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A General Constrained Optimization Framework for the
Eco-Routing Problem: Comparison and Analysis of Solution

Strategies for Hybrid Electric Vehicles

Giovanni De Nunzioa, Ibtihel Ben Gharbiaa, Antonio Sciarrettaa

aIFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France.

Abstract

Vehicles electrification marks a very important step towards sustainable mobility. How-
ever, energy efficiency and driving range of electrified vehicles are nowadays a major
concern. From an algorithmic perspective, eco-routing opens up new possibilities re-
garding the strategies and tools aimed at improving energy efficiency by finding an
energy-minimal route under different constraints coming from vehicle characteristics
(powertrain, battery capacity, etc.) and user preferences (travel time, etc.). In this work,
a powertrain-independent speed prediction model is presented. This model is then used
to derive a fast numerical solution of the powertrain energy management for hybrid elec-
tric vehicles. Furthermore, a new general formulation is derived for the minimum-energy
navigation problem, with a focus on the specific complexity introduced by electrified ve-
hicles. The general constrained optimization problem is reformulated in several alterna-
tive ways in order to achieve a solution in limited computation time. The most commonly
used approaches nowadays in the literature (integer programming and shortest path algo-
rithms on directed graphs) are compared and benchmarked in terms of solution accuracy
and computational effort. The objective is to identify best-practices in accurately and
efficiently solving the constrained eco-routing problem.

Keywords: Eco-routing, constrained optimization, shortest path algorithm, integer
programming, hybrid electric vehicles, energy management.

1. Introduction

Recently, e-mobility has been identified as an important means to reduce energy
consumption and emissions of transportation. In an effort to comply with more and
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more stringent decarbonization measures, automakers are planning to significantly re-
duce the sales of vehicles solely powered by internal combustion engines (ICEs), and
promote vehicles electrification. Market share projections seem to agree on the fact
that purely electric vehicles (EVs) will reach at least 8% of all vehicle sales by 2025,
while hybrid electric vehicles (HEVs) will rise to 23% of market share [1, 2]. Electric
vehicles are battery-powered and the necessary electricity can be produced from regen-
erative sources. Furthermore EVs typically exhibit low emissions to their immediate
environment in terms of combustion gases or noise levels. On the other hand, hybrid
vehicles are equipped with both an internal combustion engine and an electric motor.
The electric drive provides a better efficiency in many situations (e.g. for accelerating in
city traffic) by allowing the combustion engine to operate at more efficient conditions.
However, powertrain and technology evolution can only improve energy efficiency to
a certain extent and require more and more to be complemented by on-board control
and optimization strategies. Besides optimal energy management for HEVs and driv-
ing speed optimization (i.e. eco-driving) for improved efficiency, at route planning level
eco-routing also appears to be a promising strategy. Eco-routing is the system that makes
use of topological and traffic information about the road network to compute an optimal
route in terms of energy consumption [3]. Such a strategy can be effectively used to
reduce range anxiety and extend the driving range of EVs, but more in general it can be
used to further reduce energy consumption for all types of vehicles. Attractive imple-
mentations exist in the literature for standard combustion-engine vehicles [4, 5, 6] and
electric vehicles [7, 8], which have a single propulsion system. However, eco-routing for
HEVs implies two major difficulties in the design both at modeling and routing level.

The first challenge consists in the accuracy of the energy consumption model, whose
role is to estimate the energy cost on each elementary road segment. Energy cost of each
segment (or link) of the road network depends on vehicle parameters and powertrain,
but also on road slope and more importantly on the vehicle speed profile. While alti-
tude can be obtained from geographical information services, speed profile prediction is
particularly critical. Speed prediction methods appear to be well-established for HEVs
predictive energy management applications on a given trip [9], but predicting a speed
profile on each segment of a road network taking into account all the possible incoming
and outgoing maneuvers is more challenging.

The second challenge in the eco-routing for HEVs consists in imposing constraints
over the entire route in the optimization problem. Such constraints typically aim to
enforce problem feasibility, by imposing that the battery state of charge (SOC) stay
within the physical limits at any time along the route, or additional problem-related
desired behaviors, such as a maximum travel time or a desired final SOC at the end of
the trip. This problem is typically formulated either as an integer programming problem
[10] or as a resource-constrained shortest-path problem (RCSPP) on graphs [11, 12],
which are both known to be NP-hard problems.

The objective of this work is to give an overview of the alternative optimization for-
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mulations for the constrained eco-routing problem that offer limited computation time
and thus are more suitable for practical end-user implementation. To the best of our
knowledge a thorough description and comparison of such practical problems and algo-
rithmic solutions is lacking. The result of the presented analysis is aimed at identifying
best-practices in the solution approach to the constrained eco-routing problem. The fo-
cus of the analysis is on HEVs because their powertrain is such that enough complexity
is brought into the problem: the energy consumption modeling deals with an embedded
optimal control problem (i.e. optimal energy management), and the routing optimiza-
tion problem presents state dynamics (i.e. battery state-of-charge), state constraints and
several decision variables. The problem formulations and the solution approaches in
this work are applied to HEVs but could be transferred to other applications where state
dynamics and state constraints appear in the optimization.

The contributions of this work are twofold. Firstly, within the scope of energy con-
sumption modeling for HEVs, a fast numerical solution of the energy management sys-
tem (EMS) for HEVs based on a deterministic speed profile prediction allows for a fast
calculation of the fuel consumption per road segment as a function of the desired final
SOC is proposed. Secondly and more importantly, a general problem formulation for
the constrained eco-routing problem for HEVs is developed. Several alternative prob-
lem formulations for a fast solution of the constrained eco-routing problem are proposed,
and search algorithms are also proposed to solve the presented optimization problems.
The proposed approaches, making use of different techniques to deal with the constraints
in a trade-off between solution accuracy and computation time, are compared in order to
identify the best strategy to practically deal with such a complex problem. Discussions
and experiment results comparing all the methods are presented.

The paper is organized as follows. Section II presents the predictive speed model,
the general energy consumption model for all powertrains, and the simplified numerical
solution method of the EMS for HEVs. Section III contains the general routing prob-
lem formulation for HEVs as a constrained optimization problem. Section IV describes
the proposed alternative approaches for solving the problem and dealing with the SOC
constraints, either via shortest path algorithms or via integer programming. Section V
presents the search algorithms to solve the proposed formulations (pseudo-code of the
algorithms is also provided in Appendix). The routing results and the comparison in
terms of predicted fuel consumption and computation times are presented in Section VI.

1.1. Related works

Data-based driving behavior models are typically based on historical information
about traffic conditions on the different portions of a road network. Speed and ac-
celeration probability distributions and their statistical properties are generally used to
represent driving behavior [13, 14] and to establish speed predictors. Those predic-
tors either combine deterministic and stochastic approaches [15, 16], or are fully based
on stochastic processes such as Markov chains [9, 17, 18], or are determined through
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independent and identically distributed (i.i.d.) sequences [19]. These probability dis-
tributions are often obtained from standard driving cycles [20, 16] or real driving data
[21, 17, 22, 19]. Although stochastic approaches may be more representative of the
general driver behavior, they often fail to accurately represent acceleration/deceleration
behaviors on small road segments and in presence of signalized intersections. Alterna-
tively, link energy/emission costs may be directly estimated based on regression fits to
empirical road data as in [23, 24, 25] without the need for a speed profile prediction.
The two power sources of HEVs make fuel consumption estimation non-trivial, since it
depends not only on the driving speed profile but also on the power split between the
engine and the motor, which is dictated by the on-board EMS. Optimal EMS [26, 27]
aimed at minimizing fuel consumption for a given battery consumption is obtained for
a prescribed speed profile using the Pontryagin’s minimum principle (PMP), which can
be rather time consuming. In an attempt to reduce the computational load of the EMS,
approximated optimization methods leverage the simple form of the predicted power de-
mand at route planning level [28], or make use of historical information about average
power split on recorded driving cycles [29, 30]. In this work, we extend the findings
presented in [28] to define a fast numerical solution of the EMS for HEVs by predicting
travel speed with a simple deterministic profile. Such a profile exhibits useful character-
istics in terms of acceleration and power levels separation which allows the full optimal
control problem of the EMS to be actually solved as a static optimization with a very
limited number of decision variables.

