
HAL Id: hal-03103463
https://ifp.hal.science/hal-03103463

Submitted on 8 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formulation of reference solutions for compaction
process in sedimentary basins

Paulo Sérgio B. Lemos, André Brüch, Samir Maghous

To cite this version:
Paulo Sérgio B. Lemos, André Brüch, Samir Maghous. Formulation of reference solutions for com-
paction process in sedimentary basins. International Journal for Numerical and Analytical Methods
in Geomechanics, 2020, 44 (16), pp.2135-2166. �10.1002/nag.3129�. �hal-03103463�

https://ifp.hal.science/hal-03103463
https://hal.archives-ouvertes.fr


1 

 

 

FORMULATION OF REFERENCE SOLUTIONS FOR COMPACTION PROCESS IN 

SEDIMENTARY BASINS 

P. S. B. Lemosa,*; A. Brüchb; S. Maghousa. 

a Department of Civil Engineering, Federal University of Rio Grande do Sul, Porto Alegre, Brazil 

b IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France 

* Corresponding author. E-mail address: paulobaumbach@hotmail.com 

 

Abstract 

This paper is devoted to the development of semi-analytical solutions for the deformation 

induced by gravitational compaction in sedimentary basins. Formulated within the framework 

of coupled plasticity-viscoplasticity at large strains, the modeling dedicates special emphasis 

to the effects of material densification associated with large irreversible porosity changes on 

the stiffness and hardening of the sediment material. At material level, the purely mechanical 

compaction taking place in the upper layers of the basin is handled in the context of finite 

elastoplasticity, whereas the viscoplastic component of behavior is intended to address creep-

like deformation resulting from chemo-mechanical that prevails at deeper layers. Semi-

analytical solutions describing the evolution of mechanical state of the sedimentary basin 

along both the accretion and post-accretion periods are presented in the simplified oedometric 

setting. These solutions can be viewed as reference solutions for verification and benchmarks 

of basin simulators. The proposed approach may reveal suitable for parametric analyses since 

it requires only standard mathematics-based software for PDE system resolution. The 

numerical illustrations provide a quantitative comparison between the derived solutions and 

finite element predictions from an appropriate basin simulator, thus showing the ability of the 

approach to accurately capture essential features of basin deformation. 

Keywords: sedimentary basin; gravitational compaction; large strains; coupled plasticity-

viscoplasticity; hardening. 

 

1. INTRODUCTION 

Sedimentary basins are natural structures with great economical interest due to hydrocarbons, 

groundwater and mineral reserves. Assessment and exploration of these resources require a 

comprehensive understanding of the multiple coupled phenomena that occur over geological 

time scale and, for this purpose, analytical and numerical models are of great importance as 

they allow to testing different scenarios of a basin history. 
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One of the key aspects of basin simulation concerns the mechanical model used to describe 

compaction through time as tectonic subsidence and basin deformation are strongly coupled 

with thermal evolution and fluid flow. In this regard, the numerical model should be able to 

deal with the compaction mechanisms that may take place in different types of groups of 

sediments to appropriately reconstruct the geological events through time. 

In siliciclastic rocks, for example, two main types of compaction can take place: purely 

mechanical compaction due to grain rearrangement and subsequent pore fluid expulsion, and 

chemo-mechanical compaction resulting from dissolution, diffusion and precipitation of 

minerals, known as intergranular pressure-solution (IPS). The first prevails in the early stages 

of a newly deposited layer whilst the second progressively dominates as continuous burial 

increases sediments temperature and effective stresses1. 

Understanding the mechanics of deformation in sedimentary basins has been the subject of 

study for a long time. In 1930, the geophysicist Lawrence F. Athy2 published a pioneering 

contribution to the modeling of sediments compaction process. It basically consists of an 

empirical law that describes rock porosity reduction with burial depth as an exponential 

decay. Relying upon phenomenological relationships that relates porosity to rock overburden, 

the concept of porosity versus Terzaghi’s effective vertical stress dependence has been then 

introduced by Hubbert and Rubey3 and later by Smith4. In this framework, the empirical 

porosity-stress law must be calibrated for each specific rock according to available well data. 

These ideas have been widely adopted and implemented in numerical finite element models 

and are still applied in Basin and Petroleum System Modeling (BPSM) to represent 

mechanical compaction under the assumption of oedometric evolution5,6. However, such 

models are not devised for relevant assessment of the horizontal stresses induced by 

compaction phenomena, nor for capturing the impact of lateral deformations induced by 

tectonics which may strongly affect the poro-mechanical state of the basin, eventually 

resulting in seal rock fracturing and fault reactivation. To overcome this limitation inherent to 

the analyses based on phenomenological porosity-stress laws, several contributions have 

focused in the last decades on the formulation of constitutive models that rely upon a more 

comprehensive description of the mechanics involved in basin deformation7–16. Developed in 

the context of tensorial formalism, these models have been applied in basin simulations under 

different geological scenarios, demonstrating the importance of addressing deformation in 

sedimentary basins within a three-dimensional framework. As regards the chemical fluid-rock 

interactions and their implications on the sedimentary material behavior, several approaches 

have been devoted to describe the complex aspects of dissolution and precipitation of 
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minerals in siliciclastic and carbonate rocks17–26. Still, the formulation of a macroscopic 

material model that accounts for chemical diagenetic processes in basin modeling remains a 

challenging issue. In addition, factors such as the presence of hydrocarbons or grain coating 

may retard or totally inhibit pressure-solution even at great depths27–30. Despite of these 

difficulties, different approaches aimed at addressing chemo-mechanical compaction in 

sedimentary basins at macroscopic level have been formulated in literature5,31–35. 

To deal with these coupled phenomena, Brüch et al.36 developed a constitutive model for the 

fully saturated porous material in a thermo-poro-mechanics framework which was 

incorporated in a numerical tool based on the finite element method. This model has its 

origins in previous works37–44, which aimed to describe purely mechanical compaction of 

sediments. Based on micromechanical reasoning, the formulation takes into account the 

effects of large irreversible strains on the poroelastic properties of the basin through additional 

terms in the state equations of the porous material. This is relevant in basin simulation as 

some sediment layers may be subjected to more than 50% of porosity reduction45. 

Nevertheless, the accuracy of numerical simulators must be verified for each engineering 

application by comparing the predicted results to available benchmarks and reference 

solutions. In that respect, one may quote the numerical and analytical solutions via Fourier 

transforms to classical geomechanics problems formulated within the framework of coupled 

thermo-poro-mechanics46–50. The analytical solutions are derived in the context of both 

infinitesimal46 and large strains48,49 by resorting to Laplace transform and Fourier series to 

solve the resulting boundary value problems. This work presents the formulation of analytical 

and semi-analytical reference solutions that describe the deformation processes in a 

sedimentary basin. These reference solutions can be conveniently used for verification and 

validation benchmarks of numerical basin simulators. The mechanical and chemo-mechanical 

compaction processes are respectively represented by plastic and viscoplastic models in the 

context of large irreversible strains. The analysis is restricted to drained and isothermal 

conditions, disregarding the effect of pore pressure and temperature on the material. The 

semi-analytical solutions are compared to those obtained by the numerical simulator 

developed by Brüch et al.36. 

It should be noted that the proposed analysis is developed within a purely academic situation 

that relies upon a simplified geological scenario for compaction processes. In that respect, the 

primary objective of the paper is to provide reference solutions derived for compaction in 

sedimentary basins in the context of highly simplified setting, and not to predict the 

mechanical state that would prevail in real data life basin. 
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2. STATEMENT OF THE PROBLEM 

 

The mechanical problem under consideration refers to the evaluation of stresses and strains 

developing in a sedimentary basin under oedometric conditions during both the formation 

phase by continuous accretion of sediment material and along the post-accretion phase as 

well. The analysis shall focus on deformation induced in the basin by purely mechanical and 

chemo-mechanical compaction processes. While purely mechanical compaction originates 

mainly from rearrangement of the solid particles during burial and can thus be modeled in the 

framework of plasticity, chemo-mechanical compaction resulting from intergranular pressure-

solution phenomena is generally associated with creep-like deformation. In addition, 

compaction process in a sedimentary basin generally involves large strains, the reduction in 

porosity of the sediment material exceeding in many situations values as high45 as 50%. The 

theoretical framework of coupled elastoplasticity-viscoplasticity at finite strains appears 

therefore suitable for accurate description of the mechanics controlling the basin deformation. 

In order to formulate semi-analytical solutions for the compaction process in sedimentary 

basins, a simplified setting relying upon the following assumptions is adopted: (a) the whole 

sedimentation process takes place under oedometric conditions, (b) the sediment constitutive 

material exhibits homogeneous and isotropic mechanical properties in its reference state, that 

is at the time it is deposited at the top of the basin, (c) the hydromechanical coupling is 

disregarded in the subsequent analysis (i.e., the effect of pore pressure is not considered), 

which amounts to addressing the particular case of highly permeable sediment material (fully 

drained conditions), and (d) the mechanical evolution of the basin is analyzed under 

isothermal condition, disregarding the effect of geothermal gradient on the material properties 

and deformation. The role of pore pressure as well as geothermal gradient have been assessed 

through numerical formulations in previous works9,41,44,51,52. 

