−1) and CHA-3 (470 m2 g−1) the difference is
remarkable and, although the interactions with some adsorption
sites (Na and K ions, respectively) may be different, the presence
of potassium itself reduces the average pore size thus diminishing
the accessible area for CO2 and any other adsorbate. In fact in the
CHA-3 sample, N2 could not enter the pores at 77 K.

CO2 Isotherms
The recorded CO2 isotherms at 25◦C and up to 1 bar are
presented in Figures 1A–F. Isotherms at different temperatures
can be found in the SM. A general trend that we observe is
that the higher the framework charge (proportional to the Al
content in zeolites and to the amount of isolated Si in SAPOs),
the steeper the low pressure regime of the isotherm. This is
already an indicative of what we will find when comparing the
adsorption heats. Moreover, the adsorption isotherms of AlPOs
and SAPOs are similar to those of high Si/Al zeolites and reach
saturation at much higher pressures (above 5 bar) than low Si/Al
zeolites (above 1 bar). The maximum loading at saturation that
can be estimated from the isotherms on LTA and CHA materials
is comparable in all materials with the same structure and in both
cases around 5 mmol/g.

Isosteric Heats of Adsorption of CO2
The isosteric heat of adsorption of all materials was calculated at
different loading values (Q) using the linear interpolationmethod
for the sake of comparability, as the best isotherm fit differed from
case to case. The results are plotted in Figures 2A–F. An initial
drop of the qst with Q is seen in most AlPO and SAPO materials,
and it is related to energetic inhomogeneities on the adsorbent
surface. After reaching a minimum value, the qst rises slowly with
loading, this meaning that the lateral interactions between CO2

molecules are stronger than the adsorbate-adsorbent interactions
(Sircar and Myers, 2003). Zeolites with high Al contents tend to
present just the opposite behavior. It is noteworthy that all the qst
trends at high loading approach slowly values between 25 and 30
kJ/mol, which are close to the sublimation enthalpy of CO2. This
indicates that at high loadings, the lateral interactions between
CO2 molecules may resemble those that can be found in solid
CO2 (U.S. Secretary of Commerce).

AlPO-42 and SAPO-42-104 present very similar isotherms
and heats of adsorption (see Figure 2A), which is logical if we
take into account that most of the Si in SAPO-42-104 is present as
Si-islands, i.e., as “pure silica domains.” SAPO-42-13 and SAPO-
42-24, both of which have predominantly isolated Si, the first
having more than double the amount of Si in its framework,
present a similar qst starting value but for SAPO-42-24, there
is a rapid decrease of the qst to a value ca. 3 kJ/mol lower
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(see Figure 2A). The qst of zeolites with this structure is in all
cases well above that of SAPO and AlPO materials and follows
the expected trend.

The qst on AlPO-34 is a bit lower than on its pure silica
counterpart at low loadings but they follow a very similar
trend at loadings above 0.5mmol/g (see Figure 2C). Materials
SAPO-34-10 and SAPO-34-7 (see Figure 2C), together with

zeolites CHA-19 and CHA-18 (see Figure 2D) present qst trends
that descend initially and are in the range 25–35 kJ/mol. Zeolites
CHA-6 and CHA-3, with the highest Al contents, present qst
values above 35 kJ/mol, that initially increase (see Figure 2D).

All materials with AFI structure present an initial decrease of
the qst, with the AlPO-5 having the lowest values, notably below
the SAPOs and Si-AFI (see Figures 2E,F). SAPO-5-46 has a lower

FIGURE 4 | Isosteric heats of adsorption (A,C,E) and CO2/CH4 pure gas selectivities (B,D,F) on relevant AlPO/SAPO (black) and zeolite (red) pairs.
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qst than SAPO-5-34 in the whole range (see Figure 2E), as would
be expected from their respective framework charges.

The mentioned general trend of SAPOs and AlPOs is
interesting for their application as CO2 adsorbents, not only
because of their generally low qst values, which will result in
an easy regeneration of the adsorbent, but also because of the
increase of qst with loading above 1 mmol/g. This means that
desorbing will be progressively easier until the minimum in qst
is reached.