In regard to the constrained routing optimization problem, some methods are pro-
posed in the literature to solve such a problem in the case of eco-routing of HEVs. A
fully-polynomial time approximation scheme [31], inspired by [32], was proposed to
solve the constrained non-polynomial problem, with constraints on battery SOC feasi-
bility. However, in the vehicle model, simultaneous use of the combustion engine and
electric motor (i.e. hybrid mode) is not allowed. Also, the accuracy and the computa-
tional effort of the routing solutions is strongly dependent on the approximation param-
eter and the route length, showing scalability issues. Similarly, in [33] the complexity of
the EMS is approximated by simple trade-off functions between the two power sources,
and the routing algorithm with consideration of SOC constraints and recharging is an
approximation inspired by [32]. The authors of [33] acknowledge that the proposed so-
lution is still impractical in terms of computation time for an end-user deployment of the
eco-routing strategy. They propose a workaround which consists in solving a shortest-
path problem on a graph expanded with the battery SOC discretization, as a way to
satisfy the SOC feasibility constraint by construction. The graph would then be such
that only a choice among the feasible SOC options is allowed. Clearly, the accuracy
and reliability of this approach are quite dependent on the chosen SOC discretization.
Another interesting approach [34] solves the eco-routing problem for electrified vehicles
by minimizing total trip time (including both the time on paths and at charging stations)
with energy constraints, so that the vehicle is not allowed to run out of power before
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reaching its destination. No constraint involving a desired final SOC is considered. The
problem is simplified into a linear problem by decoupling route selection and recharg-
ing policy. Such a simplification is not possible for HEVs where the fuel consumption
depends on the SOC variation and their optimal profiles cannot be sought separately.
In [28], consideration of both SOC feasibility constraints and SOC terminal constraints
leads to a constrained optimization problem. An iterative algorithm was proposed to
solve the constrained shortest-path problem on a SOC-variation augmented graph. The
graph expansion technique allowed the solution algorithm to find both the optimal route
and the optimal battery discharge profile along the route. Graph expansions, as in [33],
are in general well-known techniques to enforce routing constraints directly in the rout-
ing network. However, an analysis of which expansion technique is suitable for which
application is lacking. In this work, we compare aforementioned and existing solution
approaches, such as the battery expanded graph [33] and the SOC-variation expanded
graph [28], with additional approaches, such as approximated constrained shortest-path
algorithms or integer programming, especially formulated and proposed for a practical
solution of the eco-routing problem for HEVs. The comparison is meant to shed light
on the more effective methods to deal with such a complex problem.

2. Energy Consumption Model on Road Networks

The energy consumption prediction is paramount for a correct and reliable imple-
mentation of the eco-routing strategy. The goal of this section is to present a method
to predict the energy consumption of various types of vehicles and powertrains in road
networks. In the following, a physics-based approach will be used to estimate vehicle
energy consumption, therefore a “synthetic” speed profile needs to be predicted on each
road link and fed to the vehicle powertrain model.

2.1. Synthetic Speed Profile

The common assumption in routing applications is that the vehicle is subject to the
general traffic conditions along its trajectory. However, at route planning level, exact
speed information at any time and location is generally unavailable. Commercial map-
ping web-services generally provide aggregated traffic information in the form of an
average speed v̄. Typical aggregation intervals are of the order of the road segment and,
temporally, of the order of minutes. The provided average speed v̄ is constant on a road
segment, and might slowly vary in time as the general traffic conditions evolve.

However, without any information on speed fluctuations around the average speed,
the contribution of acceleration to energy consumption cannot be evaluated. That could
lead to underestimating energy consumption especially in urban and/or suburban road
networks. In fact, disruptions in the speed profiles and accelerations are more frequent
at low velocity and caused not only by traffic, but also by road infrastructure. In partic-
ular, critical elements of the road infrastructure, such as traffic lights, intersections, and
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Figure 1: Interface accelerations: on the left-hand side a standard link transition, on the right-hand side a
link interface with a stop sign.

turning movements are very likely to induce stops or significant deceleration [35]. In
order to account for the effects of higher speed moments, such as infrastructure-induced
acceleration and deceleration, and thus improve the energy consumption estimation, a
synthetic speed profile may be generated as described in the following.

For each road segment i of the network, we assume that it is possible to know the
segment length Li, a prevailing average traffic speed v̄i, and the road grade αi which
varies within the considered segment depending on the position. The speed profile on
segment i is supposed to be composed of two phases: a transition phase to go from v̄i−1,
the cruising speed on the preceding segment, to v̄i, and a cruising phase at constant speed
v̄i. Let us first introduce a transition speed at the interface between two segments defined
as

vt,i = βi
v̄i + v̄i−1

2
. (1)

where βi ∈ [0, 1] is a parameter depending on the type of interface (e.g. stop sign, traffic
light, etc.), which could be selected in a deterministic or stochastic fashion.

The speed change between two road segments is modeled as two distinct transients:
a first transient from v̄i−1 to vt,i, and a second transient from vt,i to v̄i, both at constant
acceleration/deceleration at (a model parameter), as shown in Figure 1. Let us recall
that the sign function is defined as:

sign(z) =


+1, if z > 0

0, if z = 0

−1, if z < 0

(2)

By considering time τ = 0 at the beginning of the transition, the predicted speed on the
road segment i can be thus written as:

vi(τ) =


v̄i−1 + sign (vt,i − v̄i−1) · atτ, τ ∈ [0,∆τi−1,t]

vt,i + sign (v̄i − vt,i) · at(τ −∆τi−1,t), τ ∈ (∆τi−1,t,∆τt,i]

v̄i, τ ∈ (∆τt,i, τi]

(3)
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where the transient times are

∆τi−1,t =
|vt,i − v̄i−1|

at
, ∆τt,i =

|v̄i − vt,i|
at

. (4)

Note that this synthetic speed model can depict behavior at traffic lights, stop signs
and any other speed disruption caused by infrastructure or signalization, thanks to the
choice of the parameter β. Also, it does not depict time spent idling at traffic lights or
intersections, which is assumed not to contribute to energy consumption.

2.2. Vehicle Powertrain Model
After predicting the synthetic speed profile vi(t) on link i, the associated energy

consumption can be evaluated using the vehicle longitudinal dynamical model hearby
described, depending on the considered powertrain.

Considering the different on-board energy sources and propulsion architectures, mod-
ern road vehicles may be classified into three broad categories: internal combustion
engine vehicles (ICEVs), electric vehicles (EVs), and hybrid-electric vehicles (HEVs).
HEVs can be further classified into parallel, series, or series-parallel (or power-split, or
combined) hybrids. All the latter types have one engine and one electric motor, most of-
ten powered by an electrochemical battery. In the rest of this work, parallel HEVs will be
considered, for their property of having an electric machine mechanically coupled with
the engine. HEVs have the advantage of combining the benefits of conventional com-
bustion engines and electric motors. Depending on the application, the two propulsion
systems may be configured to co-operate in order to achieve fuel consumption efficiency
or increased power.

The vehicle longitudinal speed dynamics is typically expressed as:

m
dv(t)

dt
= Fw(t)− Fres(t)− Fb(t)− Fg(t), (5)

where v is the vehicle speed, m is the vehicle mass, Fb is the mechanical brake force,
Fg is the gravitational force, Fres is the sum of the resistance forces and is generally
approximated by a polynomial function of v as

Fres(t) = a2v(t)2 + a1v(t) + a0, (6)

with the coefficients a0, a1 and a2 identified for a considered vehicle.
Hence, a general formulation of the powertrain force at the wheels, necessary to

overcome the friction forces and allow the vehicle to move, would be as follows

Fw(t) =
Tn(t)γtη

sign(Tn(t))
t

r
, (7)

where Tn is the torque generated by the propulsion system, r is the wheel radius, γt is
the gear transmission ratio, and ηt is the transmission efficiency, which depends on the
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gear ratio (although this dependency is often neglected). Therefore, independently of the
type of powertrain, the available power at the wheels is defined as in [3]

Pw(t) = v(t)Fw(t), (8)

2.2.1. Internal Combustion Engine Vehicles
In the case of ICEVs, the torque generated by the propulsion system corresponds

to the combustion engine torque: Tn(t) = Te(t). The engine regime is related to the
vehicle speed through the transmission ratio γt = γe(t), and is defined as

ωe(t) =
γe(t)

r
v(t). (9)

Assuming that a discrete transmission (gearbox) is used, γe varies with the gear selected
either by the driver (manual transmission) or by the transmission controller (automatic
transmission). The engine power is then defined as:

Pe(t) = Te(t)ωe(t). (10)

The fuel power consumed by the engine is usually modeled by means of steady-state
tabulated experimental data (i.e. engine fuel map) as a function of engine rotational
speed ωe and engine torque Te. For online applications, approximated closed-form ex-
pressions, such as polynomial models, are used. The Willans-line approach, for instance,
consists in an affine representation relating the available engine power to the fuel power
as [26]:

Pf (t) = a(ωe(t)) + b(ωe(t))Pe(t). (11)

Empirical observations show that the two engine-speed dependent coefficients a and b
can be further expressed analytically by means of polynomial functions of ωe. Note also
that the fuel power function has a discontinuity when the combustion engine is off (i.e.
Pe = 0), because then Pf = 0.