The sedimentary basin undergoing compaction is modeled as an infinite layer, perpendicular 

to the 3e  direction and lying on a rigid substratum along the plane 3 0x = . Neglecting the 

tectonic activity, the gravitational field 3
g ge= −  stands for the only external loading in the 

compaction process. In addition, the anisotropy of constitutive properties of the material in its 

reference state as well as that induced by compaction processes are neglected in the analysis. 

This framework of assumptions allows for simplified description of the problem geometry 

and geological process as well as for more analytically tractable field equations governing the 
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evolution of mechanical state of the sedimentary basin. In this simplified framework, the 

physical quantities involved in the problem only depend on time and the vertical coordinate 

3x . The position of a material particle in the sedimentary layer at a time t  is defined by 

coordinate as 3x , whereas the instant when the particle is deposited at the top of the layer is 

referred to as 3
( , )T x t . 

As the sediments are continuously deposited at the top of the basin, the sediment layer 

thickness is time-dependent. Assuming that the top of the layer remains horizontal, the 

position of the upper boundary is defined by the gravitational compaction law 
3

( )x H t=  

(Figure 1). 

 

Figure 1. Geometry model for sedimentary basin and loading conditions. 

 

2.1. Governing field equations 

 

The quasi-static boundary value problem is defined by two field equations, that are briefly 

described in the sequel. Neglecting the inertial effects, the momentum balance equation for 

the continuum reads: 

3 3 0div ( , ) ( , )gx t x t + =  (1) 

where   is the Cauchy stress tensor and   is the mass density of the sediment material. 

In the eulerian formulation, the mass balance equation writes: 

( )3

3 3

( , )
div ( , ) ( , ) 0

x t
x t u x t

t





+ =


 (2) 

where u  is the eulerian velocity field of the sediment particles. 

The lagrangian counterpart of the mass balance equation is: 
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0
3

3

( , )
( , )

x t
J x t


 =  (3) 

where 0  is the initial mass density and 0tJ d d=    is the jacobian of the transformation, 

i.e., the ratio of the volume of a particle at the current configuration to the initial 

configuration. 

Physical quantities associated with the particles seated at the top of the sedimentary basin, 

viewed as an open material system, comply with the following initial conditions: 

( ( ), ) 0H t t =  (4) 

( ( ), ) 1J H t t =  (5) 

0( ( ), )H t t =  (6) 

As a boundary condition, the velocity of the particles in contact with the rigid substratum is 

null 

3
(0, ) 0u t e =  (7) 

In the context of oedometric compaction setting, which implicitly disregards the effects of 

both tectonic events and loading induced anisotropy, together with assumption of 

homogeneity of the deposited sediment material along the whole accretion phase, the general 

form for velocity and stress fields express as 

33 3 3
( , ) ( , )u x t u x t e=  (8) 

1 1 2 2 3 33 3 3( , ) ( , )( ) ( , )h vx t x t e e e e x t e e  =  +  +   (9) 

Accordingly, the deviatoric part of stress tensor reads: 

1 1 2 2 3 3

1 1
tr 1 ( )( 2 )

3 3
v hs e e e e e e   = − = − −  −  +   (10) 

 

2.2. Loading and geometrical transformation 

The mass of sediments deposited per unit area ( )
d

M t  on the top of the basin during the time 

interval [0, ]t  characterizes the magnitude of the loading applied to the sedimentary basin. It 

expresses as: 

( )

3 3
0

( , )( )
H t

d
M x t dxt =   (11) 

It is assumed that the rate of sediments supply ( )
d

M t  is prescribed. The rate-form of (11) 

writes: 
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( )
3

0 3
0

( , )
( ) ( )

H t

d

x t
M H dx

t
t t





= +


  (12) 

The combination of (2) and (12) together with the boundary condition (7) leads to: 

3

0

( )
( ) ( ( ), )d

M t
H ut H t t


= +  (13) 

The ratio between the height of a particle in the current configuration at time t  and its height 

in the reference state at time 3
( , )T x t  defines by the vertical stretch 3

( , )x t  (Figure 2). Based 

on its definition, the initial condition for the sediment particle is: 

( ( ), ) 1H t t =  (14) 

 

Figure 2. Definition of the particle vertical stretch. 

Under oedometric conditions, the gradient of the geometrical transformation of a particle 

between the reference and the current states takes the following form 

1 1 2 2 3 33 3( , ) ( , )F e e e e e ex t x t=  +  +    (15) 

The jacobian of the geometrical transformation detJ F=  is therefore equal to the vertical 

stretch: 

detJ F= =   (16) 

Since 3
( , )x tF  and 3

( , )x t  depend on the coordinate 3x  in the current configuration, these 

quantities are as eulerian fields, even if their definition is similar to that classically adopted in 

the lagrangian description of a solid transformation. 

The eulerian gradient of the velocity field u  is related to F  according to 
1

u F F
−

 =  , 

which leads to: 

3 3
3 3 3 3

3 3

u u
e e e e

x x

   
 =  → =

   
 (17) 

The strain rate tensor ( )
1

2

td u u=  +   is: 

H(t1)

t=t1

H(t2)

t=t2

dh
dh
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3
3 3 3 3

3

u
d e e e e

x

 
=  = 
 

 (18) 

From equilibrium arguments, the vertical component of stress at depth 3x  can be evaluated as 

the total weight of the material volume having unit cross-section area that is seated above the 

considered depth: 

3

( )

3 ( , )( , )
H t

v
x

t gdx t   = −  (19) 

The rate of vertical stress can be calculated from (19) making use of (2) and (13), which 

results in 

3( , ) ( )v dx t M t g = −  (20) 

  

2.3. Constitutive behavior of sediment material 

The sedimentary material is modeled as an isotropic elastic-plastic-viscoplastic material 

undergoing large strains. As mentioned previously, the anisotropy induced by the compaction 

on the sediment mechanical properties is disregarded. During the geometric transformation, 

the reversible strains (elastic) are assumed to remain infinitesimal. Large strains produced by 

compaction are therefore of irreversible nature. 

The solid phase that constitutes the skeleton particle is considered to be incompressible. The 

solid mass balance implies therefore that the eulerian porosity (current pore volume fraction) 

expresses as40 

0 0
3

3 3

1 1
( , ) 1 1

( , ) ( , )ir

x t
J x t J x t

 


− −
= −  −  (21) 

where 
0

( ( ), )H t t =  refers to sediment porosity in the reference state and 
ir

J  is the 

irreversible component of the jacobian transformation, which is close to the total jacobian 

irJ J  due to the assumption of infinitesimal reversible strains. 

The previous equation relates current porosity to volumetric dilatation of the sediment 

material during burial. It is expected that the large porosity variation modifies the material 

elastic properties40. The stiffness increase of the skeleton elastic modulus induced by the 

progressive decrease in porosity is modeled by the Hashin–Shtrikman upper bounds 

formulated for isotropic composite materials. These variational bounds coincide with the 

micromechanical estimates derived from Mori-Tanaka scheme53, which are known to 

reasonably model the elastic properties of isotropic porous media54,55. The expressions for the 

bulk and shear moduli as a function of porosity are given by: 
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4 (1 )
( )

3 4

(1 )(9 8 )
( )

(9 6 ) (8 12 )

s s

s s

s s s

s s

k
K

k

k

k

 


 

  
 

  

 −
=

+


− + =
 + + +

 (22) 

where 
sk  and 

s  are the bulk and shear moduli of the solid phase, which are assumed to be 

unaffected by compaction processes. 

Before further developments, it should be emphasized that the ability of such a formulation to 

provide relevant elastic estimates over a wide range of rocks and porosity remains to be 

assessed through specific experimental tests. Keeping in mind, however, that the objective 

herein is not to represent a specific type of rock, but rather to model in a consistent framework 

the stiffness increase associated with material compaction, these micromechanics-based 

estimates will be adopted in a first approach with the aim to qualitatively reproduce this 

feature. 

Equations (22) together with (21) introduce a strong coupling between elasticity and plastic-

viscoplastic component of the constitutive behavior. It is shown that the state equations 

describing the stress-strain relationship can be formulated in rate-form as follows40: 

1 1: ( ) : : : ( ) : :
ir ir

ir

ir

C
C d d C C C d d J C

J
  − −
= − + = − +


 (23) 

where   is the Cauchy stress rate tensor, 
ir

d  is the irreversible part of the strain rate tensor 

and the fourth-order tensor C  is the material elastic stiffness moduli, which expression under 

the assumption of isotropy is: 

( ) ( ( ) 2 ( ) 3)1 1 2 ( )1C K     = −  +  (24) 

where 1  and 1  refer respectively to the second and fourth-order identity tensors. 