The isosteric heats of adsorption at the lowest loadings
possible have been plotted against the estimated framework
negative charge (see Figure 3, Palomino’s Plot), as was done
previously for LTA zeolites (Palomino et al., 2010). This shows
that AlPOs and SAPOs with AFI and LTA structures also
present the same linear relation (discontinuous straight lines,
Figure 3) seen previously in LTA zeolites (continuous straight
line, Figure 3) and that these materials present notably lower
heats of CO2 adsorption than their zeolitic counterparts, even
the pure silica analogs. This is striking, as the studied pure
silica zeolite samples do not present a significative amount
of connectivity defects (Supplementary Figure 7) and they are
usually regarded as quite inert materials. In the case of materials
with CHA structure, there is also an increase of the qst at
low loading with increasing framework negative charge, but we
cannot affirm that it is a linear relationship. On the other hand,
the qst of CHA zeolites seems to be higher than that of SAPOs and
AlPOs with the same framework negative charge, but the trend is
less clear than for the other structures.

Comparison of AlPOs/SAPOs and Zeolites
in Terms of CO2 and CH4 Adsorption
As examples of the advantages that AlPOs and SAPOs can have
over zeolites in the field of CO2 adsorption and separation, we
establish here several relevant comparisons between materials
included in this study in terms of their CO2/CH4 separation
ability (Figure 4 andTable 3). Materials that have been compared
have the same structure and equal (or similar) estimated
framework charge values, and are activated prior to adsorption
at 400◦C and under vacuum, which means that the differences
in adsorption and selectivity will only stem from differences in
the relative interactions of the adsorbates with the framework.
The selectivities presented in Figure 4 have been calculated from
the pure component isotherms as the ratio of adsorbed amounts
at each pressure value. The CO2 ideal working capacities for a
pressure swing adsorption (PSA) process shown in Table 3 have
been calculated by subtracting the maximum loadings at 5 and
1 bar. This is an oversimplification, as in a PSA process the
adsorbent will be in contact with a mixture and the adsorption
of a component will be different from the pure state, but it is
a useful approach to first compare different adsorbents (Bacsik
et al., 2016).

As can be seen from Figure 4A, the qst of both CO2 and
CH4 are lower on AlPO-42 compared to Si-LTA. The selectivity
calculated as the ratio of the isotherms of the pure gases is very
similar between AlPO-42 and Si-LTA (Figure 4B). Their working
capacities are quite similar, with the AlPO-42 being slightly above

TABLE 3 | Carbon dioxide loadings at 1 and 5 bar of some adsorbents and their

PSA working capacity.

Q1bar (mmol/g) Q5bar (mmol/g) Working capacity (mmol/g)

AlPO-42 1.26 4.47 3.21

Si-LTA 1.18 4.17 2.99

AlPO-34 1.6 3.5 1.9

Si-CHA 2.24 4.62 2.38

SAPO-34-7 2.8 4.64 1.84

CHA-6 4.65 5.66 1.01

ITQ-29. In the case of AlPO-34 and Si-CHA, the both materials
are identical in terms of CH4 qst and pure gas selectivities
(Figures 4C,D), although the CO2 qst at low loadings is lower for
AlPO-34. However, the Si-CHA presents a notably higher CO2

adsorption capacity and also a higher working capacity. If we
go to a more complex case, and compare SAPO-34-7 material
with aluminosilicate zeolite CHA-6, both presenting an estimated
framework charge close to 0.15, the differences in the qst of both
CH4 and CO2 are large and the selectivity in SAPO-34-7 is above
that of CHA-6. Furthermore, going from the zeolite to the SAPO
material in this case also implies a large decrease in the adsorption
capacity at 1 bar, which in turn translates into a much larger
working capacity of the SAPO-34-7.

With these three examples, we point out the fact that by
using AlPO/SAPO adsorbents instead of zeolites, the separation
of carbon dioxide frommethane can be done keeping very similar
maximum capacities and selectivities whilst also lowering the
energy needed for regeneration.

CONCLUSIONS

In this work we have identified a general trend according to
which the isosteric heat of adsorption of CO2 on AlPOs and
SAPOs with AFI, LTA and CHA structures is lower than on
the isostructural zeolites, even of pure silica composition. This
decrease in qst when going from zeolites to AlPOs and SAPOs is
not accompanied by a decrease in CO2/CH4 selectivity, as can be
seen for materials with LTA and CHA structure. These facts lead
to believe that if implemented in a CO2 capture process, AlPOs
and SAPOs can lower the energy needed for regeneration of the
adsorption bed whilst keeping the efficiency of the separation.
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