Finally, the internal combustion engine fuel consumption can be expressed as

Ef =

∫ tf

0
Pf (t) dt, (12)

where tf is the duration of the considered time horizon.

2.2.2. Electric Vehicles
In the case of EVs, the torque generated by the propulsion system corresponds to

the electric motor torque: Tn(t) = Tm(t). The motor transmission ratio γt = γm is
considered fixed. The motor regime and the vehicle speed are then related by

ωm(t) =
γm
r
v(t). (13)
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The electric power supplied to or generated by the motor is then defined as:

Pm(t) = Tm(t)ωm(t), (14)

and it is lower bounded by Pm,min(ωm) to limit the amount of energy per unit time that
could actually recovered via regenerative braking.

The electrochemical power drained from or supplied to the battery is usually related
to the electric motor power either by motor maps or by approximating polynomial func-
tions, particularly suitable for online use:

Pb(t) = c(ωm(t)) + d(ωm(t))Pm(t) + e(ωm(t))Pm(t)2. (15)

The coefficients c, d and e are also time-varying and depend on the instantaneous values
of the motor rotational speed along the driving profile.

Finally, the electric motor energy consumption is defined as

Eb =

∫ tf

0
Pb(t) dt. (16)

2.2.3. Hybrid Electric Vehicles
Finally, for HEVs, the torque generated by the propulsion system corresponds to the

sum of the electric motor and the combustion engine torque: Tn(t) = Tm(t) + Te(t).
The total power demand at the hybrid propulsion system is then defined as:

Pd(t) = Pe(t) + Pm(t). (17)

Instead of an overall energy consumption, one is more often interested in evaluating
the minimal fuel consumption Ef for a given electric consumption Eb or SOC variation.
The main degree of freedom to achieve this goal is represented by the split of power de-
livered by the engine and the motor. Such an optimal control problem (OCP) is usually
formulated by considering the instantaneous cost function as a sum of the fuel consump-
tion and an equivalent fuel consumption related to the battery SOC variation [26]. In
the following, for clarity of notation, time dependency of the power is dropped, and the
Hamiltonian function of the problem can be written as:

H(Pm, v(t)) = Pf (Pm, v(t)) + s · Pb (Pm, v(t)) . (18)

The co-state adjoint to the SOC, s, is found such that the constraint over the desired final
SOC is met.

A semi-analytical solution approach of the EMS optimization problem was presented
in [35]. Thanks to the simple form of the synthetic speed profile defined in (3), it is
assumed that the power demand profile can be divided into three distinct elementary
power profiles corresponding to three different phases. In this work, by exploiting the
choice of a constant acceleration at and such a simple form of the synthetic speed profile
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vi(t), a further simplified formulation and numerical solution of the EMS is proposed.
Let us define the power-split ratio µ = Pm/Pd. Let us then assume that each period
(or phase) j of the synthetic speed profile on link i is characterized by one value of the
power split ratio µij . Therefore, the following equations hold

Pf,ij =

{
aij + bij(1− µij)Pd,ij , if (1− µij)Pd,ij > 0.

0, else.
(19)

Pb,ij = cij + dijµijPd,ij + eijµ
2
ijP

2
d,ij . (20)

The values µij can be found with numerical methods as the solution of the following
quadratically constrained linear program:


min
µij

3∑
j=1

Pf,ij(µij)τij (21a)

s.t.
3∑
j=1

Pb,ij(µij)τij = −∆i · Cb (21b)

where τij is the travel time on phase j of the synthetic speed profile of link i, ∆i is the
desired SOC variation to attain on link i, and Cb is the maximum energy stored in the
battery.

Finally, the optimal fuel consumption of an HEV associated with the considered
synthetic speed profile is

Ef,i =

3∑
j=1

Pf,ij(µij)τij . (22)

Intuitively, the optimal fuel consumption for an HEV is a function of the desired
battery SOC variation ∆ (i.e. Ef (∆)).

3. Routing Problem Formulation

The road transportation network can be conveniently modeled as a directed graph.
Let G = (N,A) be such a graph, where N is the set of road intersections (or nodes),
and A is the set of road arcs i (or links) connecting the nodes of the graph. However, the
vehicle speed model presented in Section 2.1 depicts the interface accelerations between
adjacent links in order to increase the speed prediction accuracy, and this is incompatible
with such a standard representation of the road network. In particular, every node of the
graph with two or more incoming links is critical because the upstream speed v̄i−1 is not
unique. Evidently, this prevents from assigning unique costs to the links of the graph.

Therefore, the road network is modeled as a directed line graph, which can be
thought of as the graph of the allowed maneuvers. Its definition is given hereafter:
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Definition 1. The line graph L(G) = (A,A∗) of a directed graph G = (N,A) has a
node for each link in G and each link represents a pair of adjacent links in G.

Therefore, a weighting function for the links of the line graph k ∈ A∗ can be defined
as w∗ : A∗ → W . In standard navigation systems, the routing graph is weighted with
link length or travel time. In eco-routing, the focus is on energy savings and the weight
assigned to each link of the graph represents the associated energy consumption. Each
weight Wk represents the consumption to perform the corresponding maneuver k ∈ A∗,
and is defined as:

Wk =


Ef,k, for ICEVs

Ef,k(∆k), for HEVs

Eb,k, for EVs

(23)

where Ef,k is the fuel consumption on link k, ∆k is the SOC variation on link k, and
Eb,k is the electrical energy consumption on link k.

In the rest of this work, we will focus on the eco-routing problem formulation and
solution approaches for hybrid electric vehicles, working in either charge-sustaining or
charge-depleting mode. The application to this type of vehicles makes the problem
more challenging because of the limited battery capacity, the battery state-of-charge
constraints and the optimal trade-off between fuel and electrical energy consumption.
Note that the EVs can be considered as a particular and simpler case of charge-depleting
HEVs.

Within this navigation framework, a generic routing problem for electrified vehicles
with battery state-of-charge dynamics and constraints can be written as an optimization
on the line graph as follows:

Problem 1. For a given directed line graph L(G) = (A,A∗), find the succession of arcs
k ∈ A∗, or path p ⊂ P , where P is the set of all paths in L(G), and the electrical energy
consumption ∆k on each arc k such that

min
ζk,∆k

∑
k∈A∗

Wk(∆k) · ζk (24a)

s.t.
∑

k∈k+(i)

ζk −
∑

k∈k−(i)

ζk =


1, if i = io

−1, if i = id

0 else

, ∀i ∈ A (24b)

∑
k∈k+(i)

ζk ≤ 1, ∀i ∈ A (24c)

Si =
∑

k∈k−(i)

(
Si−(k) + fk(Wk,∆k)

)
· ζk ∀i ∈ A (24d)

Si ∈ [Smin, Smax] ∀i ∈ A (24e)∑
k∈A∗

fk(Wk,∆k) · ζk = Sid − Sio ≥ ∆ (24f)

ζk ∈ {0, 1} , ∆k ∈ R ∀k ∈ A∗ (24g)
11



The objective function in (24a) represents the sum of the costs, or weights, assigned
to each link k. The optimization aims to minimize such an objective function by se-
lecting the optimal sequence of links via the binary decision variable ζk, as well as the
optimal SOC variation on link k via ∆k, now considered as a continuous decision vari-
able. The many optimization constraints are interpreted as follows. Constraints (24b)
enforce flow conservation, meaning that the decision variable ζk must be chosen in such
a way that the difference between the number of arcs k exiting node i (i.e. k ∈ k+(i))
and the number of arcs entering node i (i.e. k ∈ k−(i)) is equal to 1 in the case of the
origin node io, equal to -1 in the case of the destination node id, and equal to 0 otherwise.
Constraints (24c) ensure that the outgoing degree of each node is at most one, basically
enforcing that the optimal path is simple. The first-order dynamics (24d) specify that the
battery state-of-charge Si at each node i is determined by the state Si−(k) at the upstream
node i−(k) of each arc k ∈ k−(i) entering node i, and by the decision (or stage) cost
fk(Wk,∆k). The stage cost is defined as:

fk(Wk,∆k) = −∆k (25)

In HEVs, ∆k represents the desired SOC variation on link k, which corresponds to
the electricity consumption associated with the minimum fuel consumption resulting
from the EMS optimization. Then, the local constraints (24e) impose that the state
remains feasible at each node i and for any partial path, with Smin and Smax denoting the
minimum and maximum allowed state-of-charge, respectively. Similarly, the terminal
constraint (24f) imposes a final desired state at the destination node id. Depending on
the type of electrified powertrain, the battery SOC at the end of the trip should match
a prescribed value. For charge-sustaining HEVs, the final battery state-of-charge Sid
should match the initial value Sio , thus ∆ = 0 in constraint (24f), where ∆ denotes the
desired SOC variation over the entire route. For charge-depleting HEVs, the battery may
be depleted, thus ∆ = −Sio in constraint (24f).