The term 
1: :C C −

 in (23) represents the influence of large irreversible strains on elastic 

properties. In the context of the oedometric hypothesis, (23) does not involve terms referring 

to large rotations and the related term reduces to 

1: : 1
3

tr K
C C s

K

 




− = +  (25) 

Additionally, the relationship between the volumetric irreversible strain rate and the 

irreversible component of jacobian reads: 

ir ir

ir

J
trd

J
=  (26) 
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2.4. Plastic behavior 

 

The irreversible strain rate is additively split into two contributions: 
ir p vp

d d d= + , related to 

the plastic and viscoplastic strain components, respectively. 

The plastic component of the constitutive model aims at representing purely mechanical 

compaction resulting from rearrangement of the solid particle during burial. The fundamental 

features that should be specified for the plastic behavior are related to the plasticity yield 

surface and to its evolution controlled by the associated hardening law. Regarding the first 

aspect, we resort to the concept of so-called “cap models” for the formulation of a simplified 

isotropic plastic criterion. Referring to the plane (
1 3 tr / 3p I = − = − , 

2 : / 2q J s s= = ), 

the yield surface depicted in Figure 3 is bounded in the dilation domain by a straight-line that 

stands for the brittle failure regime (critical line), whereas the side corresponding to ductile 

failure and material hardening (contracting state) is also approximated in this analysis by an 

inclined straight-line describe by the following criterion: 

1 1
( , ) tr : 0

3 2

p

c cf p a s s p = − + − =  (27) 

where cp  is the consolidation pressure (similar to that introduced in the Cam-clay model) and 

represents the hardening parameter in the model, whereas a  is a positive scalar that controls 

the slope of the ductile part of yield surface. It is emphasized that such a simplified yield 

criterion has already been adopted for petroleum engineering applications56. It is important to 

observe that in the absence of tectonic loading, compaction processes are expected to produce 

purely contracting stress states. In this context, the simplified plastic criterion (27) appears 

suitable for representing yielding under oedometric stress paths such as those involved within 

the purely gravitational compaction resulting from sediments overburden, while remaining 

tractable for devising analytical developments at the sedimentary basin level. In contrast, it 

would not be relevant for modeling complex geological scenarios involving for instance 

lateral shortening. In such situations, more sophisticated yield surfaces would be necessary in 

order to include the possibility of shear-induced dilation for both drained and undrained 

material behavior9,14. 
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Figure 3. Schematic representation of simplified plastic yield surface. 

An associated flow rule is adopted for the plastic strain rate: 

p
p f

d 



=


 (28) 

where   is the non-negative plastic multiplier rate. 

The plastic hardening law describes the evolution of the consolidation pressure due to the 

irreversible material densification. A formulation based on limit analysis and micromechanics 

has been originally proposed in Barthélémy et al.42 for cp . This formulation has been recently 

modified by Brüch et al.52 using a calibration exponent pm : 

0

0

ln
( )

ln

pm

c cp p





 
=  

 
 (29) 

where 0cp  is the initial consolidation pressure for plasticity. 

It is emphasized that his hardening law prevents the development of negative porosities under 

high isotropic compression, since 
0

lim
c

p
→

= + , which ensures by virtue of (21) that irJ  

remains always higher than 0
1

cr
irJ −=  43. 

The rate-form expression of the hardening law (29) expresses as: 

( ) ir
c p

ir

J
p h

J
= −  with 

0(1 )
( )

ln

p c

p

ir

m p
h

J




 

−
= −  (30) 

where ph  is the plastic hardening modulus. 

 

2.5. Viscoplastic behavior 

 

critical state

 line

Cam-Clay surface

q

-p
pc

f p(   ,    )=0 pc



12 

 

The viscoplastic component of the constitutive model aims to represent the chemo-mechanical 

compaction induced by the Intergranular Pressure-Solution (IPS). The yield surface for 

viscoplastic component of the behavior is defined in a similar way than for plastic behavior, 

resorting once again to the concept of “cap models”. In the range of contractive stress states 

relevant to oedometric compaction process, the boundary of the yield surface is described by 

the following: 

1 1
( , ) tr : 0

3 2

vp

vp vpf p a s s p = − + − =  (31) 

where the consolidation pressure vpp  stands for the hardening law of the viscoplastic model. 

The time-dependent component of the strain rate is based on the generalized Perzyna’s 

overstress theory57: 

vp vp
vp

vp

f g
d

 


=


 (32) 

where   is the Macaulay brackets, vp  is the viscosity coefficient, and 
vpg  is the 

viscoplastic potential defining the direction of viscoplastic strain rate. An associated flow rule 

vp vpg f=  shall be assumed in the subsequent analysis. 

The evolution law for vpp  has been formulated51 and stems from the heuristic idea that 

similarity can be preserved between the plastic and viscoplastic models: 

0

0

ln
( )

ln

vpm

vp vpp p





 
=  

 
 (33) 

where 0cp  is the initial consolidation pressure for viscoplasticity and the exponent vpm  is a 

material constant ranging between zero and unity that controls the relative magnitude of 

viscoplastic strains with regards to plastic strains. 

The rate-form expression of the hardening law for vpp  is given by: 

( ) ir
vp vp

ir

J
p h

J
= −  with 

0(1 )
( )

ln

vp vp

vp

ir

m p
h

J




 

−
= −  (34) 

where vph  is the viscoplastic hardening modulus. 

In order to reproduce the observations from real data life basins, the initial value of 

viscoplastic consolidation pressure should be higher than that the plastic counterpart, that is 

0 0c vpp p . This condition, assumed throughout the analysis, simply expresses that purely 



13 

 

mechanical compaction prevails in the upper layers of the sedimentary basin. In other words, 

plastic strains are first activated during burial and at each instant so that the plastic layers are 

located above the viscoplastic layers. 

 

3. MECHANICAL FORMULATION OF THE PROBLEM 

 

The main objective of this section is to formulate solutions that describe the mechanical 

behavior of the sedimentary basin. For this purpose, a description of the problem is initially 

presented. 

The geological time evolution of the sedimentary basin under compaction processes is divided 

into five consecutive phases (Figure 4), distinct from each other by the behavior ranges 

involved along the basin layers. The occurrence of each phase is conditioned by the whole 

basin data considered for the analysis. 

Referring to Figure 4, the first four phases refer to the sediment deposition period (basin 

formation), whereas the latter one refers to the post-depositional period. 

• Elastic phase: this phase marks the beginning of the sediment deposition period, when 

all the seated particles behave elastically. The time domain is defined by the interval 

[0, ]et T  and the spatial domain extends through 3 [0, ( )]x H t . This phase ends when the 

stress of the particles located at 3 0x =  reaches 0( , ) 0p

cf p =  at time et T= . At that 

moment, the height of the basin is ( )e eH T H= . 

• Elastic-plastic phase: in this phase, the upper part of the basin exhibits elastic 

behavior while the other part presents elastoplastic behavior. The time domain corresponds to 

the interval [ , ]e pt T T . The elastic domain develops along 3
[ ( ) , ( )]

e
x H t H H t − , whereas 

the elastoplastic domain develops for 3
[0, ( ) ]

e
x H t H − . This phase ends when the stress of 

the particles located at 3 0x =  reaches ( , ) 0vp

vpf p =  at time pt T= . At that moment, the 

basin exhibits thickness ( )
p p

H T H= . 

• Elastic-plastic-viscoplastic phase: starting from the top of the basin and moving 

downward, the basin displays in this phase three distinct layers: an elastic layer followed by 

an elastoplastic layer while the particles in the bottom layer undergo elastic-plastic-

viscoplastic strains. This phase corresponds to time interval [ , ]p vpt T T . The elastic layer 
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extends in the same spatial domain of the preceding phase 3
[ ( ) , ( )]

e
x H t H H t − . The 

elastoplastic layer is defined by 3
[ ( ) , ( ) ]

p e
x H t H H t H − −  whereas the elastoplastic-

viscoplastic one develops for 3
[0, ( ) ]

p
x H t H − . This phase ends when the plastic part of 

strain of the particles located at 3 0x =  does no longer evolve ( 0
p

d =  or 0 = ) at time 

vpt T= . At that moment, the basin thickness is ( )
vp vp

H T H= . 

• Elastic-viscoplastic phase in sediment deposition period: in addition to three layers 

appearing in the previous phase, particles located at the bottom of the basin undergo purely 

elasto-viscoplastic strains. This phase takes place as long as be sediment accretion proceeds 

[ , ]vp st T T , where sT  stands for the prescribed duration of sediment deposition process. The 

elastic and elastoplastic behaviors develop in the same spatial domains appearing in preceding 

phase 3
[ ( ) , ( )]

e
x H t H H t −  and 3

[ ( ) , ( ) ]
p e

x H t H H t H − − . The elastoplastic-viscoplastic 

layer extends in 3
[ ( ) , ( ) ]

vp p
x H t H H t H − − , whereas the purely elasto-viscoplastic layer 

develops in 3
[0, ( ) ]

vp
x H t H − . The end of this phase coincides with that of sediment 

deposition period at time 
st T= . At that moment, the basin thickness is ( )s sH T H= . 

• Elastic-viscoplastic phase during post-depositional period: this phase starts at the 

beginning of the basin post-depositional period. The time domain corresponds to 
st T . The 

elastic and elastic-plastic layers do not evolve and present the same thicknesses in the 

preceding phase. The elastic-viscoplastic behavior develops in domain 3 [0, ( ) ]px H t H − . 

The end of this phase is defined by arbitrarily final time of analysis fT  in which the basin 

reaches height ( )f fH T H= . 
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Figure 4. Schematic representation of the evolution of the sedimentary basin during 

geological time. 

It is interesting to note that the layer thicknesses e
H  and p

H  remain constant along all the 

basin evolution for 
e

t T . This means that after their formation, these layers translate upward 

parallel to direction 3e  as the sediments are deposited. 

The same observation holds regarding the layer thickness vp
H , which remains constant as 

long as the sediment accretion proceeds (i.e. for 
vp s

T t T  ) and vanishes when it stops. 

The system of differential equations that describe the sedimentary basin mechanical state is 

formed by the momentum balance (1), the mass balance equation (3), the relationship between 

velocity gradient and transformation gradient (18), the relationship between the irreversible 

strain rate and the jacobian irreversible component of the transformation (26), and the 

H(t)
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Hvp

H f

He

H p

x1

x1

x3
x3

x3

x3

E domain
E-P domain
E-P-V domain
E-V domain in dep.
E-V domain in post-dep.

Md
Md

post-depositional period

T f



16 

 

constitutive behavior law (23). This system relates the unknown fields  , irJ , h , v , and 

3u  of the problem. It corresponds to a first order nonlinear partial differential system of 

equations. These equations are completed by the complementary constitutive relationships as 

well as by initial and boundary conditions. 

In Figure 5, two snapshots are presented in order to illustrate the sedimentary basin 

formulation. The first one corresponds to elastic-viscoplastic phase during the sediment 

deposition period. The second one refers to the non-depositional period. Strain rates relevant 

to the formulation in each phase are also presented. 

 

Figure 5. Illustrative representation of sedimentary basin layers behavior. 

 

3.1. Problem resolution for the accretion period 0
d

M   

 

During the depositional period, the material domain is evolving due to continuous sediment 

supply at the top of the basin. The sedimentary basin can thus be viewed as an open material 

system. An eulerian description of particle motion is therefore suitable. 

Referring to the mechanical state of the basin, closed-form solutions prove difficult to derive. 

Only semi-analytical will be elaborated for the system of differential equations controlling the 

field variables in the sedimentary basin. 

Prior to further developments, it is assumed that the sedimentation process remains monotonic 

along the whole depositional phase, that is 0
d

M  , thus excluding in particular any erosion 

period. Under this assumption, the stress and strain fields can conveniently be regarded as a 

function of the vertical stretch. In particular, the stress can be written as  

3 3( , ) ( ( , ))x t x t =   (35) 

0dM 
x3

x1

x3=H(t)

x3=H(t)-He

x3=H(t)-H p

x3=H(t)-Hvp

deposition period

0dM =
post-depositional period
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E-V domain
E-V domain

x3=H(t)

x3=H(t)-He

x3=H(t)-H p

x3

x1

e
dd=

e
dd= + p

d

e
dd= + p

d + vp
d

e
dd= + vp

d

E domain

E-P domain

e
dd=

e
dd= + p

d

e
dd= + vp

d
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Such an observation allows for a simplified formulation of the PDE governing the mechanical 

evolution of the basin. From a computational viewpoint, the resolution procedure is 

performed incrementally through time discretization of governing equations. Starting from 

basin configuration known at time t , the problem amounts to numerically solving for each 

time step t  an approximate ODE system stated on the material system with known thickness 

( )H t . The procedure allows thus for the determination of the new basin configuration at time 

t t+ . In particular, the thickness basin is updated using equation (13) in discretized form: 

( ) ( )H t t H t H+ = +  with ( )0 3
( ) / ( ( ), )

d
H M t u H t t t +   (36) 

In the time incremental procedure adopted for resolution, continuity conditions for all relevant 

fields should be accounted for at the interfaces of layers 
3 ( ) ex H t H= − , 

3 ( ) px H t H= −  and 

3 ( ) vpx H t H= − . 

The incremental scheme as well as the solution to the system of ordinary nonlinear 

differential equations are performed numerically using the MAPLE software. A finite 

difference technique with Richardson extrapolation is used to solve the boundary value 

problem (BVP). 

 

3.1.1. Elastic phase 

 

At the beginning of the process, the thickness of the basin is 0(0)H = . It then progressively 

increases as sediments are brought. The strain induced by gravity effects remains elastic until 

the thickness reaches a threshold eH  defined below. The absence of irreversible strain (

1
ir

J =  and 0
ir

J = ) implies that elastic moduli remain constant, thus simplifying the 

constitutive law (23). 

For the elastic domain ( 0
ir

d = ), the simplified constitutive law provides: 

e

h hF


=


 (37) 

e

v vF


=


 (38) 

where 2 3
e

h
F K = −  and 4 3

e

v
F K = + . These equations have (4) and (5) as the initial 

conditions. 

Integrating expressions (37) and (38) yields: 
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lne

h hF =   (39) 

lne

v vF =   (40) 

It follows from the momentum balance equation (1) that: 

0

3

v g

x

 
=

 
 (41) 

Substituting (40) into the momentum balance equation (41) leads to: 

0

3

e

v

g

x F


=


 (42) 

Integrating the previous equation with the account for the initial condition (14) provides: 

0
3 3( , ) 1 ( ( ) )

e

v

g
x t H t x

F


 = − −  (43) 

Combining equations (20) and (38), we can rewrite the relation (17) as: 

3

3

d

e

v

u M g

x F

 −
=


 (44) 

Whose integrating with the boundary condition (7) yields: 

3( ( ), ) ( )d

e

v

M g
u H t t H t

F

−
=  (45) 

By substituting the previous equation into equation (13) and then integrating it with the initial 

condition (0) 0H = , we obtain the gravitational compaction law in the elastic phase: 

0

( ) 1 exp ( )
e

v
de

v

F g
H t M t

g F

  
= − −   

  
 (46) 

This phase ends when the stress of the particles located at 3 0x =  reaches 0
( , ) 0

p

c
f p =  at 

time et T= . At this moment, the basin is characterized by 
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0

2 3

3

0

0

0

3 3

(0, )

( ) (1 )

(0, )
2 3

3

(0, )
2 3

3

( , )

cp

K a
e e

e
e e ev

e
e e h c
h h

e
e e v c
v v

e e e ed

e

v

T e

F
H H T

g

F p
T

K a

F p
T

K a

M g
u u H T H

F





 



 



−

+



 =  =

 = = −


 = = −

 +


 = = −


+


−
= =



 (47) 

where the time eT  is obtained from relationship ( )e eH H T= , which can equivalently be 

expressed through 

0( )
2 3

3

e
e v c

d

F p
M T

g
K a

=

+

 
(48) 

3.1.2. Elastic-plastic phase 

 

As burial proceeds for 
e

t T , elastoplastic strains develop in the deeper layers of the basin, 

that is, when the thickness of the basin becomes greater than the threshold eH . The thickness 

of the elastic layer remains constant in time, equal to eH , and extends in the range 

3
[ ( ) , ( )]

e
x H t H H t −  (Figure 4). In contrast, the thickness of the elastoplastic layer increases 

from bottom 3 0x =  as the sediments are supplied. The domain is defined at each instant by 

the range 3
[0, ( ) ]

e
x H t H − . 

The plastic strain rate (28) is rewritten considering the plastic yield condition (27): 

2

1
1

3 2

p
p f a

d s
J

 


 
= = − +    

 (49) 

The relationship (26) applied to the previous equation results in: 

ir ir

ir

J
trd

J
= = −  (50) 

Introducing the strain rate (18), the material elastic stiffness moduli tensor (24) and the plastic 

strain rate (49) into the constitutive behavior law (23), yields: 
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( )1 1 2 2

3 3

( )3

3 3 3

2( )2 3

3 3 3

e v h
h

e v h
v

tr K
K a e e e e

K

tr K
K a e e

K

   
   



   
  



   −
= + − + −  +       

   −
+ + + + +       

 (51) 

The consistency condition 0pf =  expressed for the yield criterion (27) gives: 

2

1
: tr : 0

3 2

p
p

c c

f a
f p s s p

J
 




= − = − + − =


 (52) 

Based on the above equation, it is possible to determine the expression of the plastic 

multiplier: 

1 2( ) ( )p p

ir ir irG J G J J


= +


 with 
1 2

2 2

2 3

3( )

( 2 ) 3( )
( )

p

ir

p

p v h v h
ir

p

K a

G J
K a h

K a
G J

K a h





    




+

 = −
 + +

 + + −
 = −

+ +

 (53) 

where the non-dimensional stiffness parameters K  and   are defined by 
1

3 ir

K
K

K J


=


 and 

1

3 irJ







=


. Note that ( ) ( )

p p p ir
h h h J= =  by virtue of (30). 