4. Solution Approaches

Problem 1 in its generic form is known in the literature as a mixed-integer dynamic
optimization [36, 37]. Often, this kind of problems is solved via a preliminary trans-
formation in a mixed-integer nonlinear program (MINLP), which results into a large
nonlinear problem due to full discretization of the differential equations [37]. As a re-
sult, the MINLP strategy needs to handle problems that are often extremely large and
difficult to solve.

In a real-world routing problem, the road network is usually very large, which makes
Problem 1 practically intractable. In order to achieve practical solutions of the routing
problem for electrified vehicles, and to ensure the scalability of the approach to larger
road networks, Problem 1 needs to be adapted and reformulated. In particular, the state
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dynamics in (24d), the local state constraints in (24e) and the continuous decision vari-
able ∆k need to be dealt with.

There exist mainly three methods to tackle the constrained eco-routing problem for
HEVs, as formulated in Problem 1, in a practical manner and with limited computation
time.

The first two methods discussed in this work consist in solving the routing problem
on either the SOC-expanded graph (or SEG in this work) or the SOC-variation expanded
graph (or DSEG in this work). Both approaches leverage the idea of discretizing and
integrating the continuous decision variable ∆k directly in the graph construction. They
differ in the amount of problem constraints directly verified by the graph by construc-
tion, therefore the resulting graphs could be significantly different in size. The basic
idea is that the problem is transformed into a more tractable one by using polynomial
time (or pseudo-polynomial) search algorithms at the expense of increasing the memory
occupancy of the routing graph. Given these two routing graph expansions, it is then
possible to reformulate Problem 1 in equivalent ways and solve it either via (constrained
or unconstrained) shortest path algorithms or via integer programming algorithms, such
as the branch-and-bound algorithm.

The third method does not require any graph expansion because it is solely based
on the integer programming framework, therefore the continuous decision variable ∆k

can be explicitly considered in the optimization. However, in order to make the problem
more tractable, the local state constraints (24e) are neglected because state dynamics are
not easily enforced in an integer programming framework (i.e. static optimization) un-
less the number of constraints is significantly increased, as mentioned before. Therefore,
this third method, applied directly to the line graph as Problem 1, cannot be considered
as an equivalent formulation because some constraints are not verified, but we will show
that it offers a practical solution for charge-sustaining HEVs, for which it is safer to
assume that the optimal SOC trajectory stays naturally away from the battery capacity
bounds.

In this section, we will detail the three solution methods and present alternative prob-
lem formulations of Problem 1 adapted to be solved by shortest path algorithms or inte-
ger programming algorithms, discussing pros and cons of each. In general, shortest path
algorithms have the advantage of being founded on the dynamic programming principle
and satisfy the principle of optimality, thus making it more natural to deal with state
dynamics and sequences of decisions. Also, they naturally verify flow constraints and
simple path constraints, and their decision process is binary (link belonging to optimal
path or not) as enforced by the binary decision variable constraint. On the other hand,
the advantage of integer programming lies in the fact that it does not require a purely
discrete framework, therefore it is possible to consider the continuous decision variable
∆k explicitly in the optimization problem, thus avoiding the approximation error due to
discretization. Also, integer programming offers a more versatile framework for direct
consideration of constraints and solution algorithms are capable of relaxing the problem
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as a linear program (LP), when possible, for reduced computational complexity.

4.1. ∆SOC expanded graph (DSEG)

The problem of finding the optimal decision variable ∆k for each link of the graph
while searching the optimal route from an origin to a destination has been addressed
before in the literature [33]. In order to overcome the computational complexity of the
constrained optimization, the state constraints can be relaxed by enforcing them directly
in the graph construction and/or by adding penalization terms in the objective function,
which in turn can be reduced to a single-objective via weighted-sum scalarization. Note
that the decision variable ∆k, representing the electrical energy use on each link of the
road graph, although continuous, must be discretized in order to be depicted within the
graph framework.

The DSEG method consists in integrating the additional decision variable ∆k di-
rectly in the graph construction, so that the primary decision variable ζ can select both
the links and the SOC variations in the new expanded graph. Therefore, the line graph
L(G) = (A,A∗) is augmented by creating as many copies of each arc k ∈ A∗ as the
number of pre-defined discrete feasible values of SOC variation. Let us define the DSEG
as L∆(G) = (A,A∗∆) and a new weighting function w∗∆ : A∗∆ → W∆ for the links
l ∈ A∗∆ of the augmented graph. Each weight represents the optimal fuel consumption
to perform the corresponding maneuver k ∈ A∗ for a given SOC variation ∆l and is
defined as:

Wl,∆l
= Ef,l (26)

where ∆l ∈ [∆k,min,∆k,max]. All the link copies l ∈ A∗∆ corresponding to the maneuver
k ∈ A∗ share the same power demand profile Pd,k. The copies differ from one another in
terms of fuel consumption because of the associated ∆l. The SOC discretization step δb
is a design parameter, chosen in a trade-off between accuracy and computational burden.
Thus the number of copies, or SOC variation levels, for each arc k ∈ A∗ is given by

N∆ =

⌈
∆k,max −∆k,min

δb

⌉
+ 1. (27)

The total number of links of the DSEG is then

|A∗∆| = |A∗| ·N∆. (28)

Furthermore, the variation range of ∆l ∈ [∆k,min,∆k,max] depends on the physical
properties of the maneuver k ∈ A∗.

A specific analysis has been dedicated to the prediction of the SOC variation for
a given trip [28]. The objective of this study was to provide an a-priori estimation of
the feasibility envelope of SOC variation for each road segment, in order to limit the
number of copies to only the physically attainable ones. A training data-set was created
by generating 150 trips with randomly chosen parameters: number of road segments,
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Figure 2: Validation of the proposed optimal SOC variation model against reference optimal results calcu-
lated via dynamic programming.

boundary speeds for each segment, average speed, mean road grade, and length of each
segment. The OCP minimizing the fuel consumption over each generated trip was solved
via dynamic programming (DP). The goal was to calculate the optimal ∆opt

k for each arc
k ∈ A∗ composing the trip, subject to the constraint of invariant total SOC (i.e. ∆ = 0).
Inspired by the optimal results obtained via DP, a deterministic model for the optimal
SOC variation per road segment has been proposed. This model states that the optimal
SOC variation is a function of the predicted kinetic and potential energy to travel on the
road segment, as well as of the vehicle parameters, and is defined as

∆opt
k = ρ

1/2m(v2
i,f − v2

i,0) +mg(hi,f − hi,0)

Cb
(29)

where vi,f and vi,0 are the speed values at the end and the beginning of the road segment,
hi,f and hi,0 are the altitude values at the end and the beginning of the road segment. The
correction parameter ρ is tuned in order to minimize the estimation error with respect to
the optimal results obtained by the DP. Finally, in order to model the prediction uncer-
tainty and have an estimate of the feasible SOC discretization range, the optimal values
of ∆opt

k obtained from the DP were used to compute confidence intervals. In Figure 2,
the gray dots represent the optimal values of SOC variation ∆opt

k on link k, and the solid
blue line is the proposed optimal SOC variation model. The confidence intervals are
computed in an intentionally conservative way by defining an envelope around the esti-
mated values. Evidently, the conversion from the actual electrical energy consumption
at the battery Eb to the SOC variation can be done based on the vehicle battery capacity.
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In this work Cb = 7.6 kWh, and therefore the feasible SOC variation [∆k,min,∆k,max]
is equal to ±1%.

With the proposed graph expansion, the local constraint (24e) and the terminal con-
straint (24f) are not enforced directly in the graph, therefore the optimization problem
would still be constrained. Problem 1 can be reformulated on the DSEG as follows:

Problem 2 (DSEG-P1). For a given directed graph L∆(G) = (A,A∗∆), find the suc-
cession of arcs l ∈ A∗∆, or path p ⊂ P , where P is the set of all paths in L∆(G), such
that



min
ζl

∑
l∈A∗

∆

Ef,l · ζl (30a)

s.t.
∑

l∈l+(i)

ζl −
∑

l∈l−(i)

ζl =


1, if i = io

−1, if i = id

0 else

, ∀i ∈ A (30b)

∑
l∈l+(i)

ζl ≤ 1, ∀i ∈ A (30c)

Si =
∑

l∈l−(i)

(
Si−(l) −∆l)

)
· ζl ∀i ∈ A (30d)

Si ∈ [Smin, Smax] ∀i ∈ A (30e)∑
l∈A∗

∆

−∆l · ζl ≥ ∆ (30f)

ζl ∈ {0, 1} , ∀l ∈ A∗∆ (30g)

where Si−(l) is the battery state-of-charge at the upstream node i−(l) of each arc l ∈
l−(i) entering node i.