It follows from (21) and (22) that 

0

0 0

1 3 4

3 (3 4 ) 3 (1 )

5 3 4

3 3 (5 2(1 )) 4 (5 3(1 ))

s s

s s s

ir

s s

s s

ir ir

k
K

J k k

k

k J J



 




  

 +
= −

+ − −


+ = −
 − − + − −

 (54) 

Substituting equation (53) into (51) yields: 

1 1 2 2 3 31 2 1 2( )p p p p

h h ir v v irF F J e e e e F F J e e
    

= +  +  + +    
    

 (55) 

where 
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1 1

2 2

1 1

2 2

3
( )

3

3
( ) ( 2 ) ( )

3

2 3
( )

3

2 3
( ) ( 2 ) 2( )

3

p e p

h ir h

p p

h ir v h v h

p e p

v ir v

p p

v ir v h v h

F J K a G

F J K a G K

F J K a G

F J K a G K

 

     

 

     

  
= + −   

  


  = − + + − −  
  


 
= + +   

 
  
 = + + + + −    

 (56) 

Based on the observation (35), equation (55) can be rewritten as: 

1 1
1 1 2 2 3 32 2

3 3 3 3 3

( )
p p

p ph ir v ir
h v

F J F J
F e e e e F e e

x x x x x

      
= +  +  + +    

         
 (57) 

Combining the momentum balance equation (41) and the vertical component of stress in (57) 

leads to: 

0 2

3 1 1 3

p

v ir

p p

v v

g F J

x F F x

 
= − 

 
 (58) 

Recalling that 3 3( , ) ( ( , ))ir irJ x t J x t=  , it follows from (50) and (53) that 

1

3 2 3(1 )

p

ir ir

p

ir

J G J

x G J x

 
= −

  + 
 (59) 

Combining equations (17) and (20) with the expression of vertical stress rate given by (55) 

yields the law of spatial variation of particles velocity 

3

3
1 2

3 3

d

p p ir
v v

u M g

Jx
F F

x x

 −
=

 
+ 

 

 
(60) 

which should be completed with the boundary condition (7). 

Equations (57)-(59) governing the stress and strain fields, together with equation (60) related 

to particles velocity field, define the system of differential equations governing mechanical 

state of the elastoplastic layer of the sedimentary basin 3
0 ( )

e
x H t H  − . The continuity 

conditions at the interface with the upper elastic layer 3
( ) ( )

e
H t H x H t−    are expressed 

from the quantities computed at the end of elastic phase through (47): ( ( ) , )e eH t H t − = , 

( ( ) , )
eeH t H t − =  and ( ( ) , ) 1e

irJ H t H t− = . Such a mathematical problem is not tractable 

analytically and is solved numerically for each time step using Maple software. The end of 

this phase corresponds to time pt T=  at which the stress of material particles located at 
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3 0x =  complies with viscoplasticity condition ( , ) 0
vp

vp
f p = . At that moment, the thickness 

of the basin is ( )p pH H T=  and the following quantities are computed: 

3 3

(0, )

(0, )

(0, )

(0, )

( , )

p p

p p

h h

p p

v v

p p

ir ir

p p e p

T

T

T

J J T

u u H H T

 

 

 = 


=


=
 =

 = −

 (61) 

and will be used as “boundary conditions” at 
3

p e
x H H= −  for the next elastic-plastic-

viscoplastic layer that develops for pt T . 

It is noted that the velocity of particles located at the top of the basin is given by 

3 3 3( ( ), ) ( ( ) , )e eu H t t u u H t H t= + −  (62) 

  

3.1.3. Elastic-plastic-viscoplastic phase 

 

The response of the basin in the elastic-plastic-viscoplastic phase should be analyzed for 

pt T  when the thickness of the basin becomes higher than the threshold p
H . As for the 

elastic domain, the thickness of the elastoplastic layer 3
[ ( ) , ( ) ]

p e
x H t H H t H − −  (Figure 4) 

remains constant in time. In contrast, the thickness of the elasto-plastic-viscoplastic layer 

increases from bottom 3 0x =  as the sediments are supplied. This material domain is defined 

by the range 3
[0, ( ) ]

p
x H t H − . 

The relationship (26) applied to the plastic strain rate (28) and the viscoplastic strain rate (32) 

results in: 

vp
ir ir

ir

J f
trd

J




 
= = − + = − 

 
 (63) 

The constitutive equations (23) read: 

1 1 2 2

3 3

( )3
( )

3 3 3

2( )2 3

3 3 3

e v h
h

e v h
v

tr K
K a e e e e

K

tr K
K a e e

K

   
  



   
 



   −
= + −  + −  +       

   −
+ + +  + +       

 (64) 

It follows from the consistency condition 0
p

f =  that 
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1 2( ) ( )vp vp

ir ir irG J G J J


 = +


 with 
1 2

2 2

2 3

3( )

( 2 ) 3( )
( )

vp

ir

p

vp v h v h
ir

p

K a

G J
K a h

K a
G J

K a h





    




+

 = −
 + +

 + + −
 = −

+ +

 (65) 

The system that describes the mechanical behavior of the basin in the elastoplastic-

viscoplastic domain at each instant is given by: 

0 2

3 1 1 3

1
2

3 3 3

1
2

3 3 3

1

3 2 3

3

3
1 2

3 3

(1 )

vp

v ir

vp vp

v v

vp
vph h ir

h

vp
vpv v ir

v

vp

ir ir

vp

ir

d

vp vp ir
v v

g F J

x F F x

F J
F

x x x

F J
F

x x x

J G J

x G J x

u M g

Jx
F F

x x







 
= − 

 
 

= +
   


 

 = +
   


  = −

   + 

 −

=  
+ 

 

 (66) 

where 

1 1

2 2

1 1

2 2

3
( )

3

3
( ) ( 2 ) ( )

3

2 3
( )

3

2 3
( ) ( 2 ) 2( )

3

vp e vp

h ir h

vp vp

h ir v h v h

vp e vp

v ir v

vp vp

v ir v h v h

F J K a G

F J K a G K

F J K a G

F J K a G K

 

     

 

     

  
= + −   

  


  = − + + − −  
  


 
= + +   

 
  
 = + + + + −    

 (67) 

Equations (66) should be completed by ( ( ) , )p pH t H t − = , ( ( ) , )
ppH t H t − =  and 

( ( ) , )p p

ir irJ H t H t J− =  representing the conditions of continuity at the interface between the 

elastoplastic and elastoplastic-viscoplastic domains. Finally, integration of 3u  in (66) requires 

to account for the condition (7) that prescribes the velocity at 3 0x = . 
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The thickness of the elasto-plastic-viscoplastic layer is increasing with time as long as 0
p

d   

and 0
vp

d  . This phase ends in time vpt T=  when the plastic component 
p

d  of strain rate 

vanishes for particles located at 3 0x = . This means that 0 =  and no additional plastic 

strains are therefore developed. At vpt T= , the basin thickness is ( )
vp vp

H T H=  and the 

following quantities are computed: 

3 3

(0, )

(0, )

(0, )

(0, )

( , )

vp vp

vp vp

h h

vp vp

v v

vp vp

ir ir

vp p e vp

T

T

T

J J T

u u H H T

 

 

 = 


=


=
 =

 = −

 (68) 

Along this phase, the velocity at the top of the basin is given by: 

3 3 3 3( ( ), ) ( ( ) , )e p pu H t t u u u H t H t= + + −  (69) 

  

3.1.4. Elastic-viscoplastic phase 

 

As accretion proceeds, a new layer referred to as elastic-viscoplastic layer starts developing 

for vpt T  in the material domain 3
0 ( )

vp
x H t H  −  (Figure 4). In the latter, the plastic strain 

in not evolving so that 0
p

d =  and therefore 
ir vp

d d= . Elastic, plastic and plastic-viscoplastic 

layers keep constant thicknesses along this phase, equal respectively to eH , p eH H−  and 

vp pH H− . 

On the one hand, the state equation (23) together with the viscoplastic flow rule(32) provide: 

1 1 2 2

3 3

( )3
( )

3 3 3

2( )2 3

3 3 3

vp
e v h
h

vp
e v h
v

trf K
K a e e e e

K

trf K
K a e e

K

   
  

 

   
 

 

   −
= + − + −  +       

   −
+ + + + +       

 (70) 

On the other hand, the expression (26) of irreversible volume dilatation expresses in the 

elastic-viscoplastic layer as 

vp
ir ir

ir

J f
trd

J 
= = −  (71) 
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Such a differential equation linking irJ  and   to stress state   proves difficult to be handled 

numerically in the context of Maple procedures. For this reason and in order to preserve semi-

analytical formulation of the problem solution, an uncontrolled approximation shall be 

introduced at this stage. It consists in assuming along each time step that 0vpf = . In the time 

incremental procedure adopted for solving the differential equations governing the 

mechanical fields in the elastic-viscoplastic layer, this approximation amounts to considering 

that the value of 
vpf  attached to each particle is piecewise constant with respect to time. Such 

an approximation yields 

1 2( ) ( )v vir
ir ir ir

ir

J
G J G J J

J


− = +


 with 

1 2

2 2

2 3

3( )

( 2 ) 3( )
( )

v

ir

vp

v v h v h
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vp

K a

G J
K a h

K a
G J

K a h





    




+

 = −
 + +

 + + −
 = −

+ +

 (72) 

in which ( ) ( )
vp vp vp ir

h h h J= =  as indicated in (34). 

The relevancy of such approximation as well as associated accuracy will be assessed a 

posteriori in section 4, through comparison of the predicted solutions with those derived from 

a finite element tool specifically devised for sedimentary basin simulation. 

Substituting expressions (71) and (72) into (70) yields: 

( )1 1 2 2 3 31 2 1 2

v v v v

h h ir v v irF F J e e e e F F J e e
    

= +  +  + +    
    

 (73) 

where 
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  


  = − + + − −  
  


 
= + +   

 
  
 = + + + + −    

 (74) 

A reasoning similar to that developed for the preceding phases of the basin evolution allows 

for the formulation of the ODE system that governs the mechanical state of the elastic-

viscoplastic layer. It follows 
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 (75) 

The above equations should be completed by the continuity conditions ( ( ) , )vp vpH t H t − = , 

( ( ) , )
vpvpH t H t − =  and ( ( ) , )vp vp

ir irJ H t H t J− =  expressed at the interface between elastic-

plastic-viscoplastic layer and elastic-viscoplastic layer, together with the boundary equation 

(7) expressing nullity of velocity at the rigid substratum. 

This phase takes place as long as sediment accretion proceeds. When the latter stops at time 

st T= , the sedimentary basin will evolve subsequently as a closed material system without 

additional sediment supply (non-depositional period). The numerical incremental procedure 

used to solve this problem based on Maple software allows to compute at time st T= , the 

total thickness of the basin ( )s sH H T=  as well as the following quantities: 

3 3
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=


=
 =
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 = −

 (76) 

Note that during this phase, the velocity of particles located at the top of the basin is given by 

3 3 3 3 3( ( ), ) ( ( ) , )e p vp vpu H t t u u u u H t H t= + + + −  (77) 

  

3.2. Preliminary illustrative numerical results 

 

Semi-analytical solutions for the evolution of stress and strains during the accretion period are 

presented for the data provided in section 4.1. The purpose herein is merely illustrative, a 

more comprehensive analysis being the object of section 4.2 the respective analysis of the 

mechanical variables. 
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The compaction law ( )t H t→  is presented in Figure 6, where the consecutive phases related 

to behavior of the sedimentary layers are reported. The basin thickness at the end of accretion 

period 60st T= = My (millions of years) is about 2864.21msH = , correspond to as overall 

compaction ratio of 1 / 52.2%sH − H  where 6000m=H  is the total sediment height 

supplied during this period. 

 

Figure 6. Basin compaction law at the end of accretion period 60st T= = My. 

The times of activation of each phase as well as associated layers extents can also be observed 

from this figure: 

e p vp s

e p vp s

T T T T

H H H H

  

  





 (78) 

The profiles along basin depth of total jacobian J =   as well as its irreversible component 

irJ  are plotted in Figure 7 (a) for st T= . As expected, values of J  and irJ  prove very closed 

to each other, thus validating the assumption of infinitesimal elastic strains. It is also observed 

that 0.3irJ J   along the basin bottom 3 0x = , approaching the asymptotic value 

0
1 0.28

cr

ir
J = − = . 

eT pT vpT sT
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The porosity profile along the basin thickness calculated at time st T=  is shown in Figure 7 

(b). Reflecting the significant material densification associated with burial process, this 

important parameter decreases from 0
0.72 = =  at the top of the basin to 0.08   at the 

bottom 3 0x = , which indicates the trend towards total pore closure. This behavior is 

consistent with the increasing intensity of the stress components with depth as observed in the 

profile of Figure 8. 

 

(a) 

 

(b) 

Figure 7. Profiles of the basin at 60st T= = My (end of accretion period): (a) jacobians of the 

transformation and (b) eulerian porosity. 

 

Figure 8. Stress profiles of the basin at 60st T= = My (end of accretion period). 
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3.3. Problem resolution for the post-accretion period 0
d

M =  

 

In the non-depositional period that takes place for st T , the sedimentary basin behaves as a 

closed material system since no additional material is supplied at the top of basin. A 

lagrangian description with respect to the configuration reached by the basin at the end of 

accretion process st T=  appears therefore convenient for addressing the basin deformation 

during this phase. In this framework, a sediment particle is referred to by means of its initial 

coordinate 3 3
( )

s
X x T= . In the current configuration of the basin, the particle position at time 

t  is then defined by 3 3 3 3 3( , ) ( , )x X t X X t= + , where 33 3
( , )X t e =  is the displacement 

vector. 

A main characteristic of basin deformation during the non-depositional period lies in the fact 

that strains do not evolve in the upper elastic and plastic layers. The strain field is actually 

evolving ( 0d  ) only in the layer involving viscoplastic deformation, that is for 

3
0

s p
X H H  − . The latter layer whose thickness is decreasing in time due to viscoplastic 

compaction, will be referred to as elastic-viscoplastic layer. 

The response of the elastic-viscoplastic layer is studied along non-depositional period 

s fT t T  , where fT  is the total geological time chosen for analysis. 

It follows from 0dM =  and relationship (20) that the vertical stress remains constant 

0v =  (79) 

whose integration between time sT  and current time t  provides 

3 3( , ) ( )ps

v vX t X =  (80) 

where 3 3 3( ) ( , t )ps s

v vX x X T = = =  is the known (calculated) vertical stress distribution that 

prevails in the basin at the end of accretion period 
st T= . 

The constitutive state equation (23) in which 
ir vp

d d=  is given by (32) yields 

1 1 2 2

3 3

( )3
( )

3 3 3

2( )2 3

3 3 3

vp
e v h

h

vp
e v h

v

trf K
F K a e e e e

K

trf K
F K a e e

K

   
 

 

   


 

   −
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 (81) 

Equating the vertical component in the above equality with (79) provides 
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Observing that 

vp

h v vpf A B p = + −  with 
( 2 3) / 3

( 1 3) / 3

A a

B a

 = − +


= − −

 (83) 

identity (82) can be rewritten as 

2 3
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By observing that 

vp
ir h v vpir

ir

A B pJ f
trd

J

 

 

+ −
= = − = −  (85) 

and equating the horizontal components in (81), one obtains 
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e ir
h h v h v h ir
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       
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= − − + + − −    

 (86) 

Equations (84)-(86) form the non-linear PDE system that describes the mechanical state of the 

elasto-viscoplastic layer during the post-deposition period. This PDE system involves only 

temporal derivatives due to lagrangian description which allows its reduction to a 

parameterized ODE system. It consists of an initial value problem (IVP) that governs the 

unknown fields h , irJ , and  . The system is solved with MAPLE using a numerical 

integration routine based on Runge-Kutta Fehlberg’s method, which produces a solution 

accurate to the fifth order. The initial condition at time 
st T=  are defined by the fields 

3 3 3( ) ( , )ps s

h hX x X t T = = = , 3 3 3( ) ( , )ps s

ir irJ X J x X t T= = =  and 

3 3 3( ) ( , )ps sX x X t T =  = =  that were computed at the end of accretion period. 