Such a problem necessarily requires a constrained shortest-path algorithm to find
the optimal solution, because, while looking for the path that minimizes the objective
function, all other sub-paths need to be stored and verified against the state local and
terminal constraints.

In order to overcome this issue and make the problem more tractable by using an
unconstrained shortest-path algorithm, we propose a bi-level formulation in order to
separate the search of the optimal path from the state constraints enforcement. In partic-
ular, an unconstrained shortest path algorithm can be used to solve the lower-level op-
timization, while a combination of iterative and binary search is used in the upper-level
optimization to find the parameter (new decision variable) that verifies the constraints.

Problem 1 can be therefore alternatively formulated as a bi-level optimization as
follows:

Problem 3 (DSEG-P2). For a given directed graph L∆(G) = (A,A∗∆), find the suc-
cession of arcs l ∈ A∗∆, or path p ⊂ P , where P is the set of all paths in L∆(G), and
the parameter λ such that
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min
λ

∥∥∥∥∥∥
∑
l∈A∗

∆

−∆l · ζl

−∆

∥∥∥∥∥∥
s.t. ζl ∈ arg min

ζl

∑
l∈A∗

∆

(λEf,l − (1− λ) ∆l) · ζl

s.t.
∑
l∈l+(i)

ζl −
∑
l∈l−(i)

ζl =


1, if i = io

−1, if i = id, ∀i ∈ A
0 else∑

l∈l+(i)

ζl ≤ 1, ∀i ∈ A

Si =
∑
l∈l−(i)

(
Si−(l) −∆l

)
· ζl, ∀i ∈ A

Si ∈ [Smin, Smax], ∀i ∈ A
ζl ∈ {0, 1} , λ ∈ [0, 1]

(31a)

(31b)

(31c)

(31d)

(31e)

(31f)

(31g)

This new bi-level formulation is such that the problem aims to minimize fuel con-
sumption and maximize battery energy recovery in the lower level, while enforcing the
local and terminal SOC constraints in the upper level. More precisely, the lower level
is formulated as a bi-objective optimization, where the parameter λ (i.e. the decision
variable of the upper level) defines the trade-off between fuel and electrical energy con-
sumption. Since λ is positive and bounded between 0 and 1, minimizing (31b) provides a
sufficient condition for Pareto optimality [38]. In other words, all the obtained paths offer
a Pareto-optimal trade-off between fuel consumption and battery charge. Furthermore,
note that the second term added in the objective function (31b) can take on negative val-
ues. This implies that less efficient shortest-path algorithms are required to guarantee
solution optimality (e.g. Bellman-Ford algorithm [39]).

The upper-level of the optimization problem is in charge of verifying the local and
terminal state constraints. The terminal SOC constraint was relaxed and appears now
in (31a), the objective function of the upper-level optimization. Therefore, the problem
aims to minimize the difference between the actual total SOC variation and the desired
one by choosing the decision variable λ (i.e. the optimization weight of the lower level).

In order to solve the upper level, a non-polynomial algorithm was proposed in [28]
to find the parameter λ based on a combination of iterative and binary search. As men-
tioned, an unconstrained shortest-path algorithm (or even an integer programming algo-
rithm) can be used in the lower-level, but one run of such an algorithm is performed at
each search step of λ.
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4.2. SOC expanded graph (SEG)
The SEG method consists in integrating both the additional decision variable ∆k,

similarly to the previous approach, and the local SOC constraint directly in the graph
construction. Therefore, the graph expansion and the copies are performed for each
node of the graph for predefined battery SOC levels in a discretized set.

Given the line graph L(G) = (A,A∗) and the fully-disconnected graph B = (Nb, ∅),
with Nb representing the set of predefined levels of discretized battery SOC, the SEG is
defined as the lexicographic product LSOC(G) = L(G) · B = (ASOC , A

∗
SOC). For each

node i ∈ A, we create as many copies κ ∈ ASOC as the pre-specified levels of battery
charge.

In A∗SOC , we create links for all possible connections between the nodes κ ∈ ASOC .
For each link ξ ∈ A∗SOC connecting two nodes copies κ ∈ ASOC , we compute the
associated SOC variation ∆ξ and assign a weight equal to the corresponding fuel con-
sumption. The dimension of the SEG is given by

|ASOC | = |A|Nb, |A∗SOC | = |A∗|N2
b , (32)

where Nb = |Nb| is the integer number of nodes copies (SOC discretization) and can be
calculated as

Nb =

⌈
Smax − Smin

δb

⌉
+ 1, (33)

where δb is the SOC discretization step as in the previous approach. A higher number of
copies Nb, that is a smaller discretization step δb, corresponds to a finer precision.

The size of the SEG could be reduced with respect to (32) by considering only the
links ξ ∈ A∗SOC corresponding to feasible SOC variations, as calculated for the DSEG.
Hence, the dimension of the graph is reduced to

|ASOC | = |A|Nb, |A∗SOC | = |A∗| ·
(
Nb ·N∆ −

N2
∆ − 1

4

)
, (34)

where N∆ is defined as in (27). Therefore, the weighting function for the links of the
SEG w∗SOC : A∗SOC → WSOC is such that each weight represents the optimal fuel
consumption to perform the corresponding maneuver k ∈ A∗ for a given feasible SOC
variation ∆ξ and is defined as:

Wξ,∆ξ
= Ef,ξ, (35)

where ∆ξ ∈ [∆k,min,∆k,max].
It is evident that the SEG size grows significantly, much more than the DSEG. Fur-

thermore, the SEG is affected by the SOC discretization error, which is a function of
the number of node copies Nb. This is due to the fact that the SOC discretization is
imposed for the entire graph in the SEG method, while the link copies of the DSEG
and the associated SOC variation levels are independent and can be different across the
graph. Nevertheless, the advantage of the SEG is that the local constraint (24e) can be
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directly encoded in the graph by creating copies in ASOC in the range [Smin, Smax],
while the terminal constraint (24f) is easily verified by choosing the destination node
corresponding to the desired final SOC.

Thanks to the fact that in the SEG the local constraint (24e) and the terminal con-
straint (24f) are enforced directly in the graph, the optimization problem can be formu-
lated as follows:

Problem 4 (SEG-P). For a given directed graph LSOC(G) = (ASOC , A
∗
SOC), find the

succession of arcs ξ ∈ A∗SOC , or path p ⊂ P , whereP is the set of all paths inLSOC(G),
such that

min
ζξ

∑
ξ∈A∗

SOC

Ef,ξ · ζξ (36a)

s.t.
∑

ξ∈ξ+(κ)

ζξ −
∑

ξ∈ξ−(κ)

ζξ =


1, if κ = κo

−1, if κ = κd

0 else

, ∀κ ∈ ASOC (36b)

∑
ξ∈ξ+(κ)

ζξ ≤ 1, ∀κ ∈ ASOC (36c)

ζξ ∈ {0, 1} , ∀ξ ∈ A∗SOC (36d)

where κo is the origin node, and κd is the destination node in LSOC(G). The arcs
ξ exiting node κ are denoted ξ ∈ ξ+(κ), and the arcs entering node κ are denoted
ξ ∈ ξ−(κ), analogously to the previous formulations. Note that, as already said, con-
straints (36b)-(36d) are naturally enforced by any shortest-path algorithm on graphs.
Also, the objective function in (36a) can only take on positive values, since it represents
fuel consumption. Therefore the problem can be solved by a single run of the Dijkstra
algorithm in polynomial time. Integer programming algorithms may also be used here
to solve the problem.

4.3. Relaxed problem on line graph (RLG)
The last approach presented here, as already mentioned, cannot be considered as

an equivalent formulation of Problem 1 because it is assumed that constraints (24d) and
(24e) can be neglected. Evidently, this is not generally true and there is no guarantee that
the solution of the relaxed problem verifies such constraints. However, this relaxation
makes the problem much easier to deal with and it could be considered as a practical
approach especially for charge-sustaining HEVs. In fact, for this type of vehicles, it is
generally observed that the optimal SOC trajectory hardly reaches the physical bounds
of the battery and stays within a certain range around 50% of SOC. Furthermore, for this
relaxed formulation, we will use the empirical observation that the fuel consumption of
an HEV on each road segment, or arc, k is non-negative and varies linearly with the
electrical energy use ∆k. Such a linear relationship between fuel consumption and SOC
variation for each arc can be inferred, for instance, via a linear regression on the discrete
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SOC variation levels N∆, as defined in (27). The higher the number of such values,
the higher the accuracy of the linear regression. Such a linear relationship for each arc
can be calculated and stored offline, therefore the problem does not depend on the δb
parameter.

Finally, the relaxed formulation can be written as follows:

Problem 5. For a given directed line graph L(G) = (A,A∗), find the succession of arcs
k ∈ A∗, or path p ⊂ P , where P is the set of all paths in L(G), and the electrical energy
consumption ∆k on each arc k such that

min
ζk,∆k

∑
k∈A∗

(α0 + α1 ∆k) · ζk (37a)

s.t.
∑

k∈k+(i)

ζk −
∑

k∈k−(i)

ζk =


1, if i = io

−1, if i = id

0 else

, ∀i ∈ A (37b)

∑
k∈k+(i)

ζk ≤ 1, ∀i ∈ A (37c)

α0 + α1 ∆k ≥ 0 (37d)∑
k∈A∗

−∆k · ζk ≥ ∆ (37e)

ζk ∈ {0, 1} , ∆k ∈ R ∀k ∈ A∗ (37f)

where the fuel consumption of the HEV has been replaced in the objective function by
a linear function of the decision variable ∆k, as follows: Wk(∆k) = α0 + α1 ∆k. The
non-negativity of the fuel consumption is then imposed in the new constraint (37d). Note
that this is still a MINLP, and in particular the objective function is bi-linear, presenting
the product of the integer variable ζk and the linear variable ∆k. However, this type of
problems can be easily transformed into a MILP by introducing an additional auxiliary
variable and by using the well-known convex relaxation with the McCormick envelopes
[40]. Let us introduce then a new variable wk = ∆k · ζk. The problem can be reformu-
lated as follows:

Problem 6 (RLG-P). For a given directed line graph L(G) = (A,A∗), find the suc-
cession of arcs k ∈ A∗, or path p ⊂ P , where P is the set of all paths in L(G), the
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electrical energy consumption ∆k and the variable wk on each arc k such that

min
ζk,∆k,wk

∑
k∈A∗

α0 ζk + α1wk (38a)

s.t.
∑

k∈k+(i)

ζk −
∑

k∈k−(i)

ζk =


1, if i = io

−1, if i = id

0 else

, ∀i ∈ A (38b)

∑
k∈k+(i)

ζk ≤ 1, ∀i ∈ A (38c)

α0 + α1 ∆k ≥ 0 (38d)∑
k∈A∗

−wk ≥ ∆ (38e)

wk ≥ ∆k,min ζk (38f)

wk ≥ ∆k + ∆k,max ζk −∆k,max (38g)

wk ≤ ∆k + ∆k,min ζk −∆k,min (38h)

wk ≤ ∆k,max ζk (38i)

ζk ∈ {0, 1} , ∆k, wk ∈ [∆k,min,∆k,max] ∀k ∈ A∗ (38j)

This problem can be effectively solved via integer programming algorithms.

5. Search Algorithms

In the previous section, several alternative problem formulations of Problem 1 were
given for a practical solution of the eco-routing problem for HEVs. An intuition about
how the problem constraints are addressed by each formulation and what search algo-
rithms can be used to effectively solve them was also provided. A summary of this
discussion is given in Table 1, where it is shown at a glance what search algorithms can
be used and compared to solve a same problem formulation, as well as the differences
between the proposed formulations in terms of constraints enforcement.

In the remainder of this section, a more detailed description of the used search algo-
rithms is provided. Some algorithms, such as the Dijkstra shortest-path algorithm, or the
Bellman-Ford shortest path algorithm, or the integer programming algorithms are used
in their standard implementation as provided by MATLAB R2019b or other well-known
mathematical optimization solvers, such as Gurobi v9.0. These algorithms will not be
detailed here, as sufficient documentation is publicly available online. All the other al-
gorithms were adapted and tailored to the problem under consideration for improved
performance.

5.1. Constrained Bellman-Ford shortest-path algorithm (CBF)
The computational complexity of the constrained BF algorithm is non-polynomial,

typically exponential. This algorithm is generally impractical in most cases due to the
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Algorithms
Problems

DSEG-P1 DSEG-P2 SEG-P RLG-P

Dijkstra (DIJ) •
Constrained Bellman-Ford (CBF) •
ε-approximated CBF (ε-CBF) •
Integer programming (IP) • •
Binary search + Bellman-Ford (BSBF) •
Binary search + IP (BSIP) •

Constraints
Problems

DSEG-P1 DSEG-P2 SEG-P RLG-P

local state constraints

terminal state constraint

Table 1: Summary of the search algorithms used to solve the proposed problems and overview of the type
of constraints verified by each problem.

fact that all the sub-paths verifying the constraints to every node of the routing graph
need to be stored during run-time. Implementations of such an algorithm exist in the lit-
erature [41, 42], but an adaptation to the case under analysis is provided here in Appendix
in Algorithm 1. The proposed implementation still presents an exponential complexity,
hence impractical for our purposes.

5.2. ε-approximated CBF (ε-CBF)
Promising polynomial-time approximation schemes for the constrained shortest-path

algorithms have been proposed [32] by leveraging the idea of costs rounding and scaling
and the idea of listing only Pareto-optimal sub-paths. This same idea has been applied
to the search of optimal paths in graphs for EVs [33, 43] with SOC constraints and
charging capabilities. The idea behind these approximation schemes consists in reducing
the number of sub-paths that the constrained algorithm would store at each relaxation
step by approximating the value of a cost (e.g. fuel consumption in this work) on an
ε-spaced grid and storing the cost only if it is not dominated, in the sense of Pareto,
by the previously stored ones [33]. The same approximation could be also applied to
the value of a resource (e.g. electrical energy) to further reduce the number of retained
sub-paths [43]. Evidently, such techniques give approximate solutions, and the level
of approximation, as well as computational complexity, is determined by the choice
of the sensitivity parameter ε. In this work, a modified version of such an algorithm
is proposed in Algorithm 2. The main difference resides in the fact that the Pareto-
optimality condition for the conservation of the sub-path is relaxed and all the sub-paths
are stored. Note that, especially in the presence of local state constraints, a sub-path can
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still be globally optimal and compliant with the constraints even though it is dominated
in terms of fuel consumption or electrical energy consumption by another sub-path at an
intermediate location. Furthermore, a modification to speed up convergence and reduce
time complexity in the average case [44, 45] is applied here to the case of a constrained
shortest path algorithm. The modification consists in introducing an early termination
condition when an iteration of the algorithm main loop ends without making any sub-
path update. When this happens, it means that the algorithm has already found all the
shortest paths from the origin and any further iteration would not modify them.

5.3. Binary search
The proposed binary search algorithm to solve the bi-level Problem 3 is actually a

combination of iterative and binary search. The objective of the iterative search is to find
the two extreme values of the parameter λ which initialize the binary search. While the
first initialization choice of λ = 1 for the higher bound of the binary search is feasible,
making a second initialization choice of λ = 0 for the lower bound would result in
solving a longest-path problem (NP-hard), which is both intractable and uninteresting
for our needs. Therefore an iterative search of λ was proposed by means of a search
step parameter. At the end of the iterative search, two extreme values of λ are available,
with the corresponding paths verifying the local constraint (31f). The binary search was
inspired by the one used in [35], but modified to include the verification of the SOC
constraints and the termination condition to halt the recursion when a feasible solution
is found. For more details, the pseudo-code is provided in Algorithms 3 and 4. Note that
the optimal path search in Algorithm 4 could be performed by an integer programming
algorithms instead of the Bellman-Ford algorithm. This is why a combination of binary
search and integer programming (BSIP) is considered as a viable solution of problem
DSEG-P2 in Table 1. However, its computational complexity makes it less appealing
than the BSBF using an unconstrained shortest path algorithm in the lower optimization
level.

6. Simulation Results

The simulation experiments were conducted with the objective of comparing the
different approaches presented in Section 4 to solve the general Problem 1. The proposed
strategies were implemented in MATLAB R2019b on a computer with CPU Intel(R)
Core(TM) i7-8850H CPU at 2.6 GHz and 16 GB of RAM. For the following analysis,
we considered three routing graphs of increasing size representing the road networks of
the city center of Rueil-Malmaison (France), Aachen (Germany) and Paris (France). A
visual representation of the three graphs is given in Figure 3, while the graphs size and
how their size increases with the graph expansions described in Section 4 are indicated
in Table 2.

The fuel consumption calculation (i.e. arc weights) for all the considered graphs was
carried out by using the vehicle parameters of a common HEV and traffic conditions of
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Figure 3: Considered routing graphs. From left to right, Rueil-Malmaison (France), Aachen (Germany) and
Paris (France).