Once the stretch field 3( , )X t  is calculated, the compaction law ( )t H t→  is then obtained 

from the displacement of particles located at the top of the basin. It is recalled that the 

displacement field results from numerical integration of following relationship 

3 3
3 3

3

( , )
( , ) 1

X t
e X t

X





  = =  −


 (87) 

The gravitational compaction law is obtained by the numerical integration of the previous 

expression. 
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4. ILLUSTRATIVE NUMERICAL BASIN SIMULATIONS – COMPARISON WITH 

F.E. SOLUTIONS 

 

For illustrative purposes, the semi-analytical solutions developed in section 3 are presented in 

the context of a sedimentary basin simulation during both the accretion and post-accretion 

phase. The numerical results do not refer to a real data life basin, but rather to an academic 

problem and are only intended to illustrate some features of basin deformation in the context 

of purely gravitational compaction under oedometric conditions. In the framework of such 

simplified scenario, the accuracy of the approach predictions is assessed through comparison 

with finite element (F.E.) solutions derived from the basin simulator developed by Brüch et 

al.36,51. This simulator, which implements a finite thermo-poro-mechanics modeling, is 

specifically devised to deal with 3D analyses of purely mechanical and chemo-mechanical 

compaction in sedimentary basins. Main features of the F.E. element constitutive modeling 

include elasticity coupling with large irreversible porosity changes as well as the sediment 

material hardening induced by irreversible densification during compaction43. 

From a computational viewpoint, the basin simulator relies upon a parallel F.E. 

implementation of the constitutive modeling with shared memory multiprocessing interface. 

An automatic time-step algorithm allows for continuous update of the time step length used in 

the analyses, based on the evolution the material properties and F.E. mesh geometry. The 

issue related to the fact the basin is an open material during the sediment accretion phase is 

addressed by means of a specific activation/deactivation procedure. Basically, the latter 

consists in operating with a fictitious closed material system in which the sediment deposition 

periods are modeled by progressive activation of gravity forces and material properties within 

the fictitious basin sub-layers. At each geological time t , the configuration of the real basin 

system and associated mechanical state are deduced from the evolution in time of the 

fictitious closed material system. Further description of the activation/deactivation algorithm 

and its numerical implementation may be found in the original work by Bernaud et al.44 and 

related subsequent extensions9,51. 

 

4.1. Problem description and data 
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We analyze the one-dimensional compaction induced by purely gravitational effects in a 

sedimentary basin that forms during a geological period 0 60 Myst T  =  by continuous 

material supply with a constant rate of sediment accretion equal to 
9

2.54 10 kg/s
d

M
−

=   per 

unit area, approximately equivalent to a rate of 
280 ton/km /year . In its reference state, the 

sediment material is assumed to exhibit always the same mechanical properties along the 

accretion phase. In order to characterize the level of compaction magnitude, it is relevant to 

note that, in the absence of any compaction process, the total amount of deposited sediments 

would correspond to a vertical column of thickness 

0

s

dM T =H  (88) 

As regards the material properties in the reference state, the model data used for the numerical 

simulations are defined as follows. Initial material density 
3

0
800 kg/m  = , initial porosity 

0 0.72 = , initial Young modulus 0 1GPaE = , initial Poisson’s ratio 0
0.33 = , initial 

consolidation pressure for plasticity 0 4MPacp = , plastic hardening law exponent 1.3pm = , 

initial consolidation pressure for viscoplasticity 0 5MPavpp = , viscoplastic hardening law 

exponent 1.0vpm = , viscosity coefficient 1GPa My =  . Finally, the scalar that controls the 

slope of the ductile part of both the plastic and viscoplastic yield surfaces id fixed to 

1.1545a = . 

Although the configuration addressed herein refers to an illustrative synthetic case, the 

material properties are actually characteristic of sandstone-like sediments as no fluid 

overpressure is considered throughout the simulation. In addition, dissolution and 

precipitation of quartz minerals are known to play an important role in porosity reduction of 

siliciclastic rocks like sandstones58. However, the choice of some parameters such as the 

Young modulus and the plastic consolidation pressure are questionable as they seem 

unrealistic at the deposition reference state. The high value adopted for 
0E  is attributed to the 

limitation of the Hashin–Shtrikman estimates (22) to adequately predict the evolution of the 

stiffness moduli over a wide range of porosity. It is therefore necessary to consider a 

relatively high value for initial Young modulus to obtain reasonable values at depth. As 

regards the initial consolidation pressure for plasticity, a deliberately high value is adopted for   

in order to better visualize the model predictions and thus clearly illustrate each phase of the 

compaction process described in section 3. More realistic values of 
0cp  could actually be 
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adopted in order to activate plastic deformation at low overburden levels (see for instance 

Brüch et al.52). As it will be commented in the results section 4, the values considered for 

material properties in the reference state lead to unrealistically overestimating the extent of 

upper elastic layer. However, this superficial crust of the sedimentary basin generally 

represents a minor component in basin modeling, so that it is more important to relevantly 

characterize the rock behavior at depth. 

According to selected values for the rate of sediment accretion dM , initial material density 

0  and total accretion phase duration sT , it follows from (88) that the whole deposition 

process would result in a sediment column of thickness 6000 m=H , corresponding to a 

thickness increase of 100m  per million years increase in the absence of compaction. 

As regards the computational F.E. model, the model geometry representing the initial 

configuration of the fictitious material system is defined by a column with 6000 m=H  

height and 1 2 100 mL L= =  horizontal sides (Figure 9). The initial mesh of the column 

consists in 60n =  twenty-node hexahedra elements (quadratic displacement interpolation) of 

side 100 mL = , regularly distributed along the column height. The associated total number of 

nodes is equal to 728, corresponding to 2184 degrees of freedom (nodal displacement 

components). Each element represents in fact a sub-layer that shall be activated according to 

its location as sediment accretion proceeds. 

The boundary conditions for the F.E. model are summarized in Figure 9 and are consistent 

with the oedometric assumption adopted for the analysis. The plane 3 0x =  defines the rigid 

basement rock, thus implying the displacement condition 33( 0, ) 0x t e =  = . The normal 

displacements along lateral surfaces 0ix =  and i ix L=  ( 1, 2i = ) are maintained null: 

( 0, ) ( , ) 0i ii i ix t e x L t e =  = =  = . During all the numerical simulations, the upper surface 

3 ( )x H t=  remains stress free: 33( ( ), ) 0T x H t t e= =  = . 

Finally, the total time of basin evolution analysis is fixed to 2 120 Myf sT T=  =  and the 

initial time step is taken equal to 0.01Myt = , which is much smaller than the characteristic 

viscoplastic relaxation time / 0.675 My
vp

c oed
E=  59, where oedE  denotes the initial 

oedometric elastic modulus. 
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Figure 9. Spatial discretization and mechanical boundary conditions. 

 

4.2. Results 

 

For the sake of clarity, the results of the present analysis will be referred to as follows. In all 

figures, the semi-analytical solutions are referred to as “SAR” and displayed by solid 

continuous lines, whereas the results derived from the F.E. basin simulator are referred to as 

“FEM” and represented by symbols. 

Prior to results analysis, it is recalled once again that the numerical simulation is carried out in 

the context of an academic situation and the associated results are provided for merely 

illustrative purposes. They are not intended to reproduce the mechanical fields that could be 

observed in real data life basins. 

At the scale of basin, a main feature in sedimentary basin simulation refers to assessment of 

the compaction law ( )t H t→ . The semi-analytical and F.E. predictions obtained for the 

gravitational compaction law are shown in Figure 10. The different phases related to basin 

behavior that have been described in section 3 are highlighted in this figure. The SAR 

predictions are very close to the MEF solutions, and this good agreement can thus be viewed 

as a preliminary validation of the simplifying assumption introduced in section 3.1.4 (elastic-

viscoplastic phase). The level of basin compaction can be defined at time t  as 1 ( ) /H t− H . 

The magnitudes of this compaction ratio predicted by SAR and MEF at st T=  (end of the 

accretion phase) are respectively 52.2 %  and 52.3% . In the post accretion period, the 

compaction level exhibits a slight decrease to reach approximately 54 %  for both SAR and 
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MEF at ft T=  (end of the analysis). The thicknesses of the different layers as well as the 

associated times of formation during the deposition period obtained from the semi-analytical 

approach are summarized in Table 1. 

 

Figure 10. Gravitational compaction law of the basin. 

 

Table 1. Time of formation and thickness of each layer predicted from SAR. 

eT  5.10My eH  509.20m 

pT  13.26My pH  1097.37m 

vpT  40.79My vpH  2249.96m 

sT  60.00My sH  2864.21m 

 

 

4.2.1. Numerical analysis of local fields 

 

This section is dedicated to analyzing the evolution of mechanical fields attached to the 

sediment particles located at any instant along the substratum interface 3 0x =  (i.e. bottom 

eT pT vpT sT fT
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layer). These particles are deposited at the beginning 0t =  of accretion process and associated 

mechanical state is evolving as burial proceeds, exhibiting the highest strain and stress levels 

of the basin. Table 2 summarizes the values of relevant quantities predicted by both SAR and 

FEM analyses at particular times st T=  and ft T= . 

 

Table 2. Relevant mechanical quantities evaluated for particles along 3 0x = . 