Graph Rueil-Malmaison Aachen Paris

|V | 505 3,066 30,179

|A| 944 5,289 51,304

|A∗| 1,286 5,987 73,656

|A∗∆| 11,574 53,883 662,904

|A∗SOC | 2,300,654 10,710,743 131,770,584

Table 2: Graphs dimensions

regular working days at morning rush hour. The traffic data were retrieved from HERE
Maps.

In the following, the different methods under analysis are compared firstly in terms of
the trade-off between solution accuracy and computation time on a given routing graph,
then their scalability is analyzed by testing their computation time on all considered
graphs.

Let us recall the main parameters having an impact on the solution accuracy and
computation time of each method. An overview of the parameter settings for the different
problems and algorithms is given in Table 3.

It is possible to observe that the minimum and maximum battery SOC (Smin and
Smax, respectively) are used as parameters in all problems except for RLG-P, in which the
local SOC constraints are not enforced. The minimum and maximum SOC variation per
arc (∆k,min and ∆k,max, respectively) are used in all problems. A SOC variation range of
[−2, 2]% was chosen, in order to be even more conservative than what suggested by the
results in Figure 2. The SOC discretization step δb is also used in all problems except for
RLG-P, which does not require any SOC discretization. The sensitivity to a variation of
this parameter is studied in the following to assess its impact on solution accuracy and
computation time. Some other algorithm-specific parameters were also varied in order to
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Parameters
Problems DSEG-P1 DSEG-P2 SEG-P RLG-P

ε-CBF BSBF DIJ IP IP
Smax 100%
Smin 0%

∆k,min -2%
∆k,max 2%
δb [0.1, 1]%
εW [10,30] Wh
ε∆ [0.05,5]%
δλ 0.1

tol∆ [2,5]%
γλ 1e-8
γ∆ [0.1,10]%

Table 3: Problems and algorithms parameter settings used in the experiments.

assess performance. These parameters are defined and used in Appendix in the pseudo-
code of the algorithms, but for convenience let us recall their meaning. The algorithm ε-
CBF makes use of the weight similarity parameter εW and the SOC similarity parameter
ε∆ to reduce the number of sub-paths stored in runtime. Finally, the bi-level optimisation
problem DSEG-P2 makes use of the variation step δλ during the iterative initialization of
the binary search; the tolerance tol∆ on the difference between actual and desired final
SOC is used to speed-up convergence and halt the optimization; the similarity parameters
γλ and γ∆ are used in the binary search to decide sensitivity to new solutions of the
Pareto front. Note that the CBF and BSIP algorithms are voluntarily kept out of the
analysis in the simulation experiments because of their excessively high computation
time, which makes them uninteresting for our purposes of identifying the most effective
solution strategies.

6.1. Trade-off between solution accuracy and computation time

In the first part of the experimental results, the different problems and algorithms are
compared in terms of accuracy in the route fuel consumption estimation and computation
time. To do so, the parameters shown in Table 3 are varied each within their specified
range. The smallest routing graph among the considered ones (i.e. Rueil-Malmaison,
France) was used in this experiment so that it was possible to test a wider range of
parameters without incurring in extreme scalability issues. Also, for this experiment,
since we are interested in the trade-off between accuracy and computation time, we
limited the analysis to one O/D (origin/destination) pair, without loss of generality.

Furthermore, in order to properly compare the fuel consumption of routes with dif-
ferent final SOC values and evaluate the eco-route approximation error, a correction of
the fuel consumption of each route for a same value of reference final SOC is neces-
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Figure 4: Linear fit of the relationship between fuel consumption and final battery SOC for a given O/D on
the graph of Rueil-Malmaison (S0 = 50%). The data points represent the optimal route solutions obtained
from all tested algorithms.

sary. To perform such a conversion, the different optimal solutions obtained from all
tested algorithms for several combinations of parameters were represented in the fuel-
consumption/final-SOC plane, as shown in Figure 4. Given the linear fit approximating
the relationship between the optimal fuel consumption Ef and the final SOC Sf for
the routes of the considered O/D pair, the corrected fuel consumption E∗f for a same
reference final SOC S∗f can be calculated as follows:

E∗f = Ef + 0.20297 · sign (S∗f − Sf ) · |S∗f − Sf | (39)

It is possible then to establish the sought trade-off between solution accuracy in terms
of fuel consumption and computation time. The corrected fuel consumption correspond-
ing to the reference final SOC S∗f = 50% calculated with equation (39) is plotted as a
function of the required CPU time for all tested algorithms in Figure 5. The algorithm
ε-CBF on problem DSEG-P1 is able to find the route with the lowest corrected fuel con-
sumption at the expense of a very high computation time. However, for a selection of
parameters ensuring a practical computation time some of its solutions are dominated by
other algorithms, thus becoming less appealing. Similarly, Dijkstra’s algorithm on the
SEG-P shows an improvement of fuel consumption accuracy with computation time but
it remains dominated by the other methods for all selections of parameters. The algo-
rithm BSBF on problem DSEG-P2 appears to have the most non-dominated points for
low computation time, but with the disadvantage of not being able to further improve
its fuel consumption accuracy because no selection of parameters would drastically in-
crease its computation time. Finally, the IP algorithm on the RLG-P has just one point
because it does not depend on any parameter. It offers an interesting trade-off in terms
of fuel consumption and computation time for a small graph like the one considered in
these tests, but it will be shown that it does not scale well with the graph size.

26



10−1 100 101 102

1.6

1.8

2

CPU time [s]

C
or

re
ct

ed
fu

el
co

ns
um

pt
io

n
[k

W
h]

SEG-P (DIJ)
DSEG-P1 (ε-CBF)
DSEG-P2 (BSBF)
RLG-P (IP)

Figure 5: Trade-off between the optimal fuel consumption estimation accuracy and the computation time
for the 4 tested algorithms and for different parameters selections. The indicated fuel consumption points
correspond to a final SOC Sf = 50% for an initial SOC S0 = 50%.

Furthermore, in order to better understand the performance of the tested algorithms,
it is important to discuss how the SOC discretization error impacts differently each prob-
lem. As already mentioned, the DSEG-P is based on a link-level graph expansion cre-
ating copies of the arcs weighted with fuel consumptions associated with different SOC
variations. This property of creating only local copies of the links allows the approach to
not have a fixed SOC discretization in the entire graph and to create copies correspond-
ing to the actual calculated ∆k,j independently of the values of the calculated SOC
variations on other links of the graph. On the contrary, the SEG-P is mainly based on a
node-level graph expansion, and the copies of the nodes must be created on a pre-defined
SOC discretization grid determined by δb, in the same way in the entire graph. Often, in
the literature, this difference between the pre-defined grid of desired SOC values at the
nodes and the actual values calculated by the EMS is overlooked, and this may lead to a
large inaccuracy in the fuel consumption estimation and the predicted SOC profile along
the route.

To conclude this first set of simulation experiments, based on the results shown in
Figure 5, we made the following selection of parameters for all algorithms in order to
have the most accurate fuel consumption estimation with a computation time below 1
second (this seems reasonable for a graph the size of Rueil-Malmaison). Therefore,
the SOC discretization step was set to δb = 0.5%; the ε-CBF parameters were set to
εW = 30 Wh and ε∆ = 5%; the BSBF parameters were set to tol∆ = γ∆ = 1%.

For this choice of parameters and for the same given O/D pair on the graph of Rueil-
Malmaison, an example of HEVs eco-routing is given in Figure 6. Interestingly, among
the tested algorithms, only BSBF and IP calculate the same eco-route. The associated
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Figure 6: Map display of the calculated eco-routes on the graph of Rueil-Malmaison.
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Figure 7: Fuel consumption and battery state-of-charge profiles of the eco-routes calculated on the graph of
Rueil-Malmaison.

fuel consumption and battery SOC profiles along the routes are shown in Figure 7. Ap-
plying again the formula in (39), the BSBF algorithm yields the route with the minimum
corrected fuel consumption for S∗f = 50%.
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Graphs
Problems DSEG-P1 DSEG-P2 SEG-P RLG-P

ε-CBF BSBF DIJ IP IP

Rueil-Malmaison 0.17 0.07 0.11 485.94 0.96

Aachen 42.59 0.17 0.87 – 3.69

Paris – 4.06 17.38 – 366.88

Table 4: Average computation times (in seconds) of the tested algorithms for a random selection of 100
O/D pairs in each graph.

6.2. Computational performance and scalability
In this last set of experiments, after fixing the parameters for all algorithms as dis-

cussed before, we considered the three routing graphs and compared the computation
times of the different considered methods on a random set of 100 different O/D pairs in
each graph. We considered an initial SOC S0 = 50%. The routing graphs characteristics
and the dimensions of their graph expansions are indicated in Table 2. In particular, we
show that the SEG size grows significantly for large graphs.

The average computation times in seconds are stated in Table 4.
From this analysis it appears that, although the algorithms converge rather quickly

to the optimal solution on the small graph of Rueil-Malmaison, they exhibit different
scalability properties as the bigger graphs of Aachen and Paris are used. We also tested
the integer programming algorithm on the SEG-P, but the already large size of the ex-
panded graph of Rueil-Malmaison has a very negative impact on the computational per-
formance of the algorithm, thus making it uninteresting with the SEG-P. As for the other
algorithms, it is possible to observe that the most scalable one is the BSBF on the DSEG-
P2, followed by the Dijkstra’s algorithm on the SEG-P. However, the BSBF algorithm,
as discussed in the previous set of experiments, exhibits higher accuracy in the fuel
consumption estimation of the eco-route. Both the ε-CBF and the IP algorithm offer
rather poor scalability properties and they are likely to be discarded when solving the
constrained eco-routing problem on real-world routing graphs.

7. Conclusions

The objective of this work is to compare different practical (i.e. requiring limited
computation time) solution approaches for the eco-routing problem of HEVs. The dif-
ferent methods are compared in terms of solution accuracy (i.e. eco-route fuel consump-
tion estimation precision) and computation time, in order to identify the best procedures
to tackle such a complex constrained optimization problem.

Firstly, this work presents methods to predict the energy consumption of various
types of vehicles in road networks based solely on topological information coming from
geographic information systems. The analysis then focuses mainly on hybrid electric ve-
hicles, whose intrinsic constraints on battery capacity make the problem more complex.
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A simplified energy management system for HEVs is proposed here for route planning
applications, which allows for fast and accurate solutions, comparable to the optimal
ones calculated offline via dynamic programming.

Then, several alternative formulations of the original eco-routing problem for HEVs
are presented and discussed. The considered formulation based on different graph expan-
sion techniques and the use of shortest-path algorithms, or based on problem relaxations
and integer programming algorithms, offer suitable frameworks for a fast solution of the
problem.

The algorithms that present the most appealing computation time for real-world eco-
routing for HEVs appear to be the binary search and Bellman-Ford algorithm (BSBF)
applied on the DSEG-P problem, followed by the Dijkstra’s algorithm applied to the
SEG-P problem, and finally by the integer programming applied to the RLG-P problem.
The BSBF algorithm is the one exhibiting the best scalability properties and also the
best algorithm in terms of fuel consumption estimation accuracy. To resume, the DSEG-
P approach to the constrained eco-routing problem for HEVs in combination with the
proposed BSBF algorithm is the most promising solution method. In alternative, the
RLG-P and integer programming approach performs well for graphs of limited size.
However, it should be reminded that some of the problem constraints (i.e. battery limits
constraints) are relaxed in this approach to keep the computational burden at a low.
This means that such method would not be suitable for solving the eco-routing problem
for P-HEVs or even EVs, for which the battery could be fully depleted and constraints
enforcing a minimum bound on the battery level would be required. On the other hand,
the BSBF algorithm would present even better convergence performance when solving
the eco-routing problem for charge-depleting electrified vehicles, thus confirming its
versatility.
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Appendix - Search algorithms pseudo-code

Algorithm 1 Constrained Bellman-Ford (CBF)
Input: G = (N,A) (routing graph), W (arc weights), ∆ (arc SOC variations), uo

(source node), ud (destination node), S0 (initial SOC), Sf (desired final SOC), Smin
(minimum allowed SOC), Smax (maximum allowed SOC)

Output: p (optimal path)
1: P ← ∅ // list of all sub-paths
2: D ← inf // list of optimal costs to every node
3: S ← inf // list of optimal final SOC at every node
4: P(uo)← uo

5: D(uo)← 0
6: S(uo)← S0

7: for i← 1 to (|N | − 1) do
8: optimal← true
9: for j ← 1 to |A| do

10: u← j− // tail node of arc j
11: v ← j+ // head node of arc j
12: for k ← 1 to |P(u)| do

13: if
(
D(u, k) +W (j) /∈ D(v) AND S(u, k) + ∆(j) ≤ Smax
AND S(u, k) + ∆(j) ≥ Smin

)
then

14: |P(v)| ← |P(v)|+ 1
15: P(v) ∪ [P(u, k), v] // append v to the kth path in the list of paths P(u)
16: D(v) ∪ D(u, k) +W (j)
17: S(v) ∪ S(u, k) + ∆(j)
18: optimal← false
19: end if
20: end for
21: end for
22: if optimal then
23: break // exit for loops
24: end if
25: end for
26: p← P(ud) ∩ (S(ud) == Sf )
27: return p
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Algorithm 2 ε-approximated CBF (ε-CBF)
Input: G = (N,A) (routing graph), W (arc weights), ∆ (arc SOC variations), uo

(source node), ud (destination node), S0 (initial SOC), Sf (desired final SOC), Smin
(minimum allowed SOC), Smax (maximum allowed SOC)

Output: p (optimal path)
Parameters: εW (weight similarity parameter), ε∆ (SOC similarity parameter)

1: P ← ∅ // list of all sub-paths
2: D ← inf // list of optimal costs to every node
3: S ← inf // list of optimal final SOC at every node
4: P(uo)← uo

5: D(uo)← 0
6: S(uo)← S0

7: for i← 1 to (|N | − 1) do
8: optimal← true
9: for j ← 1 to |A| do

10: u← j− // tail node of arc j
11: v ← j+ // head node of arc j
12: for k ← 1 to |P(u)| do

13: if

 D(u, k) +W (j) /∈ D(v) AND S(u, k) + ∆(j) ≤ Smax
AND S(u, k) + ∆(j) ≥ Smin AND |(S(u, k) + ∆(j))− S(v)| ≥ ε∆

AND |(D(u, k) +W (j))−D(v)| ≥ εW


then

14: |P(v)| ← |P(v)|+ 1
15: P(v) ∪ [P(u, k), v] // append v to the kth path in the list of paths P(u)
16: D(v) ∪ D(u, k) +W (j)
17: S(v) ∪ S(u, k) + ∆(j)
18: optimal← false
19: end if
20: end for
21: end for
22: if optimal then
23: break // exit for loops
24: end if
25: end for
26: p← P(ud) ∩ (S(ud) == Sf )
27: return p
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Algorithm 3 Binary Search + BF
Input: G = (N,A) (routing graph), W (arc weights), ∆ (arc SOC variations), uo

(source node), ud (destination node), S0 (initial SOC), Sf (desired final SOC)
Output: λ (optimization weight verifying the problem constraints)
Parameters: δλ (variation step of λ), tol∆ (tolerance on the difference between actual

and desired final SOC)
// Iterative initialization of binary search
λ1 ← 1
W ∗ = λW − (1− λ)∆
p(λ1)← BF

(
G,W ∗, uo, ud

)
λ← λ1

while ∆p(λ) < (Sf − S0) do // ∆p(λ): total SOC variation on path p obtained for λ
λ← λ− δλ
W ∗ = λW − (1− λ)∆
p(λ)← BF

(
G,W ∗, uo, ud

)
if
∣∣∆p(λ) − Sf + S0

∣∣ < tol∆ AND p(λ) verifies (24e) then
return λ

end if
end while
λ2 ← λ
λ← binarySearch

(
λ1, λ2,∆p(λ1),∆p(λ2),G,W,∆, uo, ud

)
return λ
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Algorithm 4 binarySearch
Input: λ1 (lower bound of the binary search), λ2 (upper bound of the binary search),

∆p(λ1) (total SOC variation on path p obtained for λ1), ∆p(λ2) (total SOC variation
on path p obtained for λ2), G = (N,A) (routing graph),W (arc weights), ∆ (arc SOC
variations), uo (source node), ud (destination node), S0 (initial SOC), Sf (desired final
SOC)

Output: λ
Parameters: γλ (λ similarity parameter), γ∆ (SOC similarity parameter), tol∆ (toler-

ance on the difference between actual and desired final SOC)
λ← (λ1 + λ2)/2
W ∗ = λW − (1− λ)∆
p← BF

(
G,W ∗, uo, ud

)
if
∣∣∆p(λ) − Sf + S0

∣∣ < tol∆ AND p(λ) verifies (24e) then
return λ

end if
if
(
|λ− λ2| ≥ γλ AND∣∣∆p −∆p(λ2)

∣∣ > γ∆

)
then

λ← binarySearch
(
λ, λ2,∆p(λ),∆p(λ2),G,W,∆, uo, ud

)
end if
if
(
|λ− λ1| ≥ γλ AND∣∣∆p −∆p(λ1)

∣∣ > γ∆

)
then

λ← binarySearch
(
λ, λ1,∆p(λ),∆p(λ1),G,W,∆, uo, ud

)
end if
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