 60Myst T= =  120Myft T= =  

 SAR FEM SAR FEM 

  0.0728 0.0649 0.0451 0.0470 

3(kg/m )  2654.44 2671.70 2732.32 2722.86 

(MPa)h  -39.32 -39.13 -40.46 -40.05 

(MPa)v  -47.15 -46.51 -47.15 -46.54 

J  0.3014 0.2983 0.2928 0.2928 

irJ  0.3020 0.2995 0.2932 0.2938 

pJ  0.3821 0.3803 0.3821 0.3803 

vpJ  0.7904 0.7873 0.7675 0.7725 

(MPa)cp  59.48 62.89 73.95 72.71 

(MPa)vpp  39.88 41.62 47.15 46.54 

 

The evolution of eulerian porosity 3( 0, )x t =  and mass density 3( 0, )x t =  are respectively 

depicted in Figure 11 (a) and Figure 11 (b). As expected, the porosity decrease with time 

during the accretion period is straightforwardly associated with continuous increase in mass 

density of the porous material. These quantities rapidly reach almost stabilized values as soon 

as sediment deposition process stops. 

Once again, the perfect matching between SAR and MEF predictions is emphasizing the 

accuracy of the semi-analytical approach. The small discrepancy observed in the elastic-

viscoplastic phase is reflecting the effect of the approximation introduced in section 3.1.4 in 

the formulation of problem governing equations. 
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(a) 

 

(b) 

Figure 11. Evolution at 3 0x =  of the (a) eulerian porosity and (b) sedimentary mass density. 

The evolution of stress state along accretion and post accretion phase are displayed in Figure 

12 (a). As expect from equilibrium consideration described in (79), the vertical stress 

component is no more evolving after the deposition process have stopped st T , whereas the 

horizontal component progressively stabilizes. The evolution in time of the different 

components of the jacobian of the particle transformation is shown in Figure 12 (b). It is first 

observed that the values of total jacobian J  and its irreversible counterpart irJ  reveal very 

close, thus validating the assumption of infinitesimal elastic strains adopted in the analysis. It 

is recalled that the plastic part pJ  (resp. viscoplastic part vpJ ) represents a measure of plastic 

(resp. viscoplastic) volumetric dilatation undergone by the sediment material. This figures 

provides a clear illustration that plastic compaction is prevailing for pt T  where the plastic 

part pJ  of the jacobian is significantly decreasing as burial proceeds to finally stabilize after 

the elastic-viscoplastic phase (along which 0
p

d =  and thus 0pJ = ) is activated at vpt T= . 

The evolution of viscoplastic component vp
J  exhibits an opposite trend: it starts decreasing 

from unity at time pt T=  with simultaneous evolution of plastic and viscoplastic strains until 

vpt T= , and from that moment and on only the viscoplastic volumetric dilatation continues 

evolving 0
vp

J  . 

eT pT vpT sT fT eT pT vpT sT fT
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(a) 

 

(b) 

Figure 12. Evolution at 3 0x =  of the (a) horizontal and vertical stress and (b) jacobians. 

Finally the hardening of the material induced by large porosity change is illustrated in Figure 

13 by plotting the plastic cp  and viscoplastic vpp  consolidation pressures as functions of 

time. The results in this figure indicate that material densification may lead to significant 

increase in the value of hardening parameter, which can be multiplied by a factor as high as 

10. 

 

Figure 13. Evolution of the plastic and viscoplastic consolidation pressure at 3 0x = . 

 

4.2.2. Analysis of the overall basin response 

eT pT vpT sT fT eT pT vpT sT fT

eT pT vpT sT fT
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We move in this section to the analysis of the mechanical fields that characterize the overall 

response of the sedimentary basin, focusing the description on the state of the latter at 

particular times st T=  and ft T= . 

The overall response is first illustrated by Figure 14-Figure 16 displaying respectively the 

profiles within the basin of porosity, sediment mass density and jacobian of the particle 

transformation. The analysis of the results calls for the following qualitative comments: 

• The material densification induced by compaction at large strains is reflected by the 

decrease (resp. increase) of porosity (resp. mass density) with depth. 

• The referred fields slightly vary along the upper elastic crust, which is consistent with 

the assumption of infinitesimal elastic strains adopted in the analysis. The thickness of elastic 

crust may appear as excessively high in regards the total thickness of the basin. This is mainly 

attributed to the value of 0cp  defining the extent of elastic layer through condition 

( )0, 0p
cf p = . From a rigorous point of view, 0cp  should therefore refer to an elastic limit 

and not to a limit pressure state as expressed by expressions (29). Consequently, such a 

definition of 0cp  leads to overestimating the extent of elastic layer, as described by Deudé et 

al.43. 

• The two approaches SAR and MEF predict similar profiles of all fields for both 

st T=  and ft T= . The small discrepancy observed in the elasto-viscoplastic layer located at 

the bottom of the basin is due to the simplifying approximation introduced in section 3.1.4 for 

the formulation of governing equations. 
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(a) (b) 

Figure 14. Eulerian porosity profile along basin thickness (a) at 60Myt =  and (b) at 

120Myt = . 

 

(a) 

 

(b) 

Figure 15. Sediment mass density profile (a) at 60Myt =  and (b) at 120Myt = . 
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(a) 

 

(b) 

Figure 16. Jacobians of the transformation profiles (a) at 60Myt =  and (b) at 120Myt = . 

The profiles of horizontal and vertical stresses within the basin are plotted in Figure 17. It is 

recalled that the vertical stress component v  is statically determined independently on the 

material constitutive behavior. In contrast, the horizontal stress component h  is strongly 

affected by the constitutive properties of sediment material. In particular, it is very sensitive to 

the value of parameter a  controlling the inclination of plastic/viscoplastic yield surface in the 

contractive stress states. 

 

(a) 

 

(b) 

Figure 17. Stress profiles within the basin (a) at 60Myt =  and (b) at 120Myt = . 

Finally, the plastic and viscoplastic hardening parameters profiles in the basin are shown in 

Figure 18, illustrating once again the hardening of material induced by densification. 
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(a) 

 

(b) 

Figure 18. Profiles of plastic and viscoplastic consolidation pressures (a) at 60Myt =  and (b) 

at 120Myt = . 

 

5. CONCLUSIONS 

 

A theoretical framework for the analysis of gravitational compaction in sedimentary basins 

under oedometric conditions at large strains has been formulated. The latter relies upon a 

simplified description of the problem geometry and geological process, as well as of sediment 

material constitutive behavior. In the context, the field equations governing the evolution of 

mechanical state of the sedimentary basin have carefully described and the semi-analytical 

solutions to associated non-linear PDE system have been derived making use of the MAPLE 

software recourses. These solutions prove useful in the context of sedimentary basins 

modeling since they can be viewed as reference solutions for verification and benchmarks of 

basin simulators. As a matter of fact, there is a lack for reference solutions relevant to the field 

of basin simulation that incorporate essential features of sediment deformation induced by 

compaction processes. In that respect, particular emphasis has been dedicated for the 

constitutive modeling formulated at porous material level to take into account the stiffening 

and hardening associated with pore closure. 

From the constitutive modeling viewpoint, the state equations of the sediment material are 

formulated in the framework of coupled plasticity-viscoplasticity at large strains. At 

macroscopic scale, the purely mechanical compaction that predominates in the upper layers of 

a sedimentary basin is modeled by means of time-independent plastic strains, whereas the 
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viscoplastic component of behavior is intended to address creep-like deformation resulting 

chemo-mechanical compaction that prevails at deeper layers. The proposed coupled modeling 

is able to automatically account, through the irreversible component of the material 

transformation jacobian, for deformation along intermediate layers where the two compaction 

processes occur simultaneously. A main advantage of adopting the simplified oedometric 

setting is to allow for investigation and clear interpretation of the role of each relevant model 

property on the mechanical evolution of the sedimentary basin. 

Even though it mainly refers to an academic problem rather than to real data life basin, the 

numerical illustration proved able to accurately capture fundamental features of basin 

deformation in both accretion and post-depositional periods of the geological basin life. The 

numerical simulations have addressed the overall basin response, such as the prediction of 

compaction law, stresses and porosity profiles within the basin, as well as the evolution in 

time of the relevant mechanical parameters at the bottom of the basin. The proposed approach 

can also be used for intensive parametric analyses, since it does not require complex and 

costly computational procedures such as those involved in F.E. simulations. 

Comparison with FE solutions derived from a basin simulator that integrates the effects of 

large irreversible porosity change on the elastic properties as well as on plastic/viscoplastic 

hardening laws36,51 provides ample evidence of the ability of derived semi-analytical solutions 

to relevantly reflect most of local and overall features of the basin deformation. In particular, 

it has been shown that the simplifying approximations introduced in the resolution 

formulation affect very little the accuracy of obtained predictions. 

As extensions to be foreseen in the future, the analysis should be extended to more realistic 

situations incorporating: (a) the effects of tectonic loading by applying for instance lateral 

prescribed displacements9, (b) the effects of geothermal field relying on the approach 

developed in Brüch et al.36 to address the evolution of sediment material properties associated 

with temperature, and (c) hydromechanical coupling. 
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